blob: 7fa29f119d0890d10bab877430401068f3973730 [file] [log] [blame] [edit]
/*
* Copyright (C) 2015-2017 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
* Copyright (C) 2015 Socionext Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <asm/processor.h>
#include "../init.h"
#include "../soc-info.h"
#include "ddrmphy-regs.h"
#include "umc-regs.h"
#define DRAM_CH_NR 3
enum dram_freq {
DRAM_FREQ_1866M,
DRAM_FREQ_2133M,
DRAM_FREQ_NR,
};
enum dram_size {
DRAM_SZ_256M,
DRAM_SZ_512M,
DRAM_SZ_NR,
};
/* PHY */
static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
/* dependent on package and board design */
static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
/* DDR multiPHY */
static inline int ddrphy_get_rank(int dx)
{
return dx / 2;
}
static void ddrphy_fifo_reset(void __iomem *phy_base)
{
u32 tmp;
tmp = readl(phy_base + MPHY_PGCR0);
tmp &= ~MPHY_PGCR0_PHYFRST;
writel(tmp, phy_base + MPHY_PGCR0);
udelay(1);
tmp |= MPHY_PGCR0_PHYFRST;
writel(tmp, phy_base + MPHY_PGCR0);
udelay(1);
}
static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
{
u32 tmp;
tmp = readl(phy_base + MPHY_PGCR1);
if (enable)
tmp &= ~MPHY_PGCR1_INHVT;
else
tmp |= MPHY_PGCR1_INHVT;
writel(tmp, phy_base + MPHY_PGCR1);
if (!enable) {
while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP))
cpu_relax();
}
}
static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
{
int dx;
u32 lcdlr1, rdqsd;
void __iomem *dx_base = phy_base + MPHY_DX_BASE;
ddrphy_vt_ctrl(phy_base, 0);
for (dx = 0; dx < nr_dx; dx++) {
lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1);
rdqsd = (lcdlr1 >> 8) & 0xff;
rdqsd = clamp(rdqsd + step, 0U, 0xffU);
lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
writel(lcdlr1, dx_base + MPHY_DX_LCDLR1);
readl(dx_base + MPHY_DX_LCDLR1); /* relax */
dx_base += MPHY_DX_STRIDE;
}
ddrphy_vt_ctrl(phy_base, 1);
}
static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
{
void __iomem *dx_base = phy_base + MPHY_DX_BASE;
const int nr_dx = width / 8;
int dx, rank;
u32 gtr;
int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
for (dx = 0; dx < nr_dx; dx++) {
gtr = readl(dx_base + MPHY_DX_GTR);
for (rank = 0; rank < 4; rank++) {
dgsl = gtr & 0x7;
/* if dgsl is zero, this rank was not trained. skip. */
if (dgsl) {
dgsl_min = min(dgsl_min, dgsl);
dgsl_max = max(dgsl_max, dgsl);
}
gtr >>= 3;
}
dx_base += MPHY_DX_STRIDE;
}
if (dgsl_min != dgsl_max)
printf("DQS Gateing System Latencies are not all leveled.\n");
return dgsl_max;
}
static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
int ch)
{
u32 tmp;
void __iomem *zq_base, *dx_base;
int zq, dx;
int nr_dx;
nr_dx = width / 8;
writel(MPHY_PIR_ZCALBYP, phy_base + MPHY_PIR);
/*
* Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
* to avoid read error issue.
