blob: 73aa4cdad323fa2834577d6d2385ade548cdacd0 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2010 Samsung Electronics
* Minkyu Kang <mk7.kang@samsung.com>
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/clk.h>
#include <asm/arch/periph.h>
#define PLL_DIV_1024 1024
#define PLL_DIV_65535 65535
#define PLL_DIV_65536 65536
/* *
* This structure is to store the src bit, div bit and prediv bit
* positions of the peripheral clocks of the src and div registers
*/
struct clk_bit_info {
enum periph_id id;
int32_t src_mask;
int32_t div_mask;
int32_t prediv_mask;
int8_t src_bit;
int8_t div_bit;
int8_t prediv_bit;
};
static struct clk_bit_info exynos5_bit_info[] = {
/* periph id s_mask d_mask p_mask s_bit d_bit p_bit */
{PERIPH_ID_UART0, 0xf, 0xf, -1, 0, 0, -1},
{PERIPH_ID_UART1, 0xf, 0xf, -1, 4, 4, -1},
{PERIPH_ID_UART2, 0xf, 0xf, -1, 8, 8, -1},
{PERIPH_ID_UART3, 0xf, 0xf, -1, 12, 12, -1},
{PERIPH_ID_I2C0, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_I2C1, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_I2C2, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_I2C3, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_I2C4, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_I2C5, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_I2C6, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_I2C7, -1, 0x7, 0x7, -1, 24, 0},
{PERIPH_ID_SPI0, 0xf, 0xf, 0xff, 16, 0, 8},
{PERIPH_ID_SPI1, 0xf, 0xf, 0xff, 20, 16, 24},
{PERIPH_ID_SPI2, 0xf, 0xf, 0xff, 24, 0, 8},
{PERIPH_ID_SDMMC0, 0xf, 0xf, 0xff, 0, 0, 8},
{PERIPH_ID_SDMMC1, 0xf, 0xf, 0xff, 4, 16, 24},
{PERIPH_ID_SDMMC2, 0xf, 0xf, 0xff, 8, 0, 8},
{PERIPH_ID_SDMMC3, 0xf, 0xf, 0xff, 12, 16, 24},
{PERIPH_ID_I2S0, 0xf, 0xf, 0xff, 0, 0, 4},
{PERIPH_ID_I2S1, 0xf, 0xf, 0xff, 4, 12, 16},
{PERIPH_ID_SPI3, 0xf, 0xf, 0xff, 0, 0, 4},
{PERIPH_ID_SPI4, 0xf, 0xf, 0xff, 4, 12, 16},
{PERIPH_ID_SDMMC4, 0xf, 0xf, 0xff, 16, 0, 8},
{PERIPH_ID_PWM0, 0xf, 0xf, -1, 24, 0, -1},
{PERIPH_ID_PWM1, 0xf, 0xf, -1, 24, 0, -1},
{PERIPH_ID_PWM2, 0xf, 0xf, -1, 24, 0, -1},
{PERIPH_ID_PWM3, 0xf, 0xf, -1, 24, 0, -1},
{PERIPH_ID_PWM4, 0xf, 0xf, -1, 24, 0, -1},
{PERIPH_ID_NONE, -1, -1, -1, -1, -1, -1},
};
static struct clk_bit_info exynos542x_bit_info[] = {
/* periph id s_mask d_mask p_mask s_bit d_bit p_bit */
{PERIPH_ID_UART0, 0xf, 0xf, -1, 4, 8, -1},
{PERIPH_ID_UART1, 0xf, 0xf, -1, 8, 12, -1},
{PERIPH_ID_UART2, 0xf, 0xf, -1, 12, 16, -1},
{PERIPH_ID_UART3, 0xf, 0xf, -1, 16, 20, -1},
{PERIPH_ID_I2C0, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C1, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C2, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C3, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C4, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C5, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C6, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C7, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_SPI0, 0xf, 0xf, 0xff, 20, 20, 8},
{PERIPH_ID_SPI1, 0xf, 0xf, 0xff, 24, 24, 16},
{PERIPH_ID_SPI2, 0xf, 0xf, 0xff, 28, 28, 24},
{PERIPH_ID_SDMMC0, 0x7, 0x3ff, -1, 8, 0, -1},
{PERIPH_ID_SDMMC1, 0x7, 0x3ff, -1, 12, 10, -1},
{PERIPH_ID_SDMMC2, 0x7, 0x3ff, -1, 16, 20, -1},
{PERIPH_ID_I2C8, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2C9, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_I2S0, 0xf, 0xf, 0xff, 0, 0, 4},
{PERIPH_ID_I2S1, 0xf, 0xf, 0xff, 4, 12, 16},
{PERIPH_ID_SPI3, 0xf, 0xf, 0xff, 12, 16, 0},
{PERIPH_ID_SPI4, 0xf, 0xf, 0xff, 16, 20, 8},
{PERIPH_ID_PWM0, 0xf, 0xf, -1, 24, 28, -1},
{PERIPH_ID_PWM1, 0xf, 0xf, -1, 24, 28, -1},
{PERIPH_ID_PWM2, 0xf, 0xf, -1, 24, 28, -1},
{PERIPH_ID_PWM3, 0xf, 0xf, -1, 24, 28, -1},
{PERIPH_ID_PWM4, 0xf, 0xf, -1, 24, 28, -1},
{PERIPH_ID_I2C10, -1, 0x3f, -1, -1, 8, -1},
{PERIPH_ID_NONE, -1, -1, -1, -1, -1, -1},
};
/* Epll Clock division values to achive different frequency output */
static struct set_epll_con_val exynos5_epll_div[] = {
{ 192000000, 0, 48, 3, 1, 0 },
{ 180000000, 0, 45, 3, 1, 0 },
{ 73728000, 1, 73, 3, 3, 47710 },
{ 67737600, 1, 90, 4, 3, 20762 },
{ 49152000, 0, 49, 3, 3, 9961 },
{ 45158400, 0, 45, 3, 3, 10381 },
{ 180633600, 0, 45, 3, 1, 10381 }
};
/* exynos: return pll clock frequency */
static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
{
