blob: f863e5d340c85c5ec20a92f93bc75aa6c075eadf [file] [log] [blame]
/*
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <asm/arch/clock.h>
#include <asm/arch/iomux.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/gpio.h>
#include <asm/imx-common/iomux-v3.h>
#include <asm/imx-common/boot_mode.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <common.h>
#include <fsl_esdhc.h>
#include <mmc.h>
#include <miiphy.h>
#include <netdev.h>
#ifdef CONFIG_SYS_I2C_MXC
#include <i2c.h>
#include <asm/imx-common/mxc_i2c.h>
#endif
#include <asm/arch/crm_regs.h>
#include <power/pmic.h>
#include <power/pfuze100_pmic.h>
#include "../common/pfuze.h"
#include <usb.h>
#include <usb/ehci-ci.h>
#include <dm.h>
DECLARE_GLOBAL_DATA_PTR;
#define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define USDHC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_47K_UP | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \
PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define ENET_RX_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_SPEED_MED | PAD_CTL_SRE_FAST)
#define I2C_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \
PAD_CTL_ODE)
#define EPDC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_HYS)
#define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP)
#define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \
PAD_CTL_SRE_FAST)
#define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1)
#define SPI_PAD_CTRL (PAD_CTL_HYS | \
PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define WEIM_NOR_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define WEIM_NOR_PAD_CTRL2 (PAD_CTL_HYS | PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm)
#define OTG_ID_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_47K_UP | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#ifdef CONFIG_SYS_I2C
#define PC MUX_PAD_CTRL(I2C_PAD_CTRL)
/* I2C1 for PMIC */
struct i2c_pads_info i2c_pad_info1 = {
.scl = {
.i2c_mode = MX6_PAD_GPIO1_IO00__I2C1_SCL | PC,
.gpio_mode = MX6_PAD_GPIO1_IO00__GPIO1_IO_0 | PC,
.gp = IMX_GPIO_NR(1, 0),
},
.sda = {
.i2c_mode = MX6_PAD_GPIO1_IO01__I2C1_SDA | PC,
.gpio_mode = MX6_PAD_GPIO1_IO01__GPIO1_IO_1 | PC,
.gp = IMX_GPIO_NR(1, 1),
},
};
/* I2C2 */
struct i2c_pads_info i2c_pad_info2 = {
.scl = {
.i2c_mode = MX6_PAD_GPIO1_IO02__I2C2_SCL | PC,
.gpio_mode = MX6_PAD_GPIO1_IO02__GPIO1_IO_2 | PC,
.gp = IMX_GPIO_NR(1, 2),
},
.sda = {
.i2c_mode = MX6_PAD_GPIO1_IO03__I2C2_SDA | PC,
.gpio_mode = MX6_PAD_GPIO1_IO03__GPIO1_IO_3 | PC,
.gp = IMX_GPIO_NR(1, 3),
},
};
#endif
#ifdef CONFIG_POWER
static struct pmic *pfuze;
#define I2C_PMIC 0
int power_init_board(void)
{
unsigned int reg;
int ret;
pfuze = pfuze_common_init(I2C_PMIC);
if (!pfuze)
return -ENODEV;
ret = pfuze_mode_init(pfuze, APS_PFM);
if (ret < 0)
return ret;
/* set SW1AB staby volatage 0.975V */
pmic_reg_read(pfuze, PFUZE100_SW1ABSTBY, &reg);
reg &= ~0x3f;
reg |= PFUZE100_SW1ABC_SETP(9750);
pmic_reg_write(pfuze, PFUZE100_SW1ABSTBY, reg);
/* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */
pmic_reg_read(pfuze, PFUZE100_SW1ABCONF, &reg);
reg &= ~0xc0;
reg |= 0x40;
pmic_reg_write(pfuze, PFUZE100_SW1ABCONF, reg);
/* set SW1C staby volatage 0.975V */
pmic_reg_read(pfuze, PFUZE100_SW1CSTBY, &reg);
reg &= ~0x3f;
reg |= PFUZE100_SW1ABC_SETP(9750);
pmic_reg_write(pfuze, PFUZE100_SW1CSTBY, reg);
/* set SW1C/VDDSOC step ramp up time to from 16us to 4us/25mV */
pmic_reg_read(pfuze, PFUZE100_SW1CCONF, &reg);
reg &= ~0xc0;
reg |= 0x40;
pmic_reg_write(pfuze, PFUZE100_SW1CCONF, reg);
return 0;
}
#ifdef CONFIG_LDO_BYPASS_CHECK
void ldo_mode_set(int ldo_bypass)
{
unsigned int value;
int is_400M;