*/
writel(0x07d81e37, phy_base + MPHY_PGCR0);
writel(0x0200c4e0, phy_base + MPHY_PGCR1);
tmp = ddrphy_pgcr2[freq];
if (width >= 32)
tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC;
writel(tmp, phy_base + MPHY_PGCR2);
writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0);
writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1);
writel(0x00083def, phy_base + MPHY_PTR2);
writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3);
writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4);
writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0);
writel(0x55555555, phy_base + MPHY_ACIOCR1);
writel(0x00000000, phy_base + MPHY_ACIOCR2);
writel(0x55555555, phy_base + MPHY_ACIOCR3);
writel(0x00000000, phy_base + MPHY_ACIOCR4);
writel(0x00000055, phy_base + MPHY_ACIOCR5);
writel(0x00181aa4, phy_base + MPHY_DXCCR);
writel(0x0024641e, phy_base + MPHY_DSGCR);
writel(0x0000040b, phy_base + MPHY_DCR);
writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0);
writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1);
writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2);
writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3);
writel(ddrphy_mr0[freq], phy_base + MPHY_MR0);
writel(0x00000006, phy_base + MPHY_MR1);
writel(ddrphy_mr2[freq], phy_base + MPHY_MR2);
writel(0x00000000, phy_base + MPHY_MR3);
tmp = 0;
for (dx = 0; dx < nr_dx; dx++)
tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
writel(0x90003087 | tmp, phy_base + MPHY_DTCR);
writel(0x00000000, phy_base + MPHY_DTAR0);
writel(0x00000008, phy_base + MPHY_DTAR1);
writel(0x00000010, phy_base + MPHY_DTAR2);
writel(0x00000018, phy_base + MPHY_DTAR3);
writel(0xdd22ee11, phy_base + MPHY_DTDR0);
writel(0x7788bb44, phy_base + MPHY_DTDR1);
/* impedance control settings */
writel(0x04048900, phy_base + MPHY_ZQCR);
zq_base = phy_base + MPHY_ZQ_BASE;
for (zq = 0; zq < 4; zq++) {
/*
* board-dependent
* PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
*/
writel(0x0007BB5D, zq_base + MPHY_ZQ_PR);
zq_base += MPHY_ZQ_STRIDE;
}
/* DATX8 settings */
dx_base = phy_base + MPHY_DX_BASE;
for (dx = 0; dx < 4; dx++) {
tmp = readl(dx_base + MPHY_DX_GCR0);
tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK;
tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
MPHY_DX_GCR0_WLRKEN_MASK;
writel(tmp, dx_base + MPHY_DX_GCR0);
writel(0x00000000, dx_base + MPHY_DX_GCR1);
writel(0x00000000, dx_base + MPHY_DX_GCR2);
writel(0x00000000, dx_base + MPHY_DX_GCR3);
dx_base += MPHY_DX_STRIDE;
}
while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE))
cpu_relax();
ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
}
struct ddrphy_init_sequence {
char *description;
u32 init_flag;
u32 done_flag;
u32 err_flag;
};
static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
{
"Impedance Calibration",
MPHY_PIR_ZCAL,
MPHY_PGSR0_ZCDONE,
MPHY_PGSR0_ZCERR,
},
{ /* sentinel */ }
};
static const struct ddrphy_init_sequence dram_init_sequence[] = {
{
"DRAM Initialization",
MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT,
MPHY_PGSR0_DIDONE,
0,
},
{ /* sentinel */ }
};
static const struct ddrphy_init_sequence training_sequence[] = {
{
"Write Leveling",
MPHY_PIR_WL,
MPHY_PGSR0_WLDONE,
MPHY_PGSR0_WLERR,
},
{
"Read DQS Gate Training",
MPHY_PIR_QSGATE,
MPHY_PGSR0_QSGDONE,
MPHY_PGSR0_QSGERR,
},
{
"Write Leveling Adjustment",
MPHY_PIR_WLADJ,
MPHY_PGSR0_WLADONE,
MPHY_PGSR0_WLAERR,
},
{
"Read Bit Deskew",
MPHY_PIR_RDDSKW,
MPHY_PGSR0_RDDONE,
MPHY_PGSR0_RDERR,
},
{
"Write Bit Deskew",
MPHY_PIR_WRDSKW,
MPHY_PGSR0_WDDONE,
MPHY_PGSR0_WDERR,
},
{
"Read Eye Training",
MPHY_PIR_RDEYE,
MPHY_PGSR0_REDONE,
MPHY_PGSR0_REERR,
},
{