unsigned long m, p, s = 0, mask, fout;
unsigned int div;
unsigned int freq;
/*
* APLL_CON: MIDV [25:16]
* MPLL_CON: MIDV [25:16]
* EPLL_CON: MIDV [24:16]
* VPLL_CON: MIDV [24:16]
* BPLL_CON: MIDV [25:16]: Exynos5
*/
if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL ||
pllreg == SPLL)
mask = 0x3ff;
else
mask = 0x1ff;
m = (r >> 16) & mask;
/* PDIV [13:8] */
p = (r >> 8) & 0x3f;
/* SDIV [2:0] */
s = r & 0x7;
freq = CONFIG_SYS_CLK_FREQ;
if (pllreg == EPLL || pllreg == RPLL) {
k = k & 0xffff;
/* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
fout = (m + k / PLL_DIV_65536) * (freq / (p * (1 << s)));
} else if (pllreg == VPLL) {
k = k & 0xfff;
/*
* Exynos4210
* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV)
*
* Exynos4412
* FOUT = (MDIV + K / 65535) * FIN / (PDIV * 2^SDIV)
*
* Exynos5250
* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV)
*/
if (proid_is_exynos4210())
div = PLL_DIV_1024;
else if (proid_is_exynos4412())
div = PLL_DIV_65535;
else if (proid_is_exynos5250() || proid_is_exynos5420() ||
proid_is_exynos5422())
div = PLL_DIV_65536;
else
return 0;
fout = (m + k / div) * (freq / (p * (1 << s)));
} else {
/*
* Exynos4412 / Exynos5250
* FOUT = MDIV * FIN / (PDIV * 2^SDIV)
*
* Exynos4210
* FOUT = MDIV * FIN / (PDIV * 2^(SDIV-1))
*/
if (proid_is_exynos4210())
fout = m * (freq / (p * (1 << (s - 1))));
else
fout = m * (freq / (p * (1 << s)));
}
return fout;
}
/* exynos4: return pll clock frequency */
static unsigned long exynos4_get_pll_clk(int pllreg)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long r, k = 0;
switch (pllreg) {
case APLL:
r = readl(&clk->apll_con0);
break;
case MPLL:
r = readl(&clk->mpll_con0);
break;
case EPLL:
r = readl(&clk->epll_con0);
k = readl(&clk->epll_con1);
break;
case VPLL:
r = readl(&clk->vpll_con0);
k = readl(&clk->vpll_con1);
break;
default:
printf("Unsupported PLL (%d)\n", pllreg);
return 0;
}
return exynos_get_pll_clk(pllreg, r, k);
}
/* exynos4x12: return pll clock frequency */
static unsigned long exynos4x12_get_pll_clk(int pllreg)
{
struct exynos4x12_clock *clk =
(struct exynos4x12_clock *)samsung_get_base_clock();
unsigned long r, k = 0;
switch (pllreg) {
case APLL:
r = readl(&clk->apll_con0);
break;
case MPLL:
r = readl(&clk->mpll_con0);
break;
case EPLL:
r = readl(&clk->epll_con0);
k = readl(&clk->epll_con1);
break;
case VPLL:
r = readl(&clk->vpll_con0);
k = readl(&clk->vpll_con1);
break;
default:
printf("Unsupported PLL (%d)\n", pllreg);
return 0;
}
return exynos_get_pll_clk(pllreg, r, k);
}
/* exynos5: return pll clock frequency */
static unsigned long exynos5_get_pll_clk(int pllreg)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long r, k = 0, fout;
unsigned int pll_div2_sel, fout_sel;
switch (pllreg) {
case APLL:
r = readl(&clk->apll_con0);
break;
case MPLL:
r = readl(&clk->mpll_con0);
break;
case EPLL:
r = readl(&clk->epll_con0);
k = readl(&clk->epll_con1);
break;
case VPLL:
r = readl(&clk->vpll_con0);
k = readl(&clk->vpll_con1);
break;
case BPLL:
r = readl(&clk->bpll_con0);
break;
default:
printf("Unsupported PLL (%d)\n", pllreg);
return 0;
}
fout = exynos_get_pll_clk(pllreg, r, k);
/* According to the user manual, in EVT1 MPLL and BPLL always gives
* 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
if (pllreg == MPLL || pllreg == BPLL) {
pll_div2_sel = readl(&clk->pll_div2_sel);
switch (pllreg) {
case MPLL:
fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
& MPLL_FOUT_SEL_MASK;
break;
case BPLL:
fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
& BPLL_FOUT_SEL_MASK;
break;
default:
fout_sel = -1;
break;
}
if (fout_sel == 0)
fout /= 2;
}
return fout;
}
/* exynos542x: return pll clock frequency */
static unsigned long exynos542x_get_pll_clk(int pllreg)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
unsigned long r, k = 0;
switch (pllreg) {
case APLL:
r = readl(&clk->apll_con0);
break;
case MPLL:
r = readl(&clk->mpll_con0);
break;
case EPLL:
r = readl(&clk->epll_con0);
k = readl(&clk->epll_con1);
break;
case VPLL:
r = readl(&clk->vpll_con0);
k = readl(&clk->vpll_con1);
break;
case BPLL:
r = readl(&clk->bpll_con0);
break;
case RPLL:
r = readl(&clk->rpll_con0);
k = readl(&clk->rpll_con1);
break;
case SPLL:
r = readl(&clk->spll_con0);
break;
default:
printf("Unsupported PLL (%d)\n", pllreg);
return 0;
}
return exynos_get_pll_clk(pllreg, r, k);
}
static struct clk_bit_info *get_clk_bit_info(int peripheral)
{
int i;
struct clk_bit_info *info;
if (proid_is_exynos542x())
info = exynos542x_bit_info;
else
info = exynos5_bit_info;
for (i = 0; info[i].id != PERIPH_ID_NONE; i++) {
if (info[i].id == peripheral)
break;
}
if (info[i].id == PERIPH_ID_NONE)
debug("ERROR: Peripheral ID %d not found\n", peripheral);
return &info[i];
}
static unsigned long exynos5_get_periph_rate(int peripheral)
{
struct clk_bit_info *bit_info = get_clk_bit_info(peripheral);
unsigned long sclk = 0;
unsigned int src = 0, div = 0, sub_div = 0;
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
switch (peripheral) {
case PERIPH_ID_UART0:
case PERIPH_ID_UART1:
case PERIPH_ID_UART2:
case PERIPH_ID_UART3:
src = readl(&clk->src_peric0);
div = readl(&clk->div_peric0);
break;
case PERIPH_ID_PWM0:
case PERIPH_ID_PWM1:
case PERIPH_ID_PWM2:
case PERIPH_ID_PWM3:
case PERIPH_ID_PWM4:
src = readl(&clk->src_peric0);
div = readl(&clk->div_peric3);
break;
case PERIPH_ID_I2S0:
src = readl(&clk->src_mau);
div = sub_div = readl(&clk->div_mau);
case PERIPH_ID_SPI0:
case PERIPH_ID_SPI1:
src = readl(&clk->src_peric1);
div = sub_div = readl(&clk->div_peric1);
break;
case PERIPH_ID_SPI2:
src = readl(&clk->src_peric1);
div = sub_div = readl(&clk->div_peric2);
break;
case PERIPH_ID_SPI3:
case PERIPH_ID_SPI4:
src = readl(&clk->sclk_src_isp);
div = sub_div = readl(&clk->sclk_div_isp);
break;
case PERIPH_ID_SDMMC0:
case PERIPH_ID_SDMMC1:
src = readl(&clk->src_fsys);
div = sub_div = readl(&clk->div_fsys1);
break;
case PERIPH_ID_SDMMC2:
case PERIPH_ID_SDMMC3:
src = readl(&clk->src_fsys);
div = sub_div = readl(&clk->div_fsys2);
break;
case PERIPH_ID_I2C0:
case PERIPH_ID_I2C1:
case PERIPH_ID_I2C2:
case PERIPH_ID_I2C3:
case PERIPH_ID_I2C4:
case PERIPH_ID_I2C5:
case PERIPH_ID_I2C6:
case PERIPH_ID_I2C7:
src = EXYNOS_SRC_MPLL;
div = readl(&clk->div_top1);
sub_div = readl(&clk->div_top0);
break;
default:
debug("%s: invalid peripheral %d", __func__, peripheral);
return -1;
};
if (bit_info->src_bit >= 0)
src = (src >> bit_info->src_bit) & bit_info->src_mask;
switch (src) {
case EXYNOS_SRC_MPLL:
sclk = exynos5_get_pll_clk(MPLL);
break;
case EXYNOS_SRC_EPLL:
sclk = exynos5_get_pll_clk(EPLL);
break;
case EXYNOS_SRC_VPLL:
sclk = exynos5_get_pll_clk(VPLL);
break;
default:
debug("%s: EXYNOS_SRC %d not supported\n", __func__, src);
return 0;
}
/* Clock divider ratio for this peripheral */
if (bit_info->div_bit >= 0)
div = (div >> bit_info->div_bit) & bit_info->div_mask;
/* Clock pre-divider ratio for this peripheral */
if (bit_info->prediv_bit >= 0)
sub_div = (sub_div >> bit_info->prediv_bit)
& bit_info->prediv_mask;
/* Calculate and return required clock rate */
return (sclk / (div + 1)) / (sub_div + 1);
}
static unsigned long exynos542x_get_periph_rate(int peripheral)
{
struct clk_bit_info *bit_info = get_clk_bit_info(peripheral);
unsigned long sclk = 0;
unsigned int src = 0, div = 0, sub_div = 0;
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
switch (peripheral) {
case PERIPH_ID_UART0:
case PERIPH_ID_UART1:
case PERIPH_ID_UART2:
case PERIPH_ID_UART3:
case PERIPH_ID_PWM0:
case PERIPH_ID_PWM1:
case PERIPH_ID_PWM2:
case PERIPH_ID_PWM3:
case PERIPH_ID_PWM4:
src = readl(&clk->src_peric0);
div = readl(&clk->div_peric0);
break;
case PERIPH_ID_SPI0:
case PERIPH_ID_SPI1:
case PERIPH_ID_SPI2:
src = readl(&clk->src_peric1);
div = readl(&clk->div_peric1);
sub_div = readl(&clk->div_peric4);
break;
case PERIPH_ID_SPI3:
case PERIPH_ID_SPI4:
src = readl(&clk->src_isp);
div = readl(&clk->div_isp1);
sub_div = readl(&clk->div_isp1);
break;
case PERIPH_ID_SDMMC0:
case PERIPH_ID_SDMMC1:
case PERIPH_ID_SDMMC2:
case PERIPH_ID_SDMMC3:
src = readl(&clk->src_fsys);
div = readl(&clk->div_fsys1);
break;
case PERIPH_ID_I2C0:
case PERIPH_ID_I2C1:
case PERIPH_ID_I2C2:
case PERIPH_ID_I2C3:
case PERIPH_ID_I2C4:
case PERIPH_ID_I2C5:
case PERIPH_ID_I2C6:
case PERIPH_ID_I2C7:
case PERIPH_ID_I2C8:
case PERIPH_ID_I2C9:
case PERIPH_ID_I2C10:
src = EXYNOS542X_SRC_MPLL;
div = readl(&clk->div_top1);
break;
default:
debug("%s: invalid peripheral %d", __func__, peripheral);
return -1;
};
if (bit_info->src_bit >= 0)