u32 vddarm;
struct pmic *p = pfuze;
if (!p) {
printf("No PMIC found!\n");
return;
}
/* switch to ldo_bypass mode */
if (ldo_bypass) {
prep_anatop_bypass();
/* decrease VDDARM to 1.275V */
pmic_reg_read(p, PFUZE100_SW1ABVOL, &value);
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(12750);
pmic_reg_write(p, PFUZE100_SW1ABVOL, value);
/* decrease VDDSOC to 1.3V */
pmic_reg_read(p, PFUZE100_SW1CVOL, &value);
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(13000);
pmic_reg_write(p, PFUZE100_SW1CVOL, value);
is_400M = set_anatop_bypass(1);
if (is_400M)
vddarm = PFUZE100_SW1ABC_SETP(10750);
else
vddarm = PFUZE100_SW1ABC_SETP(11750);
pmic_reg_read(p, PFUZE100_SW1ABVOL, &value);
value &= ~0x3f;
value |= vddarm;
pmic_reg_write(p, PFUZE100_SW1ABVOL, value);
pmic_reg_read(p, PFUZE100_SW1CVOL, &value);
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(11750);
pmic_reg_write(p, PFUZE100_SW1CVOL, value);
finish_anatop_bypass();
printf("switch to ldo_bypass mode!\n");
}
}
#endif
#elif defined(CONFIG_DM_PMIC_PFUZE100)
int power_init_board(void)
{
struct udevice *dev;
int ret;
dev = pfuze_common_init();
if (!dev)
return -ENODEV;
ret = pfuze_mode_init(dev, APS_PFM);
if (ret < 0)
return ret;
return 0;
}
#ifdef CONFIG_LDO_BYPASS_CHECK
void ldo_mode_set(int ldo_bypass)
{
struct udevice *dev;
int ret;
int is_400M;
u32 vddarm;
ret = pmic_get("pfuze100", &dev);
if (ret == -ENODEV) {
printf("No PMIC found!\n");
return;
}
/* switch to ldo_bypass mode , boot on 800Mhz */
if (ldo_bypass) {
prep_anatop_bypass();
/* decrease VDDARM for 400Mhz DQ:1.1V, DL:1.275V */
pmic_clrsetbits(dev, PFUZE100_SW1ABVOL, 0x3f, PFUZE100_SW1ABC_SETP(12750));
/* increase VDDSOC to 1.3V */
pmic_clrsetbits(dev, PFUZE100_SW1CVOL, 0x3f, PFUZE100_SW1ABC_SETP(13000));
is_400M = set_anatop_bypass(1);
if (is_400M)
vddarm = PFUZE100_SW1ABC_SETP(10750);
else
vddarm = PFUZE100_SW1ABC_SETP(11750);
pmic_clrsetbits(dev, PFUZE100_SW1ABVOL, 0x3f, vddarm);
/* decrease VDDSOC to 1.175V */
pmic_clrsetbits(dev, PFUZE100_SW1CVOL, 0x3f, PFUZE100_SW1ABC_SETP(11750));
finish_anatop_bypass();
printf("switch to ldo_bypass mode!\n");
}
}
#endif
#endif
int dram_init(void)
{
gd->ram_size = PHYS_SDRAM_SIZE;
return 0;
}
static iomux_v3_cfg_t const uart1_pads[] = {
MX6_PAD_GPIO1_IO04__UART1_TX | MUX_PAD_CTRL(UART_PAD_CTRL),
MX6_PAD_GPIO1_IO05__UART1_RX | MUX_PAD_CTRL(UART_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc2_pads[] = {
MX6_PAD_SD2_CLK__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_CMD__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA0__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA1__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA2__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA3__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc3_pads[] = {
MX6_PAD_SD3_CLK__USDHC3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_CMD__USDHC3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA0__USDHC3_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA1__USDHC3_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA2__USDHC3_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA3__USDHC3_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA4__USDHC3_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA5__USDHC3_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA6__USDHC3_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD3_DATA7__USDHC3_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/*CD pin*/
MX6_PAD_KEY_COL0__GPIO2_IO_10 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc4_pads[] = {