"Write Eye Training",
MPHY_PIR_WREYE,
MPHY_PGSR0_WEDONE,
MPHY_PGSR0_WEERR,
},
{ /* sentinel */ }
};
static int __ddrphy_training(void __iomem *phy_base,
const struct ddrphy_init_sequence *seq)
{
const struct ddrphy_init_sequence *s;
u32 pgsr0;
u32 init_flag = MPHY_PIR_INIT;
u32 done_flag = MPHY_PGSR0_IDONE;
int timeout = 50000; /* 50 msec is long enough */
#ifdef DISPLAY_ELAPSED_TIME
ulong start = get_timer(0);
#endif
for (s = seq; s->description; s++) {
init_flag |= s->init_flag;
done_flag |= s->done_flag;
}
writel(init_flag, phy_base + MPHY_PIR);
do {
if (--timeout < 0) {
pr_err("%s: error: timeout during DDR training\n",
__func__);
return -ETIMEDOUT;
}
udelay(1);
pgsr0 = readl(phy_base + MPHY_PGSR0);
} while ((pgsr0 & done_flag) != done_flag);
for (s = seq; s->description; s++) {
if (pgsr0 & s->err_flag) {
pr_err("%s: error: %s failed\n", __func__,
s->description);
return -EIO;
}
}
#ifdef DISPLAY_ELAPSED_TIME
printf("%s: info: elapsed time %ld msec\n", get_timer(start));
#endif
return 0;
}
static int ddrphy_impedance_calibration(void __iomem *phy_base)
{
int ret;
u32 tmp;
ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
if (ret)
return ret;
/*
* Because of a hardware bug, IDONE flag is set when the first ZQ block
* is calibrated. The flag does not guarantee the completion for all
* the ZQ blocks. Wait a little more just in case.
*/
udelay(1);
/* reflect ZQ settings and enable average algorithm*/
tmp = readl(phy_base + MPHY_ZQCR);
tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
writel(tmp, phy_base + MPHY_ZQCR);
tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
tmp |= MPHY_ZQCR_AVGEN;
writel(tmp, phy_base + MPHY_ZQCR);
return 0;
}
static int ddrphy_dram_init(void __iomem *phy_base)
{
return __ddrphy_training(phy_base, dram_init_sequence);
}
static int ddrphy_training(void __iomem *phy_base)
{
return __ddrphy_training(phy_base, training_sequence);
}
/* UMC */
static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
/*
* The ch2 is a different generation UMC core.
* The register spec is different, unfortunately.
*/
static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
{0x004A071D, 0x0078071D},
{0x0055081E, 0x0089081E},
};
static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
/* The ch2 is different for some reason only hardware guys know... */
static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
{
u32 val;
int latency;
val = readl(dc_base + UMC_RDATACTL_D0);
latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
UMC_RDATACTL_RAD2LTY_SHIFT;
/*
* UMC works at the half clock rate of the PHY.
* The LSB of latency is ignored
*/
latency += phy_latency & ~1;
val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
if (latency > 0xf) {
val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
} else {
val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
}
writel(val, dc_base + UMC_RDATACTL_D0);
writel(val, dc_base + UMC_RDATACTL_D1);
readl(dc_base + UMC_RDATACTL_D1); /* relax */
}
/* enable/disable auto refresh */
void umc_refresh_ctrl(void __iomem *dc_base, int enable)
{
u32 tmp;
tmp = readl(dc_base + UMC_SPCSETB);
tmp &= ~UMC_SPCSETB_AREFMD_MASK;
if (enable)
tmp |= UMC_SPCSETB_AREFMD_ARB;
else
tmp |= UMC_SPCSETB_AREFMD_REG;
writel(tmp, dc_base + UMC_SPCSETB);
udelay(1);
}
static void umc_ud_init(void __iomem *umc_base, int ch)
{
writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
if (ch == 2)
writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
}
static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
unsigned long size, int width, int ch)
{
enum dram_size size_e;
int latency;
u32 val;
switch (size) {
case 0:
return 0;
