blob: 58a5b174416602472441b35cd6adb3a9f0b960d1 [file] [log] [blame]
/*
* Copyright © 2015 Samsung Electronics Co., Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include "zunitc/zunitc_impl.h"
#include "zunitc/zunitc.h"
#include "zuc_base_logger.h"
#include "zuc_collector.h"
#include "zuc_context.h"
#include "zuc_event_listener.h"
#include "zuc_junit_reporter.h"
#include "shared/config-parser.h"
#include "shared/helpers.h"
#include "shared/zalloc.h"
/*
* If CLOCK_MONOTONIC is present on the system it will give us reliable
* results under certain edge conditions that normally require manual
* admin actions to trigger. If not, CLOCK_REALTIME is a reasonable
* fallback.
*/
#if _POSIX_MONOTONIC_CLOCK
static const clockid_t TARGET_TIMER = CLOCK_MONOTONIC;
#else
static const clockid_t TARGET_TIMER = CLOCK_REALTIME;
#endif
static char const DISABLED_PREFIX[] = "DISABLED_";
#define MS_PER_SEC 1000L
#define NANO_PER_MS 1000000L
/**
* Simple single-linked list structure.
*/
struct zuc_slinked {
void *data;
struct zuc_slinked *next;
};
static struct zuc_context g_ctx = {
.case_count = 0,
.cases = NULL,
.fatal = false,
.repeat = 0,
.random = 0,
.spawn = true,
.break_on_failure = false,
.fds = {-1, -1},
.listeners = NULL,
.curr_case = NULL,
.curr_test = NULL,
};
static char *g_progname = NULL;
static char *g_progbasename = NULL;
typedef int (*comp_pred2)(intptr_t lhs, intptr_t rhs);
static bool
test_has_skip(struct zuc_test *test)
{
return test->skipped;
}
static bool
test_has_failure(struct zuc_test *test)
{
return test->fatal || test->failed;
}
bool
zuc_has_skip(void)
{
return g_ctx.curr_test ?
test_has_skip(g_ctx.curr_test) : false;
}
bool
zuc_has_failure(void)
{
return g_ctx.curr_test ?
test_has_failure(g_ctx.curr_test) : false;
}
void
zuc_set_filter(const char *filter)
{
g_ctx.filter = strdup(filter);
}
void
zuc_set_repeat(int repeat)
{
g_ctx.repeat = repeat;
}
void
zuc_set_random(int random)
{
g_ctx.random = random;
}
void
zuc_set_spawn(bool spawn)
{
g_ctx.spawn = spawn;
}
void
zuc_set_break_on_failure(bool break_on_failure)
{
g_ctx.break_on_failure = break_on_failure;
}
void
zuc_set_output_junit(bool enable)
{
g_ctx.output_junit = enable;
}
const char *
zuc_get_program_name(void)
{
return g_progname;
}
const char *
zuc_get_program_basename(void)
{
return g_progbasename;
}
static struct zuc_test *
create_test(int order, zucimpl_test_fn fn, zucimpl_test_fn_f fn_f,
char const *case_name, char const *test_name,
struct zuc_case *parent)
{
struct zuc_test *test = zalloc(sizeof(struct zuc_test));
ZUC_ASSERTG_NOT_NULL(test, out);
test->order = order;
test->fn = fn;
test->fn_f = fn_f;
test->name = strdup(test_name);
if ((!fn && !fn_f) ||
(strncmp(DISABLED_PREFIX,
test_name, sizeof(DISABLED_PREFIX) - 1) == 0))
test->disabled = 1;
test->test_case = parent;
out:
return test;
}
static int
compare_regs(const void *lhs, const void *rhs)
{
int rc = strcmp((*(struct zuc_registration **)lhs)->tcase,
(*(struct zuc_registration **)rhs)->tcase);
if (rc == 0)
rc = strcmp((*(struct zuc_registration **)lhs)->test,
(*(struct zuc_registration **)rhs)->test);
return rc;
}
/* gcc-specific markers for auto test case registration: */
extern const struct zuc_registration __start_zuc_tsect;
extern const struct zuc_registration __stop_zuc_tsect;
static void
register_tests(void)
{
size_t case_count = 0;
size_t count = &__stop_zuc_tsect - &__start_zuc_tsect;
size_t i;
int idx = 0;
const char *last_name = NULL;
void **array = zalloc(sizeof(void *) * count);
ZUC_ASSERT_NOT_NULL(array);
for (i = 0; i < count; ++i)
array[i] = (void *)(&__start_zuc_tsect + i);
qsort(array, count, sizeof(array[0]), compare_regs);