src = (src >> bit_info->src_bit) & bit_info->src_mask;
switch (src) {
case EXYNOS542X_SRC_MPLL:
sclk = exynos542x_get_pll_clk(MPLL);
break;
case EXYNOS542X_SRC_SPLL:
sclk = exynos542x_get_pll_clk(SPLL);
break;
case EXYNOS542X_SRC_EPLL:
sclk = exynos542x_get_pll_clk(EPLL);
break;
case EXYNOS542X_SRC_RPLL:
sclk = exynos542x_get_pll_clk(RPLL);
break;
default:
debug("%s: EXYNOS542X_SRC %d not supported", __func__, src);
return 0;
}
/* Clock divider ratio for this peripheral */
if (bit_info->div_bit >= 0)
div = (div >> bit_info->div_bit) & bit_info->div_mask;
/* Clock pre-divider ratio for this peripheral */
if (bit_info->prediv_bit >= 0)
sub_div = (sub_div >> bit_info->prediv_bit)
& bit_info->prediv_mask;
/* Calculate and return required clock rate */
return (sclk / (div + 1)) / (sub_div + 1);
}
unsigned long clock_get_periph_rate(int peripheral)
{
if (cpu_is_exynos5()) {
if (proid_is_exynos542x())
return exynos542x_get_periph_rate(peripheral);
return exynos5_get_periph_rate(peripheral);
} else {
return 0;
}
}
/* exynos4: return ARM clock frequency */
static unsigned long exynos4_get_arm_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long div;
unsigned long armclk;
unsigned int core_ratio;
unsigned int core2_ratio;
div = readl(&clk->div_cpu0);
/* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
core_ratio = (div >> 0) & 0x7;
core2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (core_ratio + 1);
armclk /= (core2_ratio + 1);
return armclk;
}
/* exynos4x12: return ARM clock frequency */
static unsigned long exynos4x12_get_arm_clk(void)
{
struct exynos4x12_clock *clk =
(struct exynos4x12_clock *)samsung_get_base_clock();
unsigned long div;
unsigned long armclk;
unsigned int core_ratio;
unsigned int core2_ratio;
div = readl(&clk->div_cpu0);
/* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
core_ratio = (div >> 0) & 0x7;
core2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (core_ratio + 1);
armclk /= (core2_ratio + 1);
return armclk;
}
/* exynos5: return ARM clock frequency */
static unsigned long exynos5_get_arm_clk(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long div;
unsigned long armclk;
unsigned int arm_ratio;
unsigned int arm2_ratio;
div = readl(&clk->div_cpu0);
/* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
arm_ratio = (div >> 0) & 0x7;
arm2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (arm_ratio + 1);
armclk /= (arm2_ratio + 1);
return armclk;
}
/* exynos4: return pwm clock frequency */
static unsigned long exynos4_get_pwm_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long pclk, sclk;
unsigned int sel;
unsigned int ratio;
if (s5p_get_cpu_rev() == 0) {
/*
* CLK_SRC_PERIL0
* PWM_SEL [27:24]
*/
sel = readl(&clk->src_peril0);
sel = (sel >> 24) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_PERIL3
* PWM_RATIO [3:0]
*/
ratio = readl(&clk->div_peril3);
ratio = ratio & 0xf;
} else if (s5p_get_cpu_rev() == 1) {
sclk = get_pll_clk(MPLL);
ratio = 8;
} else
return 0;
pclk = sclk / (ratio + 1);
return pclk;
}
/* exynos4x12: return pwm clock frequency */
static unsigned long exynos4x12_get_pwm_clk(void)
{
unsigned long pclk, sclk;
unsigned int ratio;
sclk = get_pll_clk(MPLL);
ratio = 8;
pclk = sclk / (ratio + 1);
return pclk;
}
/* exynos4: return uart clock frequency */
static unsigned long exynos4_get_uart_clk(int dev_index)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_PERIL0
* UART0_SEL [3:0]
* UART1_SEL [7:4]
* UART2_SEL [8:11]
* UART3_SEL [12:15]
* UART4_SEL [16:19]
* UART5_SEL [23:20]
*/
sel = readl(&clk->src_peril0);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_PERIL0
* UART0_RATIO [3:0]
* UART1_RATIO [7:4]
* UART2_RATIO [8:11]
* UART3_RATIO [12:15]
* UART4_RATIO [16:19]
* UART5_RATIO [23:20]
*/
ratio = readl(&clk->div_peril0);
ratio = (ratio >> (dev_index << 2)) & 0xf;
uclk = sclk / (ratio + 1);
return uclk;
}
/* exynos4x12: return uart clock frequency */
static unsigned long exynos4x12_get_uart_clk(int dev_index)
{
struct exynos4x12_clock *clk =
(struct exynos4x12_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_PERIL0
* UART0_SEL [3:0]
* UART1_SEL [7:4]
* UART2_SEL [8:11]
* UART3_SEL [12:15]
* UART4_SEL [16:19]
*/
sel = readl(&clk->src_peril0);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_PERIL0