case SZ_256M:
size_e = DRAM_SZ_256M;
break;
case SZ_512M:
size_e = DRAM_SZ_512M;
break;
default:
pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
size, ch);
return -EINVAL;
}
writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
dc_base + UMC_CMDCTLB);
writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
val = 0x000e000e;
latency = 12;
/* ES2 inserted one more FF to the logic. */
if (uniphier_get_soc_model() >= 2)
latency += 2;
if (latency > 0xf) {
val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
} else {
val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
}
writel(val, dc_base + UMC_RDATACTL_D0);
if (width >= 32)
writel(val, dc_base + UMC_RDATACTL_D1);
writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
if (width >= 32)
writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
writel(0x04000000, dc_base + UMC_DATASET);
writel(0x00400020, dc_base + UMC_DCCGCTL);
writel(0x00000084, dc_base + UMC_FLOWCTLG);
writel(0x00000000, dc_base + UMC_ACSSETA);
writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
dc_base + UMC_FLOWCTLA);
writel(0x00004400, dc_base + UMC_FLOWCTLC);
writel(0x200A0A00, dc_base + UMC_SPCSETB);
writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
writel(0x0000000D, dc_base + UMC_RESPCTL);
if (ch != 2) {
writel(0x00202000, dc_base + UMC_FLOWCTLB);
writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
writel(0x00080700, dc_base + UMC_BSICMAPSET);
} else {
writel(0x00200000, dc_base + UMC_FLOWCTLB);
writel(0x00000000, dc_base + UMC_BSICMAPSET);
}
writel(0x00000000, dc_base + UMC_ERRMASKA);
writel(0x00000000, dc_base + UMC_ERRMASKB);
return 0;
}
static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
unsigned long size, unsigned int width, int ch)
{
void __iomem *dc_base = umc_ch_base + 0x00011000;
void __iomem *phy_base = umc_ch_base + 0x00030000;
int ret;
writel(0x00000002, dc_base + UMC_INITSET);
while (readl(dc_base + UMC_INITSTAT) & BIT(2))
cpu_relax();
/* deassert PHY reset signals */
writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
dc_base + UMC_DIOCTLA);
ddrphy_init(phy_base, freq, width, ch);
ret = ddrphy_impedance_calibration(phy_base);
if (ret)
return ret;
ddrphy_dram_init(phy_base);
if (ret)
return ret;
ret = umc_dc_init(dc_base, freq, size, width, ch);
if (ret)
return ret;
umc_ud_init(umc_ch_base, ch);
ret = ddrphy_training(phy_base);
if (ret)
return ret;
udelay(1);
/* match the system latency between UMC and PHY */
umc_set_system_latency(dc_base,
ddrphy_get_system_latency(phy_base, width));
udelay(1);
/* stop auto refresh before clearing FIFO in PHY */
umc_refresh_ctrl(dc_base, 0);
ddrphy_fifo_reset(phy_base);
umc_refresh_ctrl(dc_base, 1);
udelay(10);
return 0;
}
static void um_init(void __iomem *um_base)
{
writel(0x000000ff, um_base + UMC_MBUS0);
writel(0x000000ff, um_base + UMC_MBUS1);
writel(0x000000ff, um_base + UMC_MBUS2);
writel(0x000000ff, um_base + UMC_MBUS3);
}
int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
{
void __iomem *um_base = (void __iomem *)0x5b600000;
void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
enum dram_freq freq;
int ch, ret;
switch (bd->dram_freq) {
case 1866:
freq = DRAM_FREQ_1866M;
break;
case 2133:
freq = DRAM_FREQ_2133M;
break;
default:
pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
return -EINVAL;
}
for (ch = 0; ch < DRAM_CH_NR; ch++) {
unsigned long size = bd->dram_ch[ch].size;
unsigned int width = bd->dram_ch[ch].width;
if (size) {
ret = umc_ch_init(umc_ch_base, freq,
size / (width / 16), width, ch);
if (ret) {
pr_err("failed to initialize UMC ch%d\n", ch);
return ret;
}
}
umc_ch_base += 0x00200000;
}
um_init(um_base);
return 0;
}