blob: 7957f678a1b06228d9bde4f2b33d459eeab1718b [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0+
/*
* Texas Instruments' AM654 DDRSS driver
*
* Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
* Lokesh Vutla <lokeshvutla@ti.com>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <ram.h>
#include <asm/io.h>
#include <power-domain.h>
#include <dm.h>
#include <asm/arch/sys_proto.h>
#include <power/regulator.h>
#include "k3-am654-ddrss.h"
#define LDELAY 10000
/* DDRSS PHY configuration register fixed values */
#define DDRSS_DDRPHY_RANKIDR_RANK0 0
/**
* struct am654_ddrss_desc - Description of ddrss integration.
* @dev: DDRSS device pointer
* @ddrss_ss_cfg: DDRSS wrapper logic region base address
* @ddrss_ctl_cfg: DDRSS controller region base address
* @ddrss_phy_cfg: DDRSS PHY region base address
* @ddrss_clk: DDRSS clock description
* @vtt_supply: VTT Supply regulator
* @ddrss_pwrdmn: DDRSS power domain description
* @params: SDRAM configuration parameters
*/
struct am654_ddrss_desc {
struct udevice *dev;
void __iomem *ddrss_ss_cfg;
void __iomem *ddrss_ctl_cfg;
void __iomem *ddrss_phy_cfg;
struct clk ddrss_clk;
struct udevice *vtt_supply;
struct power_domain ddrcfg_pwrdmn;
struct power_domain ddrdata_pwrdmn;
struct ddrss_params params;
};
static inline u32 ddrss_readl(void __iomem *addr, unsigned int offset)
{
return readl(addr + offset);
}
static inline void ddrss_writel(void __iomem *addr, unsigned int offset,
u32 data)
{
debug("%s: addr = 0x%p, value = 0x%x\n", __func__, addr + offset, data);
writel(data, addr + offset);
}
#define ddrss_ctl_writel(off, val) ddrss_writel(ddrss->ddrss_ctl_cfg, off, val)
#define ddrss_ctl_readl(off) ddrss_readl(ddrss->ddrss_ctl_cfg, off)
static inline u32 am654_ddrss_get_type(struct am654_ddrss_desc *ddrss)
{
return ddrss_ctl_readl(DDRSS_DDRCTL_MSTR) & MSTR_DDR_TYPE_MASK;
}
/**
* am654_ddrss_dram_wait_for_init_complete() - Wait for init to complete
*
* After detecting the DDR type this function will pause until the
* initialization is complete. Each DDR type has mask of multiple bits.
* The size of the field depends on the DDR Type. If the initialization
* does not complete and error will be returned and will cause the boot to halt.
*
*/
static int am654_ddrss_dram_wait_for_init_complt(struct am654_ddrss_desc *ddrss)
{
u32 val, mask;
val = am654_ddrss_get_type(ddrss);
switch (val) {
case DDR_TYPE_LPDDR4:
case DDR_TYPE_DDR4:
mask = DDR4_STAT_MODE_MASK;
break;
case DDR_TYPE_DDR3:
mask = DDR3_STAT_MODE_MASK;
break;
default:
printf("Unsupported DDR type 0x%x\n", val);
return -EINVAL;
}
if (!wait_on_value(mask, DDR_MODE_NORMAL,
ddrss->ddrss_ctl_cfg + DDRSS_DDRCTL_STAT, LDELAY))
return -ETIMEDOUT;
return 0;
}
/**
* am654_ddrss_ctrl_configuration() - Configure Controller specific registers
* @dev: corresponding ddrss device
*/
static void am654_ddrss_ctrl_configuration(struct am654_ddrss_desc *ddrss)
{
struct ddrss_ddrctl_timing_params *tmg = &ddrss->params.ctl_timing;