MX6_PAD_SD4_CLK__USDHC4_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_CMD__USDHC4_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA0__USDHC4_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA1__USDHC4_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA2__USDHC4_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA3__USDHC4_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA4__USDHC4_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA5__USDHC4_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA6__USDHC4_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA7__USDHC4_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
};
#ifdef CONFIG_FEC_MXC
static iomux_v3_cfg_t const fec1_pads[] = {
MX6_PAD_ENET1_MDC__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_MDIO__ENET1_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_RX_CTL__ENET1_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_RD0__ENET1_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_RD1__ENET1_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_RD2__ENET1_RX_DATA_2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_RD3__ENET1_RX_DATA_3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_RXC__ENET1_RX_CLK | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_TX_CTL__ENET1_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_TD0__ENET1_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_TD1__ENET1_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_TD2__ENET1_TX_DATA_2 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_TD3__ENET1_TX_DATA_3 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_TXC__ENET1_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL),
/* AR8031 PHY Reset. For arm2 board, silder the resistance */
MX6_PAD_QSPI1A_SS0_B__GPIO4_IO_22 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static void setup_iomux_fec1(void)
{
imx_iomux_v3_setup_multiple_pads(fec1_pads, ARRAY_SIZE(fec1_pads));
}
#endif
static void setup_iomux_uart(void)
{
imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads));
}
#ifdef CONFIG_FSL_QSPI
#ifndef CONFIG_DM_SPI
#define QSPI_PAD_CTRL1 \
(PAD_CTL_SRE_FAST | PAD_CTL_SPEED_MED | \
PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_47K_UP | PAD_CTL_DSE_60ohm)
#define QSPI_PAD_CTRL2 (QSPI_PAD_CTRL1 | PAD_CTL_DSE_34ohm)
static iomux_v3_cfg_t const quadspi_pads[] = {
MX6_PAD_NAND_WP_B__QSPI2_A_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_READY_B__QSPI2_A_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_CE0_B__QSPI2_A_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_CE1_B__QSPI2_A_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_CLE__QSPI2_A_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_ALE__QSPI2_A_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA01__QSPI2_B_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA00__QSPI2_B_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_WE_B__QSPI2_B_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_RE_B__QSPI2_B_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA03__QSPI2_B_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6_PAD_NAND_DATA02__QSPI2_B_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
};
#endif
int board_qspi_init(void)
{
#ifndef CONFIG_DM_SPI
/* Set the iomux */
imx_iomux_v3_setup_multiple_pads(quadspi_pads, ARRAY_SIZE(quadspi_pads));
#endif
/* Set the clock */
enable_qspi_clk(1);
return 0;
}
#endif
#ifdef CONFIG_FSL_ESDHC
static struct fsl_esdhc_cfg usdhc_cfg[3] = {
{USDHC2_BASE_ADDR, 0, 4},
{USDHC3_BASE_ADDR},
{USDHC4_BASE_ADDR},
};
#define USDHC3_CD_GPIO IMX_GPIO_NR(2, 10)
int board_mmc_get_env_dev(int dev_no)
{
#ifdef CONFIG_MXC_SPI
dev_no -= 2;
#else
dev_no--;
#endif