* UART0_RATIO [3:0]
* UART1_RATIO [7:4]
* UART2_RATIO [8:11]
* UART3_RATIO [12:15]
* UART4_RATIO [16:19]
*/
ratio = readl(&clk->div_peril0);
ratio = (ratio >> (dev_index << 2)) & 0xf;
uclk = sclk / (ratio + 1);
return uclk;
}
static unsigned long exynos4_get_mmc_clk(int dev_index)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel, ratio, pre_ratio;
int shift = 0;
sel = readl(&clk->src_fsys);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
switch (dev_index) {
case 0:
case 1:
ratio = readl(&clk->div_fsys1);
pre_ratio = readl(&clk->div_fsys1);
break;
case 2:
case 3:
ratio = readl(&clk->div_fsys2);
pre_ratio = readl(&clk->div_fsys2);
break;
case 4:
ratio = readl(&clk->div_fsys3);
pre_ratio = readl(&clk->div_fsys3);
break;
default:
return 0;
}
if (dev_index == 1 || dev_index == 3)
shift = 16;
ratio = (ratio >> shift) & 0xf;
pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
return uclk;
}
/* exynos4: set the mmc clock */
static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned int addr, clear_bit, set_bit;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
* CLK_DIV_FSYS3
* MMC4_RATIO [3:0]
*/
if (dev_index < 2) {
addr = (unsigned int)&clk->div_fsys1;
clear_bit = MASK_PRE_RATIO(dev_index);
set_bit = SET_PRE_RATIO(dev_index, div);
} else if (dev_index == 4) {
addr = (unsigned int)&clk->div_fsys3;
dev_index -= 4;
/* MMC4 is controlled with the MMC4_RATIO value */
clear_bit = MASK_RATIO(dev_index);
set_bit = SET_RATIO(dev_index, div);
} else {
addr = (unsigned int)&clk->div_fsys2;
dev_index -= 2;
clear_bit = MASK_PRE_RATIO(dev_index);
set_bit = SET_PRE_RATIO(dev_index, div);
}
clrsetbits_le32(addr, clear_bit, set_bit);
}
/* exynos5: set the mmc clock */
static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned int addr;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
*/
if (dev_index < 2) {
addr = (unsigned int)&clk->div_fsys1;
} else {
addr = (unsigned int)&clk->div_fsys2;
dev_index -= 2;
}
clrsetbits_le32(addr, 0xff << ((dev_index << 4) + 8),
(div & 0xff) << ((dev_index << 4) + 8));
}
/* exynos5: set the mmc clock */
static void exynos5420_set_mmc_clk(int dev_index, unsigned int div)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
unsigned int addr;
unsigned int shift;
/*
* CLK_DIV_FSYS1
* MMC0_RATIO [9:0]
* MMC1_RATIO [19:10]
* MMC2_RATIO [29:20]
*/
addr = (unsigned int)&clk->div_fsys1;
shift = dev_index * 10;
clrsetbits_le32(addr, 0x3ff << shift, (div & 0x3ff) << shift);
}
/* get_lcd_clk: return lcd clock frequency */
static unsigned long exynos4_get_lcd_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long pclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
*/
sel = readl(&clk->src_lcd0);
sel = sel & 0xf;
/*
* 0x6: SCLK_MPLL
* 0x7: SCLK_EPLL
* 0x8: SCLK_VPLL
*/
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
*/
ratio = readl(&clk->div_lcd0);
ratio = ratio & 0xf;
pclk = sclk / (ratio + 1);
return pclk;
}
/* get_lcd_clk: return lcd clock frequency */
static unsigned long exynos5_get_lcd_clk(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long pclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
*/
sel = readl(&clk->src_disp1_0);
sel = sel & 0xf;
/*
* 0x6: SCLK_MPLL
* 0x7: SCLK_EPLL
* 0x8: SCLK_VPLL
*/
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
*/
ratio = readl(&clk->div_disp1_0);
ratio = ratio & 0xf;
pclk = sclk / (ratio + 1);
return pclk;
}
static unsigned long exynos5420_get_lcd_clk(void)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
unsigned long pclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_DISP10
* FIMD1_SEL [4]
* 0: SCLK_RPLL
* 1: SCLK_SPLL
*/
sel = readl(&clk->src_disp10);
sel &= (1 << 4);
if (sel)
sclk = get_pll_clk(SPLL);
else
sclk = get_pll_clk(RPLL);
/*
* CLK_DIV_DISP10
* FIMD1_RATIO [3:0]
*/
ratio = readl(&clk->div_disp10);
ratio = ratio & 0xf;
pclk = sclk / (ratio + 1);
return pclk;
}
static unsigned long exynos5800_get_lcd_clk(void)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
unsigned long sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_DISP10
* CLKMUX_FIMD1 [6:4]
*/
sel = (readl(&clk->src_disp10) >> 4) & 0x7;
if (sel) {
/*
* Mapping of CLK_SRC_DISP10 CLKMUX_FIMD1 [6:4] values into
* PLLs. The first element is a placeholder to bypass the
* default settig.