struct ddrss_ddrctl_reg_params *reg = &ddrss->params.ctl_reg;
struct ddrss_ddrctl_ecc_params *ecc = &ddrss->params.ctl_ecc;
struct ddrss_ddrctl_crc_params *crc = &ddrss->params.ctl_crc;
struct ddrss_ddrctl_map_params *map = &ddrss->params.ctl_map;
u32 val;
debug("%s: DDR controller register configuration started\n", __func__);
ddrss_ctl_writel(DDRSS_DDRCTL_MSTR, reg->ddrctl_mstr);
ddrss_ctl_writel(DDRSS_DDRCTL_RFSHCTL0, reg->ddrctl_rfshctl0);
ddrss_ctl_writel(DDRSS_DDRCTL_RFSHTMG, reg->ddrctl_rfshtmg);
ddrss_ctl_writel(DDRSS_DDRCTL_ECCCFG0, ecc->ddrctl_ecccfg0);
ddrss_ctl_writel(DDRSS_DDRCTL_CRCPARCTL0, crc->ddrctl_crcparctl0);
ddrss_ctl_writel(DDRSS_DDRCTL_CRCPARCTL1, crc->ddrctl_crcparctl1);
ddrss_ctl_writel(DDRSS_DDRCTL_CRCPARCTL2, crc->ddrctl_crcparctl2);
ddrss_ctl_writel(DDRSS_DDRCTL_INIT0, reg->ddrctl_init0);
ddrss_ctl_writel(DDRSS_DDRCTL_INIT1, reg->ddrctl_init1);
ddrss_ctl_writel(DDRSS_DDRCTL_INIT3, reg->ddrctl_init3);
ddrss_ctl_writel(DDRSS_DDRCTL_INIT4, reg->ddrctl_init4);
ddrss_ctl_writel(DDRSS_DDRCTL_INIT5, reg->ddrctl_init5);
ddrss_ctl_writel(DDRSS_DDRCTL_INIT6, reg->ddrctl_init6);
ddrss_ctl_writel(DDRSS_DDRCTL_INIT7, reg->ddrctl_init7);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG0, tmg->ddrctl_dramtmg0);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG1, tmg->ddrctl_dramtmg1);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG2, tmg->ddrctl_dramtmg2);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG3, tmg->ddrctl_dramtmg3);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG4, tmg->ddrctl_dramtmg4);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG5, tmg->ddrctl_dramtmg5);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG8, tmg->ddrctl_dramtmg8);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG9, tmg->ddrctl_dramtmg9);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG11, tmg->ddrctl_dramtmg11);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG12, tmg->ddrctl_dramtmg12);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG13, tmg->ddrctl_dramtmg13);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG15, tmg->ddrctl_dramtmg15);
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG17, tmg->ddrctl_dramtmg17);
ddrss_ctl_writel(DDRSS_DDRCTL_ZQCTL0, reg->ddrctl_zqctl0);
ddrss_ctl_writel(DDRSS_DDRCTL_ZQCTL1, reg->ddrctl_zqctl1);
ddrss_ctl_writel(DDRSS_DDRCTL_DFITMG0, reg->ddrctl_dfitmg0);
ddrss_ctl_writel(DDRSS_DDRCTL_DFITMG1, reg->ddrctl_dfitmg1);
ddrss_ctl_writel(DDRSS_DDRCTL_DFITMG2, reg->ddrctl_dfitmg2);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP0, map->ddrctl_addrmap0);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP1, map->ddrctl_addrmap1);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP2, map->ddrctl_addrmap2);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP3, map->ddrctl_addrmap3);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP4, map->ddrctl_addrmap4);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP5, map->ddrctl_addrmap5);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP6, map->ddrctl_addrmap6);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP7, map->ddrctl_addrmap7);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP8, map->ddrctl_addrmap8);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP9, map->ddrctl_addrmap9);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP10, map->ddrctl_addrmap10);