return dev_no;
}
int mmc_map_to_kernel_blk(int dev_no)
{
#ifdef CONFIG_MXC_SPI
return dev_no + 2;
#else
return dev_no + 1;
#endif
}
int board_mmc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
int ret = 0;
switch (cfg->esdhc_base) {
case USDHC2_BASE_ADDR:
ret = 1; /*always present */
break;
case USDHC3_BASE_ADDR:
ret = !gpio_get_value(USDHC3_CD_GPIO);
break;
case USDHC4_BASE_ADDR:
ret = 1; /*always present */
break;
}
return ret;
}
#ifdef CONFIG_MXC_SPI
int board_mmc_init(bd_t *bis)
{
int i;
/*
* According to the board_mmc_init() the following map is done:
* (U-boot device node) (Physical Port)
* mmc0 SD3 (SDB)
* mmc1 eMMC
*/
for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) {
switch (i) {
case 0:
imx_iomux_v3_setup_multiple_pads(
usdhc3_pads, ARRAY_SIZE(usdhc3_pads));
gpio_request(USDHC3_CD_GPIO, "usdhc3 cd");
gpio_direction_input(USDHC3_CD_GPIO);
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
break;
case 1:
imx_iomux_v3_setup_multiple_pads(
usdhc4_pads, ARRAY_SIZE(usdhc4_pads));
usdhc_cfg[2].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK);
break;
default:
printf("Warning: you configured more USDHC controllers"
"(%d) than supported by the board\n", i + 1);
return 0;
}
if (fsl_esdhc_initialize(bis, &usdhc_cfg[i]))
printf("Warning: failed to initialize mmc dev %d\n", i);
}
return 0;
}
#else
int board_mmc_init(bd_t *bis)
{
int i;
/*
* According to the board_mmc_init() the following map is done:
* (U-boot device node) (Physical Port)
* mmc0 SD2 (SDA)
* mmc1 SD3 (SDB)
* mmc2 eMMC
*/
for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) {
switch (i) {
case 0:
imx_iomux_v3_setup_multiple_pads(
usdhc2_pads, ARRAY_SIZE(usdhc2_pads));
usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
break;
case 1:
imx_iomux_v3_setup_multiple_pads(
usdhc3_pads, ARRAY_SIZE(usdhc3_pads));
gpio_request(USDHC3_CD_GPIO, "usdhc3 cd");
gpio_direction_input(USDHC3_CD_GPIO);
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
break;
case 2:
imx_iomux_v3_setup_multiple_pads(
usdhc4_pads, ARRAY_SIZE(usdhc4_pads));
usdhc_cfg[2].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK);
break;
default:
printf("Warning: you configured more USDHC controllers"
"(%d) than supported by the board\n", i + 1);
return 0;
}
if (fsl_esdhc_initialize(bis, &usdhc_cfg[i]))
printf("Warning: failed to initialize mmc dev %d\n", i);
}
return 0;
}
#endif
#endif
#ifdef CONFIG_MXC_SPI
iomux_v3_cfg_t const ecspi4_pads[] = {
MX6_PAD_SD2_CLK__ECSPI4_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_SD2_DATA3__ECSPI4_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_SD2_CMD__ECSPI4_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_SD2_DATA2__GPIO6_IO_10 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
void setup_spinor(void)
{
imx_iomux_v3_setup_multiple_pads(ecspi4_pads,
ARRAY_SIZE(ecspi4_pads));
gpio_request(IMX_GPIO_NR(6, 10), "ecspi cs");
gpio_direction_output(IMX_GPIO_NR(6, 10), 0);
}
int board_spi_cs_gpio(unsigned bus, unsigned cs)
{
return (bus == 0 && cs == 0) ? (IMX_GPIO_NR(6, 10)) : -1;
}
#endif
#ifdef CONFIG_MTD_NOR_FLASH
iomux_v3_cfg_t eimnor_pads[] = {
MX6_PAD_NAND_DATA00__WEIM_AD_0 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA01__WEIM_AD_1 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA02__WEIM_AD_2 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA03__WEIM_AD_3 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA04__WEIM_AD_4 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA05__WEIM_AD_5 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA06__WEIM_AD_6 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_DATA07__WEIM_AD_7 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA08__WEIM_AD_8 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA09__WEIM_AD_9 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA10__WEIM_AD_10 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA11__WEIM_AD_11 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL) ,
