| /* |
| * Copyright © 2011 Intel Corporation |
| * Copyright © 2012 Collabora, Ltd. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial |
| * portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include "config.h" |
| |
| #include <float.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <math.h> |
| |
| #ifdef IN_WESTON |
| #include <wayland-server.h> |
| #else |
| #define WL_EXPORT |
| #endif |
| |
| #include "matrix.h" |
| |
| |
| /* |
| * Matrices are stored in column-major order, that is the array indices are: |
| * 0 4 8 12 |
| * 1 5 9 13 |
| * 2 6 10 14 |
| * 3 7 11 15 |
| */ |
| |
| WL_EXPORT void |
| weston_matrix_init(struct weston_matrix *matrix) |
| { |
| static const struct weston_matrix identity = { |
| .d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }, |
| .type = 0, |
| }; |
| |
| memcpy(matrix, &identity, sizeof identity); |
| } |
| |
| /* m <- n * m, that is, m is multiplied on the LEFT. */ |
| WL_EXPORT void |
| weston_matrix_multiply(struct weston_matrix *m, const struct weston_matrix *n) |
| { |
| struct weston_matrix tmp; |
| const float *row, *column; |
| div_t d; |
| int i, j; |
| |
| for (i = 0; i < 16; i++) { |
| tmp.d[i] = 0; |
| d = div(i, 4); |
| row = m->d + d.quot * 4; |
| column = n->d + d.rem; |
| for (j = 0; j < 4; j++) |
| tmp.d[i] += row[j] * column[j * 4]; |
| } |
| tmp.type = m->type | n->type; |
| memcpy(m, &tmp, sizeof tmp); |
| } |
| |
| WL_EXPORT void |
| weston_matrix_translate(struct weston_matrix *matrix, float x, float y, float z) |
| { |
| struct weston_matrix translate = { |
| .d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 }, |
| .type = WESTON_MATRIX_TRANSFORM_TRANSLATE, |
| }; |
| |
| weston_matrix_multiply(matrix, &translate); |
| } |
| |
| WL_EXPORT void |
| weston_matrix_scale(struct weston_matrix *matrix, float x, float y,float z) |
| { |
| struct weston_matrix scale = { |
| .d = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 }, |
| .type = WESTON_MATRIX_TRANSFORM_SCALE, |
| }; |
| |
| weston_matrix_multiply(matrix, &scale); |
| } |
| |
| WL_EXPORT void |
| weston_matrix_rotate_xy(struct weston_matrix *matrix, float cos, float sin) |
| { |
| struct weston_matrix translate = { |
| .d = { cos, sin, 0, 0, -sin, cos, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }, |
| .type = WESTON_MATRIX_TRANSFORM_ROTATE, |
| }; |
| |
| weston_matrix_multiply(matrix, &translate); |
| } |
| |
| /* v <- m * v */ |
| WL_EXPORT void |
| weston_matrix_transform(struct weston_matrix *matrix, struct weston_vector *v) |
| { |
| int i, j; |
| struct weston_vector t; |
| |
| for (i = 0; i < 4; i++) { |
| t.f[i] = 0; |
| for (j = 0; j < 4; j++) |
| t.f[i] += v->f[j] * matrix->d[i + j * 4]; |
| } |
| |
| *v = t; |
| } |
| |
| static inline void |
| swap_rows(double *a, double *b) |
| { |
| unsigned k; |
| double tmp; |
| |
| for (k = 0; k < 13; k += 4) { |
| tmp = a[k]; |
| a[k] = b[k]; |
| b[k] = tmp; |
| } |
| } |
| |
| static inline void |
| swap_unsigned(unsigned *a, unsigned *b) |
| { |
| unsigned tmp; |
| |
| tmp = *a; |
| *a = *b; |
| *b = tmp; |
| } |
| |