ddrss_ctl_writel(DDRSS_DDRCTL_ADDRMAP11, map->ddrctl_addrmap11);
ddrss_ctl_writel(DDRSS_DDRCTL_ODTCFG, reg->ddrctl_odtcfg);
ddrss_ctl_writel(DDRSS_DDRCTL_ODTMAP, reg->ddrctl_odtmap);
/* Disable refreshes */
val = ddrss_ctl_readl(DDRSS_DDRCTL_RFSHCTL3);
val |= 0x01;
ddrss_ctl_writel(DDRSS_DDRCTL_RFSHCTL3, val);
debug("%s: DDR controller configuration completed\n", __func__);
}
#define ddrss_phy_writel(off, val) \
do { \
ddrss_writel(ddrss->ddrss_phy_cfg, off, val); \
sdelay(10); /* Delay at least 20 clock cycles */ \
} while (0)
#define ddrss_phy_readl(off) \
({ \
u32 val = ddrss_readl(ddrss->ddrss_phy_cfg, off); \
sdelay(10); /* Delay at least 20 clock cycles */ \
val; \
})
/**
* am654_ddrss_phy_configuration() - Configure PHY specific registers
* @ddrss: corresponding ddrss device
*/
static void am654_ddrss_phy_configuration(struct am654_ddrss_desc *ddrss)
{
struct ddrss_ddrphy_ioctl_params *ioctl = &ddrss->params.phy_ioctl;
struct ddrss_ddrphy_timing_params *tmg = &ddrss->params.phy_timing;
struct ddrss_ddrphy_ctrl_params *ctrl = &ddrss->params.phy_ctrl;
struct ddrss_ddrphy_cfg_params *cfg = &ddrss->params.phy_cfg;
struct ddrss_ddrphy_zq_params *zq = &ddrss->params.phy_zq;
debug("%s: DDR phy register configuration started\n", __func__);
ddrss_phy_writel(DDRSS_DDRPHY_PGCR1, cfg->ddrphy_pgcr1);
ddrss_phy_writel(DDRSS_DDRPHY_PGCR2, cfg->ddrphy_pgcr2);
ddrss_phy_writel(DDRSS_DDRPHY_PGCR3, cfg->ddrphy_pgcr3);
ddrss_phy_writel(DDRSS_DDRPHY_PGCR6, cfg->ddrphy_pgcr6);
ddrss_phy_writel(DDRSS_DDRPHY_PTR3, tmg->ddrphy_ptr3);
ddrss_phy_writel(DDRSS_DDRPHY_PTR4, tmg->ddrphy_ptr4);
ddrss_phy_writel(DDRSS_DDRPHY_PTR5, tmg->ddrphy_ptr5);
ddrss_phy_writel(DDRSS_DDRPHY_PTR6, tmg->ddrphy_ptr6);
ddrss_phy_writel(DDRSS_DDRPHY_PLLCR0, ctrl->ddrphy_pllcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DXCCR, cfg->ddrphy_dxccr);
ddrss_phy_writel(DDRSS_DDRPHY_DSGCR, cfg->ddrphy_dsgcr);
ddrss_phy_writel(DDRSS_DDRPHY_DCR, cfg->ddrphy_dcr);
ddrss_phy_writel(DDRSS_DDRPHY_DTPR0, tmg->ddrphy_dtpr0);
ddrss_phy_writel(DDRSS_DDRPHY_DTPR1, tmg->ddrphy_dtpr1);
ddrss_phy_writel(DDRSS_DDRPHY_DTPR2, tmg->ddrphy_dtpr2);
ddrss_phy_writel(DDRSS_DDRPHY_DTPR3, tmg->ddrphy_dtpr3);
ddrss_phy_writel(DDRSS_DDRPHY_DTPR4, tmg->ddrphy_dtpr4);
ddrss_phy_writel(DDRSS_DDRPHY_DTPR5, tmg->ddrphy_dtpr5);
ddrss_phy_writel(DDRSS_DDRPHY_DTPR6, tmg->ddrphy_dtpr6);
ddrss_phy_writel(DDRSS_DDRPHY_ZQCR, zq->ddrphy_zqcr);
ddrss_phy_writel(DDRSS_DDRPHY_ZQ0PR0, zq->ddrphy_zq0pr0);
ddrss_phy_writel(DDRSS_DDRPHY_ZQ1PR0, zq->ddrphy_zq1pr0);
ddrss_phy_writel(DDRSS_DDRPHY_MR0, ctrl->ddrphy_mr0);