MX6_PAD_LCD1_DATA12__WEIM_AD_12 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA13__WEIM_AD_13 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA14__WEIM_AD_14 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA15__WEIM_AD_15 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA16__WEIM_ADDR_16 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA17__WEIM_ADDR_17 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA18__WEIM_ADDR_18 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA19__WEIM_ADDR_19 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA20__WEIM_ADDR_20 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA21__WEIM_ADDR_21 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA22__WEIM_ADDR_22 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA23__WEIM_ADDR_23 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA03__WEIM_ADDR_24 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_LCD1_DATA04__WEIM_ADDR_25 | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_CE0_B__WEIM_LBA_B | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_CE1_B__WEIM_OE | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_RE_B__WEIM_RW | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
MX6_PAD_NAND_WE_B__WEIM_WAIT | MUX_PAD_CTRL(NO_PAD_CTRL),
MX6_PAD_NAND_ALE__WEIM_CS0_B | MUX_PAD_CTRL(WEIM_NOR_PAD_CTRL),
};
static void eimnor_cs_setup(void)
{
writel(0x00000120, WEIM_BASE_ADDR + 0x090);
writel(0x00610089, WEIM_BASE_ADDR + 0x000);
writel(0x00000001, WEIM_BASE_ADDR + 0x004);
writel(0x1c022000, WEIM_BASE_ADDR + 0x008);
writel(0x00000000, WEIM_BASE_ADDR + 0x00c);
writel(0x1404a38e, WEIM_BASE_ADDR + 0x010);
}
static void setup_eimnor(void)
{
imx_iomux_v3_setup_multiple_pads(eimnor_pads,
ARRAY_SIZE(eimnor_pads));
eimnor_cs_setup();
}
#endif
#ifdef CONFIG_NAND_MXS
iomux_v3_cfg_t gpmi_pads[] = {
MX6_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL0),
MX6_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
};
static void setup_gpmi_nand(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* config gpmi nand iomux */
imx_iomux_v3_setup_multiple_pads(gpmi_pads, ARRAY_SIZE(gpmi_pads));
setup_gpmi_io_clk((MXC_CCM_CS2CDR_QSPI2_CLK_PODF(0) |
MXC_CCM_CS2CDR_QSPI2_CLK_PRED(3) |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL(3)));
/* enable apbh clock gating */
setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK);
}
#endif
#ifdef CONFIG_FEC_MXC
int board_eth_init(bd_t *bis)
{
int ret;
setup_iomux_fec1();
ret = fecmxc_initialize_multi(bis, 0,
CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
if (ret)
printf("FEC1 MXC: %s:failed\n", __func__);
return 0;
}
#define MAX7322_I2C_ADDR 0x68
#define MAX7322_I2C_BUS 1
static int setup_fec(void)
{
struct iomuxc_gpr_base_regs *const iomuxc_gpr_regs
= (struct iomuxc_gpr_base_regs *) IOMUXC_GPR_BASE_ADDR;
int ret;
unsigned char value = 1;
/* clear gpr1[13], gpr1[17] to select anatop clock */
clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUX_GPR1_FEC1_MASK, 0);
ret = enable_fec_anatop_clock(0, ENET_125MHZ);
if (ret)
return ret;
/* Reset AR8031 PHY */
gpio_request(IMX_GPIO_NR(4, 22), "ar8031 reset");
gpio_direction_output(IMX_GPIO_NR(4, 22) , 0);
udelay(500);
gpio_set_value(IMX_GPIO_NR(4, 22), 1);
#ifdef CONFIG_DM_I2C
struct udevice *bus, *dev;