/* Count transitions to get number of test cases. */
last_name = NULL;
for (i = 0; i < count; ++i) {
const struct zuc_registration *reg =
(const struct zuc_registration *)array[i];
if (!last_name || (strcmp(last_name, reg->tcase))) {
last_name = reg->tcase;
case_count++;
}
}
/* Create test case data items. */
struct zuc_case **case_array =
zalloc(sizeof(struct zuc_case *) * case_count);
ZUC_ASSERT_NOT_NULL(case_array);
struct zuc_case *last_case = NULL;
size_t case_num = 0;
for (i = 0; i < count; ++i) {
const struct zuc_registration *reg =
(const struct zuc_registration *)array[i];
if (!last_case || (strcmp(last_case->name, reg->tcase))) {
last_case = zalloc(sizeof(struct zuc_case));
ZUC_ASSERT_NOT_NULL(last_case);
last_case->order = count;
last_case->name = strdup(reg->tcase);
last_case->fxt = reg->fxt;
last_case->test_count = i;
if (case_num > 0) {
int tcount = i
- case_array[case_num - 1]->test_count;
case_array[case_num - 1]->test_count = tcount;
}
case_array[case_num++] = last_case;
}
}
case_array[case_count - 1]->test_count = count
- case_array[case_count - 1]->test_count;
/* Reserve space for tests per test case. */
for (case_num = 0; case_num < case_count; ++case_num) {
case_array[case_num]->tests =
zalloc(case_array[case_num]->test_count
* sizeof(struct zuc_test *));
ZUC_ASSERT_NOT_NULL(case_array[case_num]->tests);
}
last_name = NULL;
case_num = -1;
for (i = 0; i < count; ++i) {
const struct zuc_registration *reg =
(const struct zuc_registration *)array[i];
int order = count - (1 + (reg - &__start_zuc_tsect));
if (!last_name || (strcmp(last_name, reg->tcase))) {
last_name = reg->tcase;
case_num++;
idx = 0;
}
if (order < case_array[case_num]->order)
case_array[case_num]->order = order;
case_array[case_num]->tests[idx] =
create_test(order, reg->fn, reg->fn_f,
reg->tcase, reg->test,
case_array[case_num]);
if (case_array[case_num]->fxt != reg->fxt)
printf("%s:%d: error: Mismatched fixtures for '%s'\n",
__FILE__, __LINE__, case_array[case_num]->name);
idx++;
}
free(array);
g_ctx.case_count = case_count;
g_ctx.cases = case_array;
}
static int
compare_case_order(const void *lhs, const void *rhs)
{
return (*(struct zuc_case **)lhs)->order
- (*(struct zuc_case **)rhs)->order;
}
static int
compare_test_order(const void *lhs, const void *rhs)
{
return (*(struct zuc_test **)lhs)->order
- (*(struct zuc_test **)rhs)->order;
}
static void
order_cases(int count, struct zuc_case **cases)
{
int i;
qsort(cases, count, sizeof(*cases), compare_case_order);
for (i = 0; i < count; ++i) {
qsort(cases[i]->tests, cases[i]->test_count,
sizeof(*cases[i]->tests), compare_test_order);
}
}
static void
free_events(struct zuc_event **events)
{
struct zuc_event *evt = *events;
*events = NULL;
while (evt) {
struct zuc_event *old = evt;
evt = evt->next;
free(old->file);
if (old->valtype == ZUC_VAL_CSTR) {
free((void *)old->val1);
free((void *)old->val2);
}
free(old->expr1);
free(old->expr2);
free(old);
}
}
static void
free_test(struct zuc_test *test)
{
free(test->name);
free_events(&test->events);
free_events(&test->deferred);
free(test);
}
static void
free_test_case(struct zuc_case *test_case)
{
int i;
free(test_case->name);
for (i = test_case->test_count - 1; i >= 0; --i) {
free_test(test_case->tests[i]);
test_case->tests[i] = NULL;
}
free(test_case->tests);
free(test_case);
}
/**
* A very simple matching that is compatible with the algorithm used in
* Google Test.
*
* @param wildcard sequence of '?', '*' or normal characters to match.
* @param str string to check for matching.
* @return true if the wildcard matches the entire string, false otherwise.