ddrss_phy_writel(DDRSS_DDRPHY_MR1, ctrl->ddrphy_mr1);
ddrss_phy_writel(DDRSS_DDRPHY_MR2, ctrl->ddrphy_mr2);
ddrss_phy_writel(DDRSS_DDRPHY_MR3, ctrl->ddrphy_mr3);
ddrss_phy_writel(DDRSS_DDRPHY_MR4, ctrl->ddrphy_mr4);
ddrss_phy_writel(DDRSS_DDRPHY_MR5, ctrl->ddrphy_mr5);
ddrss_phy_writel(DDRSS_DDRPHY_MR6, ctrl->ddrphy_mr6);
ddrss_phy_writel(DDRSS_DDRPHY_VTCR0, ctrl->ddrphy_vtcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL0PLLCR0, cfg->ddrphy_dx8sl0pllcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL1PLLCR0, cfg->ddrphy_dx8sl1pllcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL2PLLCR0, cfg->ddrphy_dx8sl2pllcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DTCR0, ctrl->ddrphy_dtcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DTCR1, ctrl->ddrphy_dtcr1);
ddrss_phy_writel(DDRSS_DDRPHY_ACIOCR5, ioctl->ddrphy_aciocr5);
ddrss_phy_writel(DDRSS_DDRPHY_IOVCR0, ioctl->ddrphy_iovcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX4GCR0, cfg->ddrphy_dx4gcr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX4GCR1, cfg->ddrphy_dx4gcr1);
ddrss_phy_writel(DDRSS_DDRPHY_DX4GCR2, cfg->ddrphy_dx4gcr2);
ddrss_phy_writel(DDRSS_DDRPHY_DX4GCR3, cfg->ddrphy_dx4gcr3);
ddrss_phy_writel(DDRSS_DDRPHY_DX0GCR4, cfg->ddrphy_dx0gcr4);
ddrss_phy_writel(DDRSS_DDRPHY_DX1GCR4, cfg->ddrphy_dx1gcr4);
ddrss_phy_writel(DDRSS_DDRPHY_DX2GCR4, cfg->ddrphy_dx2gcr4);
ddrss_phy_writel(DDRSS_DDRPHY_DX3GCR4, cfg->ddrphy_dx3gcr4);
ddrss_phy_writel(DDRSS_DDRPHY_PGCR5, cfg->ddrphy_pgcr5);
ddrss_phy_writel(DDRSS_DDRPHY_DX0GCR5, cfg->ddrphy_dx0gcr5);
ddrss_phy_writel(DDRSS_DDRPHY_DX1GCR5, cfg->ddrphy_dx1gcr5);
ddrss_phy_writel(DDRSS_DDRPHY_DX2GCR5, cfg->ddrphy_dx2gcr5);
ddrss_phy_writel(DDRSS_DDRPHY_DX3GCR5, cfg->ddrphy_dx3gcr5);
ddrss_phy_writel(DDRSS_DDRPHY_RANKIDR, DDRSS_DDRPHY_RANKIDR_RANK0);
ddrss_phy_writel(DDRSS_DDRPHY_DX0GTR0, cfg->ddrphy_dx0gtr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX1GTR0, cfg->ddrphy_dx1gtr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX2GTR0, cfg->ddrphy_dx2gtr0);
ddrss_phy_writel(DDRSS_DDRPHY_DX3GTR0, cfg->ddrphy_dx3gtr0);
ddrss_phy_writel(DDRSS_DDRPHY_ODTCR, cfg->ddrphy_odtcr);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL0IOCR, cfg->ddrphy_dx8sl0iocr);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL1IOCR, cfg->ddrphy_dx8sl1iocr);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL2IOCR, cfg->ddrphy_dx8sl2iocr);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL0DXCTL2, cfg->ddrphy_dx8sl0dxctl2);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL1DXCTL2, cfg->ddrphy_dx8sl1dxctl2);
ddrss_phy_writel(DDRSS_DDRPHY_DX8SL2DXCTL2, cfg->ddrphy_dx8sl2dxctl2);
debug("%s: DDR phy register configuration completed\n", __func__);
}
static int __phy_builtin_init_routine(struct am654_ddrss_desc *ddrss,
u32 init_value, u32 sts_mask,
u32 err_mask)
{
int ret;
ddrss_phy_writel(DDRSS_DDRPHY_PIR, init_value | PIR_INIT_MASK);
sdelay(5); /* Delay at least 10 clock cycles */
