blob: 8a06c050eb87f00333e2c6604c5bcfbd215106b8 [file] [log] [blame] [edit]
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import re
import time
from pycoral.adapters import common
from pycoral.utils import edgetpu
LABEL_PATTERN = re.compile(r'\s*(\d+)(.+)')
def load_labels(path):
with open(path, 'r', encoding='utf-8') as f:
lines = (LABEL_PATTERN.match(line).groups() for line in f.readlines())
return {int(num): text.strip() for num, text in lines}
def input_image_size(interpreter):
return common.input_size(interpreter)
def same_input_image_sizes(interpreters):
return len({input_image_size(interpreter) for interpreter in interpreters}) == 1
def avg_fps_counter(window_size):
window = collections.deque(maxlen=window_size)
prev = time.monotonic()
yield 0.0 # First fps value.
while True:
curr = time.monotonic()
window.append(curr - prev)
prev = curr
yield len(window) / sum(window)
def make_interpreters(models):
interpreters, titles = [], {}
for model in models.split(','):
if '@' in model:
model_path, title = model.split('@')
else:
model_path, title = model, os.path.basename(os.path.normpath(model))
interpreter = edgetpu.make_interpreter(model_path)
interpreter.allocate_tensors()
interpreters.append(interpreter)
titles[interpreter] = title
return interpreters, titles