| /* |
| * Copyright (c) 2013, Google Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include "mkimage.h" |
| #include <stdio.h> |
| #include <string.h> |
| #include <image.h> |
| #include <time.h> |
| #include <openssl/rsa.h> |
| #include <openssl/pem.h> |
| #include <openssl/err.h> |
| #include <openssl/ssl.h> |
| #include <openssl/evp.h> |
| #include <openssl/engine.h> |
| |
| #if OPENSSL_VERSION_NUMBER >= 0x10000000L |
| #define HAVE_ERR_REMOVE_THREAD_STATE |
| #endif |
| |
| static int rsa_err(const char *msg) |
| { |
| unsigned long sslErr = ERR_get_error(); |
| |
| fprintf(stderr, "%s", msg); |
| fprintf(stderr, ": %s\n", |
| ERR_error_string(sslErr, 0)); |
| |
| return -1; |
| } |
| |
| /** |
| * rsa_pem_get_pub_key() - read a public key from a .crt file |
| * |
| * @keydir: Directory containins the key |
| * @name Name of key file (will have a .crt extension) |
| * @rsap Returns RSA object, or NULL on failure |
| * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) |
| */ |
| static int rsa_pem_get_pub_key(const char *keydir, const char *name, RSA **rsap) |
| { |
| char path[1024]; |
| EVP_PKEY *key; |
| X509 *cert; |
| RSA *rsa; |
| FILE *f; |
| int ret; |
| |
| *rsap = NULL; |
| snprintf(path, sizeof(path), "%s/%s.crt", keydir, name); |
| f = fopen(path, "r"); |
| if (!f) { |
| fprintf(stderr, "Couldn't open RSA certificate: '%s': %s\n", |
| path, strerror(errno)); |
| return -EACCES; |
| } |
| |
| /* Read the certificate */ |
| cert = NULL; |
| if (!PEM_read_X509(f, &cert, NULL, NULL)) { |
| rsa_err("Couldn't read certificate"); |
| ret = -EINVAL; |
| goto err_cert; |
| } |
| |
| /* Get the public key from the certificate. */ |
| key = X509_get_pubkey(cert); |
| if (!key) { |
| rsa_err("Couldn't read public key\n"); |
| ret = -EINVAL; |
| goto err_pubkey; |
| } |
| |
| /* Convert to a RSA_style key. */ |
| rsa = EVP_PKEY_get1_RSA(key); |
| if (!rsa) { |
| rsa_err("Couldn't convert to a RSA style key"); |
| ret = -EINVAL; |
| goto err_rsa; |
| } |
| fclose(f); |
| EVP_PKEY_free(key); |
| X509_free(cert); |
| *rsap = rsa; |
| |
| return 0; |
| |
| err_rsa: |
| EVP_PKEY_free(key); |
| err_pubkey: |
| X509_free(cert); |
| err_cert: |
| fclose(f); |
| return ret; |
| } |
| |
| /** |
| * rsa_engine_get_pub_key() - read a public key from given engine |
| * |
| * @keydir: Key prefix |
| * @name Name of key |
| * @engine Engine to use |
| * @rsap Returns RSA object, or NULL on failure |
| * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) |
| */ |
| static int rsa_engine_get_pub_key(const char *keydir, const char *name, |
| ENGINE *engine, RSA **rsap) |
| { |
| const char *engine_id; |
| char key_id[1024]; |
| EVP_PKEY *key; |
| RSA *rsa; |
| int ret; |
| |
| *rsap = NULL; |
| |
| engine_id = ENGINE_get_id(engine); |
| |
| if (engine_id && !strcmp(engine_id, "pkcs11")) { |
| if (keydir) |
| snprintf(key_id, sizeof(key_id), |
| "pkcs11:%s;object=%s;type=public", |
| keydir, name); |
| else |
| snprintf(key_id, sizeof(key_id), |
| "pkcs11:object=%s;type=public", |
| name); |
| } else { |
| fprintf(stderr, "Engine not supported\n"); |
| return -ENOTSUP; |
| } |
| |
| key = ENGINE_load_public_key(engine, key_id, NULL, NULL); |
| if (!key) |
| return rsa_err("Failure loading public key from engine"); |
| |