if (!wait_on_value(sts_mask, sts_mask,
ddrss->ddrss_phy_cfg + DDRSS_DDRPHY_PGSR0, LDELAY))
return -ETIMEDOUT;
sdelay(16); /* Delay at least 32 clock cycles */
ret = ddrss_phy_readl(DDRSS_DDRPHY_PGSR0);
debug("%s: PGSR0 val = 0x%x\n", __func__, ret);
if (ret & err_mask)
return -EINVAL;
return 0;
}
int write_leveling(struct am654_ddrss_desc *ddrss)
{
int ret;
debug("%s: Write leveling started\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_WL_MASK, PGSR0_WLDONE_MASK,
PGSR0_WLERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: ERROR: Write leveling timedout\n",
__func__);
else
printf("%s:ERROR: Write leveling failed\n", __func__);
return ret;
}
debug("%s: Write leveling completed\n", __func__);
return 0;
}
int read_dqs_training(struct am654_ddrss_desc *ddrss)
{
int ret;
debug("%s: Read DQS training started\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_QSGATE_MASK,
PGSR0_QSGDONE_MASK, PGSR0_QSGERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: ERROR: Read DQS timedout\n", __func__);
else
printf("%s:ERROR: Read DQS Gate training failed\n",
__func__);
return ret;
}
debug("%s: Read DQS training completed\n", __func__);
return 0;
}
int rest_training(struct am654_ddrss_desc *ddrss)
{
int ret;
u32 val;
u32 dgsl0, dgsl1, dgsl2, dgsl3, rddly, rd2wr_wr2rd;
debug("%s: Rest of the training started\n", __func__);
debug("%s: Write Leveling adjustment\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_WLADJ_MASK,
PGSR0_WLADONE_MASK, PGSR0_WLAERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s:ERROR: Write Leveling adjustment timedout\n",
__func__);
else
printf("%s: ERROR: Write Leveling adjustment failed\n",
__func__);
return ret;
}
debug("%s: Read Deskew adjustment\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_RDDSKW_MASK,
PGSR0_RDDONE_MASK, PGSR0_RDERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: ERROR: Read Deskew timedout\n", __func__);
else
printf("%s: ERROR: Read Deskew failed\n", __func__);
return ret;
}
debug("%s: Write Deskew adjustment\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_WRDSKW_MASK,
PGSR0_WDDONE_MASK, PGSR0_WDERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: ERROR: Write Deskew timedout\n", __func__);
else
printf("%s: ERROR: Write Deskew failed\n", __func__);
return ret;
}
debug("%s: Read Eye training\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_RDEYE_MASK,
PGSR0_REDONE_MASK, PGSR0_REERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: ERROR: Read Eye training timedout\n",
__func__);
else
printf("%s: ERROR: Read Eye training failed\n",
__func__);
return ret;
}
debug("%s: Write Eye training\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_WREYE_MASK,
PGSR0_WEDONE_MASK, PGSR0_WEERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: ERROR: Write Eye training timedout\n",
__func__);
else
printf("%s: ERROR: Write Eye training failed\n",
__func__);
return ret;
}
debug("%s: VREF training\n", __func__);
ret = __phy_builtin_init_routine(ddrss, PIR_VREF_MASK, PGSR0_VDONE_MASK,