*/
static bool
wildcard_matches(char const *wildcard, char const *str)
{
switch (*wildcard) {
case '\0':
return !*str;
case '?':
return *str && wildcard_matches(wildcard + 1, str + 1);
case '*':
return (*str && wildcard_matches(wildcard, str + 1))
|| wildcard_matches(wildcard + 1, str);
default:
return (*wildcard == *str)
&& wildcard_matches(wildcard + 1, str + 1);
};
}
static char**
segment_str(char *str)
{
int count = 1;
char **parts = NULL;
char *saved = NULL;
char *tok = NULL;
int i = 0;
for (i = 0; str[i]; ++i)
if (str[i] == ':')
count++;
parts = zalloc(sizeof(char*) * (count + 1));
ZUC_ASSERTG_NOT_NULL(parts, out);
tok = strtok_r(str, ":", &saved);
i = 0;
parts[i++] = tok;
while (tok) {
tok = strtok_r(NULL, ":", &saved);
parts[i++] = tok;
}
out:
return parts;
}
static void
filter_cases(int *count, struct zuc_case **cases, char const *filter)
{
int i = 0;
int j = 0;
int num_pos = 0;
int negative = -1;
char *buf = strdup(filter);
char **parts = segment_str(buf);
for (i = 0; parts[i]; ++i) {
if (parts[i][0] == '-') {
parts[i]++;
negative = i;
break;
}
num_pos++;
}
for (i = 0; i < *count; ++i) {
/* Walk backwards for easier pruning. */
for (j = cases[i]->test_count - 1; j >= 0; --j) {
int x;
bool keep = num_pos == 0;
char *name = NULL;
struct zuc_test *test = cases[i]->tests[j];
if (asprintf(&name, "%s.%s", cases[i]->name,
test->name) < 0) {
printf("%s:%d: error: %d\n", __FILE__, __LINE__,
errno);
exit(EXIT_FAILURE);
}
for (x = 0; (x < num_pos) && !keep; ++x)
keep = wildcard_matches(parts[x], name);
if (keep && (negative >= 0))
for (x = negative; parts[x] && keep; ++x)
keep &= !wildcard_matches(parts[x],
name);
if (!keep) {
int w;
free_test(test);
for (w = j + 1; w < cases[i]->test_count; w++)
cases[i]->tests[w - 1] =
cases[i]->tests[w];
cases[i]->test_count--;
}
free(name);
}
}
free(parts);
parts = NULL;
free(buf);
buf = NULL;
/* Prune any cases with no more tests. */
for (i = *count - 1; i >= 0; --i) {
if (cases[i]->test_count < 1) {
free_test_case(cases[i]);
for (j = i + 1; j < *count; ++j)
cases[j - 1] = cases[j];
cases[*count - 1] = NULL;
(*count)--;
}
}
}
static unsigned int
get_seed_from_time(void)
{
time_t sec = time(NULL);
unsigned int seed = (unsigned int) sec % 100000;
if (seed < 2)
seed = 2;
return seed;
}
static void
initialize(void)
{
static bool init = false;
if (init)
return;
init = true;
register_tests();
if (g_ctx.fatal)
return;
if (g_ctx.random > 1) {
g_ctx.seed = g_ctx.random;
} else if (g_ctx.random == 1) {
g_ctx.seed = get_seed_from_time();
}
if (g_ctx.case_count) {
order_cases(g_ctx.case_count, g_ctx.cases);
if (g_ctx.filter && g_ctx.filter[0])
filter_cases(&g_ctx.case_count, g_ctx.cases,
g_ctx.filter);
}
}
int
zuc_initialize(int *argc, char *argv[], bool *help_flagged)
{
int rc = EXIT_FAILURE;
int opt_help = 0;
int opt_nofork = 0;
int opt_list = 0;
int opt_repeat = 0;
int opt_random = 0;
int opt_break_on_failure = 0;
int opt_junit = 0;
char *opt_filter = NULL;
char *help_param = NULL;
int argc_in = *argc;
const struct weston_option options[] = {
{ WESTON_OPTION_BOOLEAN, "zuc-nofork", 0, &opt_nofork },
{ WESTON_OPTION_BOOLEAN, "zuc-list-tests", 0, &opt_list },
{ WESTON_OPTION_INTEGER, "zuc-repeat", 0, &opt_repeat },
{ WESTON_OPTION_INTEGER, "zuc-random", 0, &opt_random },
{ WESTON_OPTION_BOOLEAN, "zuc-break-on-failure", 0,
&opt_break_on_failure },
#if ENABLE_JUNIT_XML
{ WESTON_OPTION_BOOLEAN, "zuc-output-xml", 0, &opt_junit },
#endif
{ WESTON_OPTION_STRING, "zuc-filter", 0, &opt_filter },
};
/*
*If a test binary is linked to our libzunitcmain it might want
* to access the program 'name' from argv[0]
*/
free(g_progname);
g_progname = NULL;
free(g_progbasename);
g_progbasename = NULL;
if ((*argc > 0) && argv) {
char *path = NULL;
char *base = NULL;
g_progname = strdup(argv[0]);
/* basename() might modify the input, so needs a writeable
* string.
* It also may return a statically allocated buffer subject to
* being overwritten so needs to be dup'd.