*/
const int reg_map[] = {0, CPLL, DPLL, MPLL, SPLL, IPLL, EPLL,
RPLL};
sclk = get_pll_clk(reg_map[sel]);
} else
sclk = CONFIG_SYS_CLK_FREQ;
/*
* CLK_DIV_DISP10
* FIMD1_RATIO [3:0]
*/
ratio = readl(&clk->div_disp10) & 0xf;
return sclk / (ratio + 1);
}
void exynos4_set_lcd_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
/*
* CLK_GATE_BLOCK
* CLK_CAM [0]
* CLK_TV [1]
* CLK_MFC [2]
* CLK_G3D [3]
* CLK_LCD0 [4]
* CLK_LCD1 [5]
* CLK_GPS [7]
*/
setbits_le32(&clk->gate_block, 1 << 4);
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
* MDNIE0_SEL [7:4]
* MDNIE_PWM0_SEL [8:11]
* MIPI0_SEL [12:15]
* set lcd0 src clock 0x6: SCLK_MPLL
*/
clrsetbits_le32(&clk->src_lcd0, 0xf, 0x6);
/*
* CLK_GATE_IP_LCD0
* CLK_FIMD0 [0]
* CLK_MIE0 [1]
* CLK_MDNIE0 [2]
* CLK_DSIM0 [3]
* CLK_SMMUFIMD0 [4]
* CLK_PPMULCD0 [5]
* Gating all clocks for FIMD0
*/
setbits_le32(&clk->gate_ip_lcd0, 1 << 0);
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
* MDNIE0_RATIO [7:4]
* MDNIE_PWM0_RATIO [11:8]
* MDNIE_PWM_PRE_RATIO [15:12]
* MIPI0_RATIO [19:16]
* MIPI0_PRE_RATIO [23:20]
* set fimd ratio
*/
clrsetbits_le32(&clk->div_lcd0, 0xf, 0x1);
}
void exynos5_set_lcd_clk(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
/*
* CLK_GATE_BLOCK
* CLK_CAM [0]
* CLK_TV [1]
* CLK_MFC [2]
* CLK_G3D [3]
* CLK_LCD0 [4]
* CLK_LCD1 [5]
* CLK_GPS [7]
*/
setbits_le32(&clk->gate_block, 1 << 4);
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
* MDNIE0_SEL [7:4]
* MDNIE_PWM0_SEL [8:11]
* MIPI0_SEL [12:15]
* set lcd0 src clock 0x6: SCLK_MPLL
*/
clrsetbits_le32(&clk->src_disp1_0, 0xf, 0x6);
/*
* CLK_GATE_IP_LCD0
* CLK_FIMD0 [0]
* CLK_MIE0 [1]
* CLK_MDNIE0 [2]
* CLK_DSIM0 [3]
* CLK_SMMUFIMD0 [4]
* CLK_PPMULCD0 [5]
* Gating all clocks for FIMD0
*/
setbits_le32(&clk->gate_ip_disp1, 1 << 0);
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
* MDNIE0_RATIO [7:4]
* MDNIE_PWM0_RATIO [11:8]
* MDNIE_PWM_PRE_RATIO [15:12]
* MIPI0_RATIO [19:16]
* MIPI0_PRE_RATIO [23:20]
* set fimd ratio
*/
clrsetbits_le32(&clk->div_disp1_0, 0xf, 0x0);
}
void exynos5420_set_lcd_clk(void)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
unsigned int cfg;
/*
* CLK_SRC_DISP10
* FIMD1_SEL [4]
* 0: SCLK_RPLL
* 1: SCLK_SPLL
*/
cfg = readl(&clk->src_disp10);
cfg &= ~(0x1 << 4);
cfg |= (0 << 4);
writel(cfg, &clk->src_disp10);
/*
* CLK_DIV_DISP10
* FIMD1_RATIO [3:0]
*/
cfg = readl(&clk->div_disp10);
cfg &= ~(0xf << 0);
cfg |= (0 << 0);
writel(cfg, &clk->div_disp10);
}
void exynos5800_set_lcd_clk(void)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
unsigned int cfg;
/*
* Use RPLL for pixel clock
* CLK_SRC_DISP10 CLKMUX_FIMD1 [6:4]
* ==================
* 111: SCLK_RPLL
*/
cfg = readl(&clk->src_disp10) | (0x7 << 4);
writel(cfg, &clk->src_disp10);
/*
* CLK_DIV_DISP10
* FIMD1_RATIO [3:0]
*/
clrsetbits_le32(&clk->div_disp10, 0xf << 0, 0x0 << 0);
}
void exynos4_set_mipi_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
* MDNIE0_SEL [7:4]
* MDNIE_PWM0_SEL [8:11]
* MIPI0_SEL [12:15]
* set mipi0 src clock 0x6: SCLK_MPLL
*/
clrsetbits_le32(&clk->src_lcd0, 0xf << 12, 0x6 << 12);
/*
* CLK_SRC_MASK_LCD0
* FIMD0_MASK [0]
* MDNIE0_MASK [4]
* MDNIE_PWM0_MASK [8]
* MIPI0_MASK [12]
* set src mask mipi0 0x1: Unmask
*/
setbits_le32(&clk->src_mask_lcd0, 0x1 << 12);
/*
* CLK_GATE_IP_LCD0
* CLK_FIMD0 [0]
* CLK_MIE0 [1]
* CLK_MDNIE0 [2]
* CLK_DSIM0 [3]
* CLK_SMMUFIMD0 [4]
* CLK_PPMULCD0 [5]
* Gating all clocks for MIPI0
*/
setbits_le32(&clk->gate_ip_lcd0, 1 << 3);
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
* MDNIE0_RATIO [7:4]
* MDNIE_PWM0_RATIO [11:8]
* MDNIE_PWM_PRE_RATIO [15:12]
* MIPI0_RATIO [19:16]
* MIPI0_PRE_RATIO [23:20]
* set mipi ratio
*/
clrsetbits_le32(&clk->div_lcd0, 0xf << 16, 0x1 << 16);
}
int exynos5_set_epll_clk(unsigned long rate)
{
unsigned int epll_con, epll_con_k;
unsigned int i;
unsigned int lockcnt;
unsigned int start;
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
epll_con = readl(&clk->epll_con0);
epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
EPLL_CON0_LOCK_DET_EN_SHIFT) |
EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
if (exynos5_epll_div[i].freq_out == rate)
break;
}
if (i == ARRAY_SIZE(exynos5_epll_div))
return -1;
epll_con_k = exynos5_epll_div[i].k_dsm << 0;
epll_con |= exynos5_epll_div[i].en_lock_det <<
EPLL_CON0_LOCK_DET_EN_SHIFT;
epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
/*
* Required period ( in cycles) to genarate a stable clock output.