PGSR0_VERR_MASK);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: ERROR: VREF training timedout\n", __func__);
else
printf("%s: ERROR: VREF training failed\n", __func__);
return ret;
}
ddrss_phy_writel(DDRSS_DDRPHY_RANKIDR, 0x00000000);
dgsl0 = (ddrss_phy_readl(DDRSS_DDRPHY_DX0GTR0) & 0x1F) >> 2;
dgsl1 = (ddrss_phy_readl(DDRSS_DDRPHY_DX1GTR0) & 0x1F) >> 2;
dgsl2 = (ddrss_phy_readl(DDRSS_DDRPHY_DX2GTR0) & 0x1F) >> 2;
dgsl3 = (ddrss_phy_readl(DDRSS_DDRPHY_DX3GTR0) & 0x1F) >> 2;
rddly = dgsl0;
if (dgsl1 < rddly)
rddly = dgsl1;
if (dgsl2 < rddly)
rddly = dgsl2;
if (dgsl3 < rddly)
rddly = dgsl3;
rddly += 5;
/* Update rddly based on dgsl values */
val = (ddrss_phy_readl(DDRSS_DDRPHY_DX0GCR0) & ~0xF00000);
val |= (rddly << 20);
ddrss_phy_writel(DDRSS_DDRPHY_DX0GCR0, val);
val = (ddrss_phy_readl(DDRSS_DDRPHY_DX1GCR0) & ~0xF00000);
val |= (rddly << 20);
ddrss_phy_writel(DDRSS_DDRPHY_DX1GCR0, val);
val = (ddrss_phy_readl(DDRSS_DDRPHY_DX2GCR0) & ~0xF00000);
val |= (rddly << 20);
ddrss_phy_writel(DDRSS_DDRPHY_DX2GCR0, val);
val = (ddrss_phy_readl(DDRSS_DDRPHY_DX3GCR0) & ~0xF00000);
val |= (rddly << 20);
ddrss_phy_writel(DDRSS_DDRPHY_DX3GCR0, val);
/*
* Add system latency derived from training back into rd2wr and wr2rd
* rd2wr = RL + BL/2 + 1 + WR_PREAMBLE - WL + max(DXnGTR0.DGSL) / 2
* wr2rd = CWL + PL + BL/2 + tWTR_L + max(DXnGTR0.DGSL) / 2
*/
/* Select rank 0 */
ddrss_phy_writel(DDRSS_DDRPHY_RANKIDR, 0x00000000);
dgsl0 = (ddrss_phy_readl(DDRSS_DDRPHY_DX0GTR0) & 0x1F);
dgsl1 = (ddrss_phy_readl(DDRSS_DDRPHY_DX1GTR0) & 0x1F);
dgsl2 = (ddrss_phy_readl(DDRSS_DDRPHY_DX2GTR0) & 0x1F);
dgsl3 = (ddrss_phy_readl(DDRSS_DDRPHY_DX3GTR0) & 0x1F);
/* Find maximum value across all bytes */
rd2wr_wr2rd = dgsl0;
if (dgsl1 > rd2wr_wr2rd)
rd2wr_wr2rd = dgsl1;
if (dgsl2 > rd2wr_wr2rd)
rd2wr_wr2rd = dgsl2;
if (dgsl3 > rd2wr_wr2rd)
rd2wr_wr2rd = dgsl3;
rd2wr_wr2rd >>= 1;
/* Now add in adjustment to DRAMTMG2 bit fields for rd2wr and wr2rd */
/* Clear VSWCTL.sw_done */
ddrss_ctl_writel(DDRSS_DDRCTL_SWCTL,
ddrss_ctl_readl(DDRSS_DDRCTL_SWCTL) & ~0x1);
/* Adjust rd2wr */
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG2,
ddrss_ctl_readl(DDRSS_DDRCTL_DRAMTMG2) +
(rd2wr_wr2rd << 8));
/* Adjust wr2rd */
ddrss_ctl_writel(DDRSS_DDRCTL_DRAMTMG2,
ddrss_ctl_readl(DDRSS_DDRCTL_DRAMTMG2) +
rd2wr_wr2rd);
/* Set VSWCTL.sw_done */
ddrss_ctl_writel(DDRSS_DDRCTL_SWCTL,
ddrss_ctl_readl(DDRSS_DDRCTL_SWCTL) | 0x1);
/* Wait until settings are applied */
while (!(ddrss_ctl_readl(DDRSS_DDRCTL_SWSTAT) & 0x1)) {
/* Do nothing */
};
debug("%s: Rest of the training completed\n", __func__);
return 0;
}
/**
* am654_ddrss_init() - Initialization sequence for enabling the SDRAM
* device attached to ddrss.
* @dev: corresponding ddrss device
*
* Does all the initialization sequence that is required to get attached
* ddr in a working state. After this point, ddr should be accessible.
* Return: 0 if all went ok, else corresponding error message.