*/
path = strdup(g_progname);
base = basename(path);
g_progbasename = strdup(base);
free(path);
} else {
g_progname = strdup("");
printf("%s:%d: warning: No valid argv[0] for initialization\n",
__FILE__, __LINE__);
}
initialize();
if (g_ctx.fatal)
return EXIT_FAILURE;
if (help_flagged)
*help_flagged = false;
{
/* Help param will be a special case and need restoring. */
int i = 0;
char **argv_in = NULL;
const struct weston_option help_options[] = {
{ WESTON_OPTION_BOOLEAN, "help", 'h', &opt_help },
};
argv_in = zalloc(sizeof(char *) * argc_in);
if (!argv_in) {
printf("%s:%d: error: alloc failed.\n",
__FILE__, __LINE__);
return EXIT_FAILURE;
}
for (i = 0; i < argc_in; ++i)
argv_in[i] = argv[i];
parse_options(help_options, ARRAY_LENGTH(help_options),
argc, argv);
if (*argc < argc_in) {
for (i = 1; (i < argc_in) && !help_param; ++i) {
bool found = false;
int j = 0;
for (j = 0; (j < *argc) && !found; ++j)
found = (argv[j] == argv_in[i]);
if (!found)
help_param = argv_in[i];
}
}
free(argv_in);
}
parse_options(options, ARRAY_LENGTH(options), argc, argv);
if (help_param && (*argc < argc_in))
argv[(*argc)++] = help_param;
if (opt_filter) {
zuc_set_filter(opt_filter);
free(opt_filter);
}
if (opt_help) {
printf("Usage: %s [OPTIONS]\n"
" --zuc-break-on-failure\n"
" --zuc-filter=FILTER\n"
" --zuc-list-tests\n"
" --zuc-nofork\n"
#if ENABLE_JUNIT_XML
" --zuc-output-xml\n"
#endif
" --zuc-random=N [0|1|<seed number>]\n"
" --zuc-repeat=N\n"
" --help\n",
argv[0]);
if (help_flagged)
*help_flagged = true;
rc = EXIT_SUCCESS;
} else if (opt_list) {
zuc_list_tests();
rc = EXIT_FAILURE;
} else {
zuc_set_repeat(opt_repeat);
zuc_set_random(opt_random);
zuc_set_spawn(!opt_nofork);
zuc_set_break_on_failure(opt_break_on_failure);
zuc_set_output_junit(opt_junit);
rc = EXIT_SUCCESS;
}
return rc;
}
static void
dispatch_pre_run(struct zuc_context *ctx, int pass_count, int pass_num,
int seed, const char *filter)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->pre_run)
listener->pre_run(listener->data,
pass_count,
pass_num,
seed,
filter);
}
}
static void
dispatch_run_started(struct zuc_context *ctx, int live_case_count,
int live_test_count, int disabled_count)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->run_started)
listener->run_started(listener->data,
live_case_count,
live_test_count,
disabled_count);
}
}
static void
dispatch_run_ended(struct zuc_context *ctx,
int live_case_count, int live_test_count, int total_passed,
int total_failed, int total_disabled, long total_elapsed)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->run_ended)
listener->run_ended(listener->data,
ctx->case_count,
ctx->cases,
live_case_count,
live_test_count,
total_passed,
total_failed,
total_disabled,
total_elapsed);
}
}
static void
dispatch_case_started(struct zuc_context *ctx,struct zuc_case *test_case,
int live_test_count, int disabled_count)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->case_started)
listener->case_started(listener->data,
test_case,
live_test_count,
disabled_count);
}
}
static void
dispatch_case_ended(struct zuc_context *ctx, struct zuc_case *test_case)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->case_ended)
listener->case_ended(listener->data, test_case);
}
}
static void
dispatch_test_started(struct zuc_context *ctx, struct zuc_test *test)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->test_started)
listener->test_started(listener->data, test);
}
}
static void
dispatch_test_ended(struct zuc_context *ctx, struct zuc_test *test)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->test_ended)
listener->test_ended(listener->data, test);
}
}
static void
dispatch_test_disabled(struct zuc_context *ctx, struct zuc_test *test)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->test_disabled)
listener->test_disabled(listener->data, test);
}
}
static void
dispatch_check_triggered(struct zuc_context *ctx, char const *file, int line,
enum zuc_fail_state state, enum zuc_check_op op,
enum zuc_check_valtype valtype,
intptr_t val1, intptr_t val2,
const char *expr1, const char *expr2)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->check_triggered)
listener->check_triggered(listener->data,
file, line,
state, op, valtype,
val1, val2,
expr1, expr2);
}
}
static void
dispatch_collect_event(struct zuc_context *ctx, char const *file, int line,
const char *expr1)
{
struct zuc_slinked *curr;
for (curr = ctx->listeners; curr; curr = curr->next) {
struct zuc_event_listener *listener = curr->data;
if (listener->collect_event)
listener->collect_event(listener->data,
file, line, expr1);
}
}
static void
migrate_deferred_events(struct zuc_test *test, bool transferred)
{
struct zuc_event *evt = test->deferred;
if (!evt)
return;
test->deferred = NULL;
if (test->events) {
struct zuc_event *old = test->events;
while (old->next)
old = old->next;
old->next = evt;
} else {
test->events = evt;
}
while (evt && !transferred) {
dispatch_check_triggered(&g_ctx,
evt->file, evt->line,
evt->state, evt->op,
evt->valtype,
evt->val1, evt->val2,
evt->expr1, evt->expr2);
evt = evt->next;
}
}
static void
mark_single_failed(struct zuc_test *test, enum zuc_fail_state state)
{
switch (state) {
case ZUC_CHECK_OK:
/* no internal state to change */
break;
case ZUC_CHECK_SKIP:
if (test)
test->skipped = 1;
break;
case ZUC_CHECK_FAIL:
if (test)
test->failed = 1;
break;
case ZUC_CHECK_ERROR:
case ZUC_CHECK_FATAL:
if (test)
test->fatal = 1;
break;
}
if (g_ctx.break_on_failure)
raise(SIGABRT);
}
static void
mark_failed(struct zuc_test *test, enum zuc_fail_state state)
{
if (!test && g_ctx.curr_test)
test = g_ctx.curr_test;
if (test) {
mark_single_failed(test, state);
} else if (g_ctx.curr_case) {
/* In setup or tear-down of test suite */
int i;
for (i = 0; i < g_ctx.curr_case->test_count; ++i)
mark_single_failed(g_ctx.curr_case->tests[i], state);
}
if ((state == ZUC_CHECK_FATAL) || (state == ZUC_CHECK_ERROR))
g_ctx.fatal = true;
}
void
zuc_attach_event(struct zuc_test *test, struct zuc_event *event,
enum zuc_event_type event_type, bool transferred)
{
if (!test) {
/*
* consider adding events directly to the case.