ret = uclass_get_device_by_seq(UCLASS_I2C, MAX7322_I2C_BUS - 1, &bus);
if (ret) {
printf("Get i2c bus %u failed, ret = %d\n", MAX7322_I2C_BUS - 1, ret);
return ret;
}
ret = dm_i2c_probe(bus, MAX7322_I2C_ADDR, 0, &dev);
if (ret) {
printf("MAX7322 Not found, ret = %d\n", ret);
return ret;
}
/* Write 0x1 to enable O0 output, this device has no addr */
/* hence addr length is 0 */
value = 0x1;
ret = dm_i2c_write(dev, 0, &value, 1);
if (ret) {
printf("MAX7322 write failed, ret = %d\n", ret);
return ret;
}
#else
/* This is needed to drive the pads to 1.8V instead of 1.5V */
i2c_set_bus_num(MAX7322_I2C_BUS);
if (!i2c_probe(MAX7322_I2C_ADDR)) {
/* Write 0x1 to enable O0 output, this device has no addr */
/* hence addr length is 0 */
value = 0x1;
if (i2c_write(MAX7322_I2C_ADDR, 0, 0, &value, 1))
printf("MAX7322 write failed\n");
} else {
printf("MAX7322 Not found\n");
}
#endif
return 0;
}
int board_phy_config(struct phy_device *phydev)
{
#ifdef CONFIG_FEC_ENABLE_MAX7322
/* Enable 1.8V(SEL_1P5_1P8_POS_REG) on
Phy control debug reg 0 */
phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x1f);
phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x8);
#endif
/* rgmii tx clock delay enable */
phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x05);
phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x100);
if (phydev->drv->config)
phydev->drv->config(phydev);
return 0;
}
#endif
int board_early_init_f(void)
{
setup_iomux_uart();
return 0;
}
#ifdef CONFIG_USB_EHCI_MX6
#ifndef CONFIG_DM_USB
#define USB_OTHERREGS_OFFSET 0x800
#define UCTRL_PWR_POL (1 << 9)
iomux_v3_cfg_t const usb_otg_pads[] = {
/*Only enable OTG1, the OTG2 has pin conflicts with PWM and WDOG*/
MX6_PAD_GPIO1_IO09__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL),
MX6_PAD_GPIO1_IO10__ANATOP_OTG1_ID | MUX_PAD_CTRL(OTG_ID_PAD_CTRL),
};
static void setup_usb(void)
{
imx_iomux_v3_setup_multiple_pads(usb_otg_pads,
ARRAY_SIZE(usb_otg_pads));
}
int board_usb_phy_mode(int port)
{
return USB_INIT_HOST;
}
int board_ehci_hcd_init(int port)
{
u32 *usbnc_usb_ctrl;
if (port >= 1)
return -EINVAL;
usbnc_usb_ctrl = (u32 *)(USB_BASE_ADDR + USB_OTHERREGS_OFFSET +
port * 4);
/* Set Power polarity */
setbits_le32(usbnc_usb_ctrl, UCTRL_PWR_POL);
return 0;
}
#endif
#endif
int board_init(void)
{
/* address of boot parameters */
gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;
#ifdef CONFIG_SYS_I2C
setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1);
setup_i2c(1, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info2);
#endif
#ifdef CONFIG_FEC_MXC
setup_fec();
#endif
#ifdef CONFIG_MXC_SPI
setup_spinor();
#endif
#ifdef CONFIG_MTD_NOR_FLASH
setup_eimnor();
#endif
#ifdef CONFIG_NAND_MXS
setup_gpmi_nand();
#endif
#ifdef CONFIG_FSL_QSPI
board_qspi_init();
#endif
#ifdef CONFIG_USB_EHCI_MX6
#ifndef CONFIG_DM_USB
setup_usb();
#endif
#endif
return 0;
}
#ifdef CONFIG_CMD_BMODE
static const struct boot_mode board_boot_modes[] = {
/* 4 bit bus width */
{"sd2", MAKE_CFGVAL(0x40, 0x28, 0x00, 0x00)},
{"sd3", MAKE_CFGVAL(0x40, 0x30, 0x00, 0x00)},
{"emmc", MAKE_CFGVAL(0x60, 0x38, 0x00, 0x00)},
{"qspi2", MAKE_CFGVAL(0x18, 0x00, 0x00, 0x00)},
{"spinor", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x0B)},
{"nand", MAKE_CFGVAL(0x80, 0x00, 0x00, 0x00)},
{NULL, 0},
};
#endif
int board_late_init(void)
{
#ifdef CONFIG_CMD_BMODE
add_board_boot_modes(board_boot_modes);
#endif
#ifdef CONFIG_ENV_IS_IN_MMC
board_late_mmc_env_init();
#endif
return 0;
}
u32 get_board_rev(void)
{
return get_cpu_rev();
}
int checkboard(void)
{
#ifdef CONFIG_TARGET_MX6SX_14X14_ARM2
puts("Board: MX6SX 14x14 ARM2\n");
#else
puts("Board: MX6SX 17x17 ARM2\n");
#endif
return 0;
}