*/
static int am654_ddrss_init(struct am654_ddrss_desc *ddrss)
{
int ret;
debug("%s(ddrss=%p)\n", __func__, ddrss);
ddrss_writel(ddrss->ddrss_ss_cfg, DDRSS_V2H_CTL_REG, 0x000073FF);
am654_ddrss_ctrl_configuration(ddrss);
/* Release the reset to the controller */
clrbits_le32(ddrss->ddrss_ss_cfg + DDRSS_SS_CTL_REG,
SS_CTL_REG_CTL_ARST_MASK);
am654_ddrss_phy_configuration(ddrss);
ret = __phy_builtin_init_routine(ddrss, PIR_PHY_INIT, 0x1, 0);
if (ret) {
dev_err(ddrss->dev, "PHY initialization failed %d\n", ret);
return ret;
}
ret = __phy_builtin_init_routine(ddrss, PIR_DRAM_INIT,
PGSR0_DRAM_INIT_MASK, 0);
if (ret) {
dev_err(ddrss->dev, "DRAM initialization failed %d\n", ret);
return ret;
}
ret = am654_ddrss_dram_wait_for_init_complt(ddrss);
if (ret) {
printf("%s: ERROR: DRAM Wait for init complete timedout\n",
__func__);
return ret;
}
ret = write_leveling(ddrss);
if (ret)
return ret;
ret = read_dqs_training(ddrss);
if (ret)
return ret;
ret = rest_training(ddrss);
if (ret)
return ret;
/* Enabling refreshes after training is done */
ddrss_ctl_writel(DDRSS_DDRCTL_RFSHCTL3,
ddrss_ctl_readl(DDRSS_DDRCTL_RFSHCTL3) & ~0x1);
/* Disable PUBMODE after training is done */
ddrss_phy_writel(DDRSS_DDRPHY_PGCR1,
ddrss_phy_readl(DDRSS_DDRPHY_PGCR1) & ~0x40);
return 0;
}
/**
* am654_ddrss_power_on() - Enable power and clocks for ddrss
* @dev: corresponding ddrss device
*
* Tries to enable all the corresponding clocks to the ddrss and sets it
* to the right frequency and then power on the ddrss.
* Return: 0 if all went ok, else corresponding error message.
*/
static int am654_ddrss_power_on(struct am654_ddrss_desc *ddrss)
{
int ret;
debug("%s(ddrss=%p)\n", __func__, ddrss);
ret = clk_enable(&ddrss->ddrss_clk);
if (ret) {
dev_err(ddrss->dev, "clk_enable() failed: %d\n", ret);
return ret;
}
ret = power_domain_on(&ddrss->ddrcfg_pwrdmn);
if (ret) {
dev_err(ddrss->dev, "power_domain_on() failed: %d\n", ret);
return ret;
}
ret = power_domain_on(&ddrss->ddrdata_pwrdmn);
if (ret) {
dev_err(ddrss->dev, "power_domain_on() failed: %d\n", ret);
return ret;
}
/* VTT enable */
#if CONFIG_IS_ENABLED(DM_REGULATOR)
device_get_supply_regulator(ddrss->dev, "vtt-supply",
&ddrss->vtt_supply);
ret = regulator_set_value(ddrss->vtt_supply, 3300000);
if (ret)
return ret;
debug("VTT regulator enabled\n");
#endif
return 0;
}
/**
* am654_ddrss_ofdata_to_priv() - generate private data from device tree
* @dev: corresponding ddrss device
*
* Return: 0 if all went ok, else corresponding error message.