* would be for use during per-suite setup and teardown.
*/
printf("%s:%d: error: No current test.\n", __FILE__, __LINE__);
} else if (event_type == ZUC_EVENT_DEFERRED) {
if (test->deferred) {
struct zuc_event *curr = test->deferred;
while (curr->next)
curr = curr->next;
curr->next = event;
} else {
test->deferred = event;
}
} else {
if (test)
migrate_deferred_events(test, transferred);
if (test->events) {
struct zuc_event *curr = test->events;
while (curr->next)
curr = curr->next;
curr->next = event;
} else {
test->events = event;
}
mark_failed(test, event->state);
}
}
void
zuc_add_event_listener(struct zuc_event_listener *event_listener)
{
if (!event_listener) /* ensure null entries are not added */
return;
if (!g_ctx.listeners) {
g_ctx.listeners = zalloc(sizeof(struct zuc_slinked));
ZUC_ASSERT_NOT_NULL(g_ctx.listeners);
g_ctx.listeners->data = event_listener;
} else {
struct zuc_slinked *curr = g_ctx.listeners;
while (curr->next)
curr = curr->next;
curr->next = zalloc(sizeof(struct zuc_slinked));
ZUC_ASSERT_NOT_NULL(curr->next);
curr->next->data = event_listener;
}
}
void
zuc_cleanup(void)
{
int i;
free(g_ctx.filter);
g_ctx.filter = 0;
for (i = 0; i < 2; ++i)
if (g_ctx.fds[i] != -1) {
close(g_ctx.fds[i]);
g_ctx.fds[i] = -1;
}
if (g_ctx.listeners) {
struct zuc_slinked *curr = g_ctx.listeners;
while (curr) {
struct zuc_slinked *old = curr;
struct zuc_event_listener *listener = curr->data;
if (listener->destroy)
listener->destroy(listener->data);
free(listener);
curr = curr->next;
free(old);
}
g_ctx.listeners = NULL;
}
for (i = g_ctx.case_count - 1; i >= 0; --i) {
free_test_case(g_ctx.cases[i]);
g_ctx.cases[i] = NULL;
}
free(g_ctx.cases);
g_ctx.cases = NULL;
free(g_progname);
g_progname = NULL;
free(g_progbasename);
g_progbasename = NULL;
}
static void
shuffle_cases(int count, struct zuc_case **cases,
unsigned int seed)
{
int i;
unsigned int rseed = seed;
for (i = 0; i < count; ++i) {
int j;
for (j = cases[i]->test_count - 1; j > 0 ; --j) {
int val = rand_r(&rseed);
int b = ((val / (double)RAND_MAX) * j + 0.5);
if (j != b) {
struct zuc_test *tmp = cases[i]->tests[j];
cases[i]->tests[j] = cases[i]->tests[b];
cases[i]->tests[b] = tmp;
}
}
}
for (i = count - 1; i > 0; --i) {
int val = rand_r(&rseed);
int j = ((val / (double)RAND_MAX) * i + 0.5);
if (i != j) {
struct zuc_case *tmp = cases[i];
cases[i] = cases[j];
cases[j] = tmp;
}
}
}
void
zuc_list_tests(void)
{
int i;
int j;
initialize();
if (g_ctx.fatal)
return;
for (i = 0; i < g_ctx.case_count; ++i) {
printf("%s.\n", g_ctx.cases[i]->name);
for (j = 0; j < g_ctx.cases[i]->test_count; ++j) {
printf(" %s\n", g_ctx.cases[i]->tests[j]->name);
}
}
}
static void
spawn_test(struct zuc_test *test, void *test_data,
void (*cleanup_fn)(void *data), void *cleanup_data)
{
pid_t pid = -1;
if (!test || (!test->fn && !test->fn_f))
return;
if (pipe2(g_ctx.fds, O_CLOEXEC)) {
printf("%s:%d: error: Unable to create pipe: %d\n",
__FILE__, __LINE__, errno);
mark_failed(test, ZUC_CHECK_ERROR);
return;
}
fflush(NULL); /* important. avoid duplication of output */
pid = fork();
switch (pid) {
case -1: /* Error forking */
printf("%s:%d: error: Problem with fork: %d\n",
__FILE__, __LINE__, errno);
mark_failed(test, ZUC_CHECK_ERROR);