| static inline unsigned |
| find_pivot(double *column, unsigned k) |
| { |
| unsigned p = k; |
| for (++k; k < 4; ++k) |
| if (fabs(column[p]) < fabs(column[k])) |
| p = k; |
| |
| return p; |
| } |
| |
| /* |
| * reference: Gene H. Golub and Charles F. van Loan. Matrix computations. |
| * 3rd ed. The Johns Hopkins University Press. 1996. |
| * LU decomposition, forward and back substitution: Chapter 3. |
| */ |
| |
| MATRIX_TEST_EXPORT inline int |
| matrix_invert(double *A, unsigned *p, const struct weston_matrix *matrix) |
| { |
| unsigned i, j, k; |
| unsigned pivot; |
| double pv; |
| |
| for (i = 0; i < 4; ++i) |
| p[i] = i; |
| for (i = 16; i--; ) |
| A[i] = matrix->d[i]; |
| |
| /* LU decomposition with partial pivoting */ |
| for (k = 0; k < 4; ++k) { |
| pivot = find_pivot(&A[k * 4], k); |
| if (pivot != k) { |
| swap_unsigned(&p[k], &p[pivot]); |
| swap_rows(&A[k], &A[pivot]); |
| } |
| |
| pv = A[k * 4 + k]; |
| if (fabs(pv) < 1e-9) |
| return -1; /* zero pivot, not invertible */ |
| |
| for (i = k + 1; i < 4; ++i) { |
| A[i + k * 4] /= pv; |
| |
| for (j = k + 1; j < 4; ++j) |
| A[i + j * 4] -= A[i + k * 4] * A[k + j * 4]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| MATRIX_TEST_EXPORT inline void |
| inverse_transform(const double *LU, const unsigned *p, float *v) |
| { |
| /* Solve A * x = v, when we have P * A = L * U. |
| * P * A * x = P * v => L * U * x = P * v |
| * Let U * x = b, then L * b = P * v. |
| */ |
| double b[4]; |
| unsigned j; |
| |
| /* Forward substitution, column version, solves L * b = P * v */ |
| /* The diagonal of L is all ones, and not explicitly stored. */ |
| b[0] = v[p[0]]; |
| b[1] = (double)v[p[1]] - b[0] * LU[1 + 0 * 4]; |
| b[2] = (double)v[p[2]] - b[0] * LU[2 + 0 * 4]; |
| b[3] = (double)v[p[3]] - b[0] * LU[3 + 0 * 4]; |
| b[2] -= b[1] * LU[2 + 1 * 4]; |
| b[3] -= b[1] * LU[3 + 1 * 4]; |
| b[3] -= b[2] * LU[3 + 2 * 4]; |
| |
| /* backward substitution, column version, solves U * y = b */ |
| #if 1 |
| /* hand-unrolled, 25% faster for whole function */ |
| b[3] /= LU[3 + 3 * 4]; |
| b[0] -= b[3] * LU[0 + 3 * 4]; |
| b[1] -= b[3] * LU[1 + 3 * 4]; |
| b[2] -= b[3] * LU[2 + 3 * 4]; |
| |
| b[2] /= LU[2 + 2 * 4]; |
| b[0] -= b[2] * LU[0 + 2 * 4]; |
| b[1] -= b[2] * LU[1 + 2 * 4]; |
| |
| b[1] /= LU[1 + 1 * 4]; |
| b[0] -= b[1] * LU[0 + 1 * 4]; |
| |
| b[0] /= LU[0 + 0 * 4]; |
| #else |
| for (j = 3; j > 0; --j) { |
| unsigned k; |
| b[j] /= LU[j + j * 4]; |
| for (k = 0; k < j; ++k) |
| b[k] -= b[j] * LU[k + j * 4]; |
| } |
| |
| b[0] /= LU[0 + 0 * 4]; |
| #endif |
| |
| /* the result */ |
| for (j = 0; j < 4; ++j) |
| v[j] = b[j]; |
| } |
| |
| WL_EXPORT int |
| weston_matrix_invert(struct weston_matrix *inverse, |
| const struct weston_matrix *matrix) |
| { |
| double LU[16]; /* column-major */ |
| unsigned perm[4]; /* permutation */ |
| unsigned c; |
| |
| if (matrix_invert(LU, perm, matrix) < 0) |
| return -1; |
| |
| weston_matrix_init(inverse); |
| for (c = 0; c < 4; ++c) |
| inverse_transform(LU, perm, &inverse->d[c * 4]); |
| inverse->type = matrix->type; |
| |
| return 0; |
| } |