* The maximum clock time can be up to 3000 * PDIV cycles of PLLs
* frequency input (as per spec)
*/
lockcnt = 3000 * exynos5_epll_div[i].p_div;
writel(lockcnt, &clk->epll_lock);
writel(epll_con, &clk->epll_con0);
writel(epll_con_k, &clk->epll_con1);
start = get_timer(0);
while (!(readl(&clk->epll_con0) &
(0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
debug("%s: Timeout waiting for EPLL lock\n", __func__);
return -1;
}
}
return 0;
}
static int exynos5420_set_i2s_clk_source(void)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
setbits_le32(&clk->src_top6, EXYNOS5420_CLK_SRC_MOUT_EPLL);
clrsetbits_le32(&clk->src_mau, EXYNOS5420_AUDIO0_SEL_MASK,
(EXYNOS5420_CLK_SRC_SCLK_EPLL));
setbits_le32(EXYNOS5_AUDIOSS_BASE, 1 << 0);
return 0;
}
int exynos5_set_i2s_clk_source(unsigned int i2s_id)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned int *audio_ass = (unsigned int *)samsung_get_base_audio_ass();
if (i2s_id == 0) {
setbits_le32(&clk->src_top2, CLK_SRC_MOUT_EPLL);
clrsetbits_le32(&clk->src_mau, AUDIO0_SEL_MASK,
(CLK_SRC_SCLK_EPLL));
setbits_le32(audio_ass, AUDIO_CLKMUX_ASS);
} else if (i2s_id == 1) {
clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
(CLK_SRC_SCLK_EPLL));
} else {
return -1;
}
return 0;
}
int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
unsigned int dst_frq,
unsigned int i2s_id)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned int div;
if ((dst_frq == 0) || (src_frq == 0)) {
debug("%s: Invalid requency input for prescaler\n", __func__);
debug("src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
div = (src_frq / dst_frq);
if (i2s_id == 0) {
if (div > AUDIO_0_RATIO_MASK) {
debug("%s: Frequency ratio is out of range\n",
__func__);
debug("src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
clrsetbits_le32(&clk->div_mau, AUDIO_0_RATIO_MASK,
(div & AUDIO_0_RATIO_MASK));
} else if (i2s_id == 1) {
if (div > AUDIO_1_RATIO_MASK) {
debug("%s: Frequency ratio is out of range\n",
__func__);
debug("src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
(div & AUDIO_1_RATIO_MASK));
} else {
return -1;
}
return 0;
}
/**
* Linearly searches for the most accurate main and fine stage clock scalars
* (divisors) for a specified target frequency and scalar bit sizes by checking
* all multiples of main_scalar_bits values. Will always return scalars up to or
* slower than target.
*
* @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
* @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
* @param input_freq Clock frequency to be scaled in Hz
* @param target_freq Desired clock frequency in Hz
* @param best_fine_scalar Pointer to store the fine stage divisor
*
* @return best_main_scalar Main scalar for desired frequency or -1 if none
* found
*/
static int clock_calc_best_scalar(unsigned int main_scaler_bits,
unsigned int fine_scalar_bits, unsigned int input_rate,
unsigned int target_rate, unsigned int *best_fine_scalar)
{
int i;
int best_main_scalar = -1;
unsigned int best_error = target_rate;
const unsigned int cap = (1 << fine_scalar_bits) - 1;
const unsigned int loops = 1 << main_scaler_bits;
debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
target_rate, cap);
assert(best_fine_scalar != NULL);
assert(main_scaler_bits <= fine_scalar_bits);
*best_fine_scalar = 1;
if (input_rate == 0 || target_rate == 0)
return -1;
if (target_rate >= input_rate)
return 1;
for (i = 1; i <= loops; i++) {
const unsigned int effective_div =
max(min(input_rate / i / target_rate, cap), 1U);
const unsigned int effective_rate = input_rate / i /
effective_div;
const int error = target_rate - effective_rate;
debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
effective_rate, error);
if (error >= 0 && error <= best_error) {
best_error = error;
best_main_scalar = i;
*best_fine_scalar = effective_div;
}
}
return best_main_scalar;
}
static int exynos5_set_spi_clk(enum periph_id periph_id,
unsigned int rate)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
int main;
unsigned int fine;
unsigned shift, pre_shift;
unsigned mask = 0xff;
u32 *reg;
main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
if (main < 0) {
debug("%s: Cannot set clock rate for periph %d",
__func__, periph_id);
return -1;
}
main = main - 1;
fine = fine - 1;
switch (periph_id) {
case PERIPH_ID_SPI0:
reg = &clk->div_peric1;
shift = 0;
pre_shift = 8;
break;
case PERIPH_ID_SPI1:
reg = &clk->div_peric1;
shift = 16;
pre_shift = 24;
break;
case PERIPH_ID_SPI2:
reg = &clk->div_peric2;
shift = 0;
pre_shift = 8;
break;
case PERIPH_ID_SPI3:
reg = &clk->sclk_div_isp;
shift = 0;
pre_shift = 4;
break;
case PERIPH_ID_SPI4:
reg = &clk->sclk_div_isp;
shift = 12;
pre_shift = 16;
break;
default:
debug("%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return -1;
}
clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
return 0;
}
static int exynos5420_set_spi_clk(enum periph_id periph_id,
unsigned int rate)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