close(g_ctx.fds[0]);
g_ctx.fds[0] = -1;
close(g_ctx.fds[1]);
g_ctx.fds[1] = -1;
break;
case 0: { /* child */
int rc = EXIT_SUCCESS;
close(g_ctx.fds[0]);
g_ctx.fds[0] = -1;
if (test->fn_f)
test->fn_f(test_data);
else
test->fn();
if (test_has_failure(test))
rc = EXIT_FAILURE;
else if (test_has_skip(test))
rc = ZUC_EXIT_SKIP;
/* Avoid confusing memory tools like valgrind */
if (cleanup_fn)
cleanup_fn(cleanup_data);
zuc_cleanup();
exit(rc);
}
default: { /* parent */
ssize_t rc = 0;
siginfo_t info = {};
close(g_ctx.fds[1]);
g_ctx.fds[1] = -1;
do {
rc = zuc_process_message(g_ctx.curr_test,
g_ctx.fds[0]);
} while (rc > 0);
close(g_ctx.fds[0]);
g_ctx.fds[0] = -1;
if (waitid(P_ALL, 0, &info, WEXITED)) {
printf("%s:%d: error: waitid failed. (%d)\n",
__FILE__, __LINE__, errno);
mark_failed(test, ZUC_CHECK_ERROR);
} else {
switch (info.si_code) {
case CLD_EXITED: {
int exit_code = info.si_status;
switch(exit_code) {
case EXIT_SUCCESS:
break;
case ZUC_EXIT_SKIP:
if (!test_has_skip(g_ctx.curr_test) &&
!test_has_failure(g_ctx.curr_test))
ZUC_SKIP("Child exited SKIP");
break;
default:
/* unexpected failure */
if (!test_has_failure(g_ctx.curr_test))
ZUC_ASSERT_EQ(0, exit_code);
}
break;
}
case CLD_KILLED:
case CLD_DUMPED:
printf("%s:%d: error: signaled: %d\n",
__FILE__, __LINE__, info.si_status);
mark_failed(test, ZUC_CHECK_ERROR);
break;
}
}
}
}
}
static void
run_single_test(struct zuc_test *test,const struct zuc_fixture *fxt,
void *case_data, bool spawn)
{
long elapsed = 0;
struct timespec begin;
struct timespec end;
void *test_data = NULL;
void *cleanup_data = NULL;
void (*cleanup_fn)(void *data) = NULL;
memset(&begin, 0, sizeof(begin));
memset(&end, 0, sizeof(end));
g_ctx.curr_test = test;
dispatch_test_started(&g_ctx, test);
cleanup_fn = fxt ? fxt->tear_down : NULL;
cleanup_data = NULL;
if (fxt && fxt->set_up) {
test_data = fxt->set_up(case_data);
cleanup_data = test_data;
} else {
test_data = case_data;
}
clock_gettime(TARGET_TIMER, &begin);
/* Need to re-check these, as fixtures might have changed test state. */
if (!test->fatal && !test->skipped) {
if (spawn) {
spawn_test(test, test_data,
cleanup_fn, cleanup_data);
} else {
if (test->fn_f)
test->fn_f(test_data);
else
test->fn();
}
}
clock_gettime(TARGET_TIMER, &end);
elapsed = (end.tv_sec - begin.tv_sec) * MS_PER_SEC;
if (end.tv_sec != begin.tv_sec) {
elapsed -= (begin.tv_nsec) / NANO_PER_MS;
elapsed += (end.tv_nsec) / NANO_PER_MS;
} else {
elapsed += (end.tv_nsec - begin.tv_nsec) / NANO_PER_MS;
}
test->elapsed = elapsed;
if (cleanup_fn)
cleanup_fn(cleanup_data);
if (test->deferred) {
if (test_has_failure(test))
migrate_deferred_events(test, false);
else
free_events(&test->deferred);
}
dispatch_test_ended(&g_ctx, test);
g_ctx.curr_test = NULL;
}
static void
run_single_case(struct zuc_case *test_case)
{
int count_live = test_case->test_count - test_case->disabled;
g_ctx.curr_case = test_case;
if (count_live) {
int i = 0;
const struct zuc_fixture *fxt = test_case->fxt;
void *case_data = fxt ? (void *)fxt->data : NULL;
dispatch_case_started(&g_ctx, test_case,
count_live, test_case->disabled);
if (fxt && fxt->set_up_test_case)
case_data = fxt->set_up_test_case(fxt->data);
for (i = 0; i < test_case->test_count; ++i) {