*/
static int am654_ddrss_ofdata_to_priv(struct udevice *dev)
{
struct am654_ddrss_desc *ddrss = dev_get_priv(dev);
phys_addr_t reg;
int ret;
debug("%s(dev=%p)\n", __func__, dev);
ret = clk_get_by_index(dev, 0, &ddrss->ddrss_clk);
if (ret) {
dev_err(dev, "clk_get failed: %d\n", ret);
return ret;
}
ret = power_domain_get_by_index(dev, &ddrss->ddrcfg_pwrdmn, 0);
if (ret) {
dev_err(dev, "power_domain_get() failed: %d\n", ret);
return ret;
}
ret = power_domain_get_by_index(dev, &ddrss->ddrdata_pwrdmn, 1);
if (ret) {
dev_err(dev, "power_domain_get() failed: %d\n", ret);
return ret;
}
reg = devfdt_get_addr_name(dev, "ss");
if (reg == FDT_ADDR_T_NONE) {
dev_err(dev, "No reg property for DDRSS wrapper logic\n");
return -EINVAL;
}
ddrss->ddrss_ss_cfg = (void *)reg;
reg = devfdt_get_addr_name(dev, "ctl");
if (reg == FDT_ADDR_T_NONE) {
dev_err(dev, "No reg property for Controller region\n");
return -EINVAL;
}
ddrss->ddrss_ctl_cfg = (void *)reg;
reg = devfdt_get_addr_name(dev, "phy");
if (reg == FDT_ADDR_T_NONE) {
dev_err(dev, "No reg property for PHY region\n");
return -EINVAL;
}
ddrss->ddrss_phy_cfg = (void *)reg;
ret = dev_read_u32_array(dev, "ti,ctl-reg",
(u32 *)&ddrss->params.ctl_reg,
sizeof(ddrss->params.ctl_reg) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,ctl-reg params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,ctl-crc",
(u32 *)&ddrss->params.ctl_crc,
sizeof(ddrss->params.ctl_crc) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,ctl-crc params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,ctl-ecc",
(u32 *)&ddrss->params.ctl_ecc,
sizeof(ddrss->params.ctl_ecc) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,ctl-ecc params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,ctl-map",
(u32 *)&ddrss->params.ctl_map,
sizeof(ddrss->params.ctl_map) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,ctl-map params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,ctl-pwr",
(u32 *)&ddrss->params.ctl_pwr,
sizeof(ddrss->params.ctl_pwr) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,ctl-pwr params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,ctl-timing",
(u32 *)&ddrss->params.ctl_timing,
sizeof(ddrss->params.ctl_timing) /
sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,ctl-timing params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,phy-cfg",
(u32 *)&ddrss->params.phy_cfg,
sizeof(ddrss->params.phy_cfg) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,phy-cfg params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,phy-ctl",
(u32 *)&ddrss->params.phy_ctrl,
sizeof(ddrss->params.phy_ctrl) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,phy-ctl params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,phy-ioctl",
(u32 *)&ddrss->params.phy_ioctl,
sizeof(ddrss->params.phy_ioctl) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,phy-ioctl params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,phy-timing",
(u32 *)&ddrss->params.phy_timing,
sizeof(ddrss->params.phy_timing) /
sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,phy-timing params\n");
return ret;
}
ret = dev_read_u32_array(dev, "ti,phy-zq", (u32 *)&ddrss->params.phy_zq,
sizeof(ddrss->params.phy_zq) / sizeof(u32));
if (ret) {
dev_err(dev, "Cannot read ti,phy-zq params\n");
return ret;
}
return ret;
}
/**
* am654_ddrss_probe() - Basic probe
* @dev: corresponding ddrss device
*
* Return: 0 if all went ok, else corresponding error message
*/
static int am654_ddrss_probe(struct udevice *dev)
{
struct am654_ddrss_desc *ddrss = dev_get_priv(dev);
int ret;
debug("%s(dev=%p)\n", __func__, dev);
ret = am654_ddrss_ofdata_to_priv(dev);
if (ret)
return ret;
ddrss->dev = dev;
ret = am654_ddrss_power_on(ddrss);
if (ret)
return ret;
ret = am654_ddrss_init(ddrss);
return ret;
}
static int am654_ddrss_get_info(struct udevice *dev, struct ram_info *info)
{
return 0;
}
static struct ram_ops am654_ddrss_ops = {
.get_info = am654_ddrss_get_info,
};
static const struct udevice_id am654_ddrss_ids[] = {
{ .compatible = "ti,am654-ddrss" },
{ }
};
U_BOOT_DRIVER(am654_ddrss) = {
.name = "am654_ddrss",
.id = UCLASS_RAM,
.of_match = am654_ddrss_ids,
.ops = &am654_ddrss_ops,
.probe = am654_ddrss_probe,
.priv_auto_alloc_size = sizeof(struct am654_ddrss_desc),
};