int main;
unsigned int fine;
unsigned shift, pre_shift;
unsigned div_mask = 0xf, pre_div_mask = 0xff;
u32 *reg;
u32 *pre_reg;
main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
if (main < 0) {
debug("%s: Cannot set clock rate for periph %d",
__func__, periph_id);
return -1;
}
main = main - 1;
fine = fine - 1;
switch (periph_id) {
case PERIPH_ID_SPI0:
reg = &clk->div_peric1;
shift = 20;
pre_reg = &clk->div_peric4;
pre_shift = 8;
break;
case PERIPH_ID_SPI1:
reg = &clk->div_peric1;
shift = 24;
pre_reg = &clk->div_peric4;
pre_shift = 16;
break;
case PERIPH_ID_SPI2:
reg = &clk->div_peric1;
shift = 28;
pre_reg = &clk->div_peric4;
pre_shift = 24;
break;
case PERIPH_ID_SPI3:
reg = &clk->div_isp1;
shift = 16;
pre_reg = &clk->div_isp1;
pre_shift = 0;
break;
case PERIPH_ID_SPI4:
reg = &clk->div_isp1;
shift = 20;
pre_reg = &clk->div_isp1;
pre_shift = 8;
break;
default:
debug("%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return -1;
}
clrsetbits_le32(reg, div_mask << shift, (main & div_mask) << shift);
clrsetbits_le32(pre_reg, pre_div_mask << pre_shift,
(fine & pre_div_mask) << pre_shift);
return 0;
}
static unsigned long exynos4_get_i2c_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long sclk, aclk_100;
unsigned int ratio;
sclk = get_pll_clk(APLL);
ratio = (readl(&clk->div_top)) >> 4;
ratio &= 0xf;
aclk_100 = sclk / (ratio + 1);
return aclk_100;
}
unsigned long get_pll_clk(int pllreg)
{
if (cpu_is_exynos5()) {
if (proid_is_exynos542x())
return exynos542x_get_pll_clk(pllreg);
return exynos5_get_pll_clk(pllreg);
} else if (cpu_is_exynos4()) {
if (proid_is_exynos4412())
return exynos4x12_get_pll_clk(pllreg);
return exynos4_get_pll_clk(pllreg);
}
return 0;
}
unsigned long get_arm_clk(void)
{
if (cpu_is_exynos5()) {
return exynos5_get_arm_clk();
} else if (cpu_is_exynos4()) {
if (proid_is_exynos4412())
return exynos4x12_get_arm_clk();
return exynos4_get_arm_clk();
}
return 0;
}
unsigned long get_i2c_clk(void)
{
if (cpu_is_exynos5())
return clock_get_periph_rate(PERIPH_ID_I2C0);
else if (cpu_is_exynos4())
return exynos4_get_i2c_clk();
return 0;
}
unsigned long get_pwm_clk(void)
{
if (cpu_is_exynos5()) {
return clock_get_periph_rate(PERIPH_ID_PWM0);
} else if (cpu_is_exynos4()) {
if (proid_is_exynos4412())
return exynos4x12_get_pwm_clk();
return exynos4_get_pwm_clk();
}
return 0;
}
unsigned long get_uart_clk(int dev_index)
{
enum periph_id id;
switch (dev_index) {
case 0:
id = PERIPH_ID_UART0;
break;
case 1:
id = PERIPH_ID_UART1;
break;
case 2:
id = PERIPH_ID_UART2;
break;
case 3:
id = PERIPH_ID_UART3;
break;
default:
debug("%s: invalid UART index %d", __func__, dev_index);
return -1;
}
if (cpu_is_exynos5()) {
return clock_get_periph_rate(id);
} else if (cpu_is_exynos4()) {
if (proid_is_exynos4412())
return exynos4x12_get_uart_clk(dev_index);
return exynos4_get_uart_clk(dev_index);
}
return 0;
}
unsigned long get_mmc_clk(int dev_index)
{
enum periph_id id;
if (cpu_is_exynos4())
return exynos4_get_mmc_clk(dev_index);
switch (dev_index) {
case 0:
id = PERIPH_ID_SDMMC0;
break;
case 1:
id = PERIPH_ID_SDMMC1;
break;
case 2:
id = PERIPH_ID_SDMMC2;
break;
case 3:
id = PERIPH_ID_SDMMC3;
break;
default:
debug("%s: invalid MMC index %d", __func__, dev_index);
return -1;
}
return clock_get_periph_rate(id);
}
void set_mmc_clk(int dev_index, unsigned int div)
{
/* If want to set correct value, it needs to substract one from div.*/
if (div > 0)
div -= 1;
if (cpu_is_exynos5()) {
if (proid_is_exynos542x())
exynos5420_set_mmc_clk(dev_index, div);
else
exynos5_set_mmc_clk(dev_index, div);
} else if (cpu_is_exynos4()) {
exynos4_set_mmc_clk(dev_index, div);
}
}
unsigned long get_lcd_clk(void)
{
if (cpu_is_exynos4()) {
return exynos4_get_lcd_clk();
} else if (cpu_is_exynos5()) {
if (proid_is_exynos5420())
return exynos5420_get_lcd_clk();
else if (proid_is_exynos5422())
return exynos5800_get_lcd_clk();
else
return exynos5_get_lcd_clk();
}
return 0;
}
void set_lcd_clk(void)
{
if (cpu_is_exynos4()) {
exynos4_set_lcd_clk();
} else if (cpu_is_exynos5()) {
if (proid_is_exynos5250())
exynos5_set_lcd_clk();
else if (proid_is_exynos5420())
exynos5420_set_lcd_clk();
else
exynos5800_set_lcd_clk();
}
}
void set_mipi_clk(void)
{
if (cpu_is_exynos4())
exynos4_set_mipi_clk();
}
int set_spi_clk(int periph_id, unsigned int rate)
{
if (cpu_is_exynos5()) {
if (proid_is_exynos542x())
return exynos5420_set_spi_clk(periph_id, rate);
return exynos5_set_spi_clk(periph_id, rate);
}
return 0;
}
int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq,
unsigned int i2s_id)
{
if (cpu_is_exynos5())
return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq, i2s_id);
return 0;
}
int set_i2s_clk_source(unsigned int i2s_id)
{
if (cpu_is_exynos5()) {
if (proid_is_exynos542x())
return exynos5420_set_i2s_clk_source();
else
return exynos5_set_i2s_clk_source(i2s_id);
}
return 0;
}
int set_epll_clk(unsigned long rate)
{
if (cpu_is_exynos5())
return exynos5_set_epll_clk(rate);
return 0;
}