struct zuc_test *curr = test_case->tests[i];
if (curr->disabled) {
dispatch_test_disabled(&g_ctx, curr);
} else {
run_single_test(curr, fxt, case_data,
g_ctx.spawn);
if (curr->skipped)
test_case->skipped++;
if (curr->failed)
test_case->failed++;
if (curr->fatal)
test_case->fatal++;
if (!curr->failed && !curr->fatal)
test_case->passed++;
test_case->elapsed += curr->elapsed;
}
}
if (fxt && fxt->tear_down_test_case)
fxt->tear_down_test_case(case_data);
dispatch_case_ended(&g_ctx, test_case);
}
g_ctx.curr_case = NULL;
}
static void
reset_test_values(struct zuc_case **cases, int case_count)
{
int i;
for (i = 0; i < case_count; ++i) {
int j;
cases[i]->disabled = 0;
cases[i]->skipped = 0;
cases[i]->failed = 0;
cases[i]->fatal = 0;
cases[i]->passed = 0;
cases[i]->elapsed = 0;
for (j = 0; j < cases[i]->test_count; ++j) {
struct zuc_test *test = cases[i]->tests[j];
if (test->disabled)
cases[i]->disabled++;
test->skipped = 0;
test->failed = 0;
test->fatal = 0;
test->elapsed = 0;
free_events(&test->events);
free_events(&test->deferred);
}
}
}
static int
run_single_pass(void)
{
long total_elapsed = 0;
int total_passed = 0;
int total_failed = 0;
int total_skipped = 0;
int live_case_count = 0;
int live_test_count = 0;
int disabled_test_count = 0;
int i;
reset_test_values(g_ctx.cases, g_ctx.case_count);
for (i = 0; i < g_ctx.case_count; ++i) {
int live = g_ctx.cases[i]->test_count
- g_ctx.cases[i]->disabled;
if (live) {
live_test_count += live;
live_case_count++;
}
if (g_ctx.cases[i]->disabled)
disabled_test_count++;
}
dispatch_run_started(&g_ctx, live_case_count, live_test_count,
disabled_test_count);
for (i = 0; i < g_ctx.case_count; ++i) {
run_single_case(g_ctx.cases[i]);
total_failed += g_ctx.cases[i]->test_count
- (g_ctx.cases[i]->passed + g_ctx.cases[i]->disabled);
total_passed += g_ctx.cases[i]->passed;
total_elapsed += g_ctx.cases[i]->elapsed;
total_skipped += g_ctx.cases[i]->skipped;
}
dispatch_run_ended(&g_ctx, live_case_count, live_test_count,
total_passed, total_failed, disabled_test_count,
total_elapsed);
if (total_failed)
return EXIT_FAILURE;
else if (total_skipped)
return ZUC_EXIT_SKIP;
else
return EXIT_SUCCESS;
}
int
zucimpl_run_tests(void)
{
int rc = EXIT_SUCCESS;
int i;
int limit = g_ctx.repeat > 0 ? g_ctx.repeat : 1;
initialize();
if (g_ctx.fatal)
return EXIT_FAILURE;
if (g_ctx.listeners == NULL) {
zuc_add_event_listener(zuc_collector_create(&(g_ctx.fds[1])));
zuc_add_event_listener(zuc_base_logger_create());
if (g_ctx.output_junit)
zuc_add_event_listener(zuc_junit_reporter_create());
}
if (g_ctx.case_count < 1) {
printf("%s:%d: error: Setup error: test tree is empty\n",
__FILE__, __LINE__);
rc = EXIT_FAILURE;
}
for (i = 0; (i < limit) && (g_ctx.case_count > 0); ++i) {
int pass_code = EXIT_SUCCESS;
dispatch_pre_run(&g_ctx, limit, i + 1,
(g_ctx.random > 0) ? g_ctx.seed : 0,
g_ctx.filter);
order_cases(g_ctx.case_count, g_ctx.cases);
if (g_ctx.random > 0)
shuffle_cases(g_ctx.case_count, g_ctx.cases,
g_ctx.seed);
pass_code = run_single_pass();
if (pass_code == EXIT_FAILURE)
rc = EXIT_FAILURE;
else if ((pass_code == ZUC_EXIT_SKIP) && (rc == EXIT_SUCCESS))
rc = ZUC_EXIT_SKIP;
g_ctx.seed++;
}
return rc;
}
int
zucimpl_tracepoint(char const *file, int line, char const *fmt, ...)
{
int rc = -1;
va_list argp;
char *msg = NULL;
va_start(argp, fmt);
rc = vasprintf(&msg, fmt, argp);
if (rc == -1) {
msg = NULL;
}
va_end(argp);
dispatch_collect_event(&g_ctx,
file, line,
msg);
free(msg);
return rc;
}
void
zucimpl_terminate(char const *file, int line,
bool fail, bool fatal, const char *msg)
{
enum zuc_fail_state state = ZUC_CHECK_SKIP;
int level = 2;
if (fail && fatal) {
state = ZUC_CHECK_FATAL;
level = 0;
} else if (fail && !fatal) {
state = ZUC_CHECK_FAIL;
level = 0;
}
mark_failed(g_ctx.curr_test, state);
if ((state != ZUC_CHECK_OK) && g_ctx.curr_test)
migrate_deferred_events(g_ctx.curr_test, false);
dispatch_check_triggered(&g_ctx,
file, line,
state,
ZUC_OP_TERMINATE, ZUC_VAL_INT,
level, 0,
msg, "");
}
static void
validate_types(enum zuc_check_op op, enum zuc_check_valtype valtype)
{
bool is_valid = true;
switch (op) {
case ZUC_OP_NULL:
case ZUC_OP_NOT_NULL:
is_valid = is_valid && (valtype == ZUC_VAL_PTR);
break;
default:
; /* all rest OK */
}
switch (valtype) {
case ZUC_VAL_CSTR:
is_valid = is_valid && ((op == ZUC_OP_EQ) || (op == ZUC_OP_NE));
break;
default:
; /* all rest OK */
}
if (!is_valid)
printf("%s:%d: warning: Unexpected op+type %d/%d.\n",
__FILE__, __LINE__, op, valtype);
}
static int
pred2_unknown(intptr_t lhs, intptr_t rhs)
{
return 0;
}
static int
pred2_true(intptr_t lhs, intptr_t rhs)
{
return lhs;
}
static int
pred2_false(intptr_t lhs, intptr_t rhs)
{
return !lhs;
}
static int
pred2_eq(intptr_t lhs, intptr_t rhs)
{
return lhs == rhs;
}
static int
pred2_streq(intptr_t lhs, intptr_t rhs)
{
int status = 0;
const char *lhptr = (const char *)lhs;
const char *rhptr = (const char *)rhs;
if (!lhptr && !rhptr)
status = 1;
else if (lhptr && rhptr)
status = strcmp(lhptr, rhptr) == 0;
return status;
}
static int
pred2_ne(intptr_t lhs, intptr_t rhs)
{
return lhs != rhs;
}
static int
pred2_strne(intptr_t lhs, intptr_t rhs)
{
int status = 0;
const char *lhptr = (const char *)lhs;
const char *rhptr = (const char *)rhs;
if (lhptr != rhptr) {
if (!lhptr || !rhptr)
status = 1;
else
status = strcmp(lhptr, rhptr) != 0;
}
return status;
}
static int
pred2_ge(intptr_t lhs, intptr_t rhs)
{
return lhs >= rhs;
}
static int
pred2_gt(intptr_t lhs, intptr_t rhs)
{
return lhs > rhs;
}
static int
pred2_le(intptr_t lhs, intptr_t rhs)
{
return lhs <= rhs;
}
static int
pred2_lt(intptr_t lhs, intptr_t rhs)
{
return lhs < rhs;
}
static comp_pred2
get_pred2(enum zuc_check_op op, enum zuc_check_valtype valtype)
{
switch (op) {
case ZUC_OP_TRUE:
return pred2_true;
case ZUC_OP_FALSE:
return pred2_false;
case ZUC_OP_NULL:
return pred2_false;
case ZUC_OP_NOT_NULL:
return pred2_true;
case ZUC_OP_EQ:
if (valtype == ZUC_VAL_CSTR)
return pred2_streq;
else
return pred2_eq;
case ZUC_OP_NE:
if (valtype == ZUC_VAL_CSTR)
return pred2_strne;
else
return pred2_ne;
case ZUC_OP_GE:
return pred2_ge;
case ZUC_OP_GT:
return pred2_gt;
case ZUC_OP_LE:
return pred2_le;
case ZUC_OP_LT:
return pred2_lt;
default:
return pred2_unknown;
}
}
int
zucimpl_expect_pred2(char const *file, int line,
enum zuc_check_op op, enum zuc_check_valtype valtype,
bool fatal,
intptr_t lhs, intptr_t rhs,
const char *lhs_str, const char* rhs_str)
{
enum zuc_fail_state state = fatal ? ZUC_CHECK_FATAL : ZUC_CHECK_FAIL;
comp_pred2 pred = get_pred2(op, valtype);
int failed = !pred(lhs, rhs);
validate_types(op, valtype);
if (failed) {
mark_failed(g_ctx.curr_test, state);
if (g_ctx.curr_test)
migrate_deferred_events(g_ctx.curr_test, false);
dispatch_check_triggered(&g_ctx,
file, line,
fatal ? ZUC_CHECK_FATAL
: ZUC_CHECK_FAIL,
op, valtype,
lhs, rhs,
lhs_str, rhs_str);
}
return failed;
}