| /* Convert to a RSA_style key. */ |
| rsa = EVP_PKEY_get1_RSA(key); |
| if (!rsa) { |
| rsa_err("Couldn't convert to a RSA style key"); |
| ret = -EINVAL; |
| goto err_rsa; |
| } |
| |
| EVP_PKEY_free(key); |
| *rsap = rsa; |
| |
| return 0; |
| |
| err_rsa: |
| EVP_PKEY_free(key); |
| return ret; |
| } |
| |
| /** |
| * rsa_get_pub_key() - read a public key |
| * |
| * @keydir: Directory containing the key (PEM file) or key prefix (engine) |
| * @name Name of key file (will have a .crt extension) |
| * @engine Engine to use |
| * @rsap Returns RSA object, or NULL on failure |
| * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) |
| */ |
| static int rsa_get_pub_key(const char *keydir, const char *name, |
| ENGINE *engine, RSA **rsap) |
| { |
| if (engine) |
| return rsa_engine_get_pub_key(keydir, name, engine, rsap); |
| return rsa_pem_get_pub_key(keydir, name, rsap); |
| } |
| |
| /** |
| * rsa_pem_get_priv_key() - read a private key from a .key file |
| * |
| * @keydir: Directory containing the key |
| * @name Name of key file (will have a .key extension) |
| * @rsap Returns RSA object, or NULL on failure |
| * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) |
| */ |
| static int rsa_pem_get_priv_key(const char *keydir, const char *name, |
| RSA **rsap) |
| { |
| char path[1024]; |
| RSA *rsa; |
| FILE *f; |
| |
| *rsap = NULL; |
| snprintf(path, sizeof(path), "%s/%s.key", keydir, name); |
| f = fopen(path, "r"); |
| if (!f) { |
| fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n", |
| path, strerror(errno)); |
| return -ENOENT; |
| } |
| |
| rsa = PEM_read_RSAPrivateKey(f, 0, NULL, path); |
| if (!rsa) { |
| rsa_err("Failure reading private key"); |
| fclose(f); |
| return -EPROTO; |
| } |
| fclose(f); |
| *rsap = rsa; |
| |
| return 0; |
| } |
| |
| /** |
| * rsa_engine_get_priv_key() - read a private key from given engine |
| * |
| * @keydir: Key prefix |
| * @name Name of key |
| * @engine Engine to use |
| * @rsap Returns RSA object, or NULL on failure |
| * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) |
| */ |
| static int rsa_engine_get_priv_key(const char *keydir, const char *name, |
| ENGINE *engine, RSA **rsap) |
| { |
| const char *engine_id; |
| char key_id[1024]; |
| EVP_PKEY *key; |
| RSA *rsa; |
| int ret; |
| |
| *rsap = NULL; |
| |
| engine_id = ENGINE_get_id(engine); |
| |
| if (engine_id && !strcmp(engine_id, "pkcs11")) { |
| if (keydir) |
| snprintf(key_id, sizeof(key_id), |
| "pkcs11:%s;object=%s;type=private", |
| keydir, name); |
| else |
| snprintf(key_id, sizeof(key_id), |
| "pkcs11:object=%s;type=private", |
| name); |
| } else { |
| fprintf(stderr, "Engine not supported\n"); |
| return -ENOTSUP; |
| } |
| |
| key = ENGINE_load_private_key(engine, key_id, NULL, NULL); |
| if (!key) |
| return rsa_err("Failure loading private key from engine"); |
| |
| /* Convert to a RSA_style key. */ |
| rsa = EVP_PKEY_get1_RSA(key); |
| if (!rsa) { |
| rsa_err("Couldn't convert to a RSA style key"); |
| ret = -EINVAL; |
| goto err_rsa; |
| } |
| |
| EVP_PKEY_free(key); |
| *rsap = rsa; |
| |
| return 0; |
| |
| err_rsa: |
| EVP_PKEY_free(key); |
| return ret; |
| } |
| |
| /** |
| * rsa_get_priv_key() - read a private key |
| * |
| * @keydir: Directory containing the key (PEM file) or key prefix (engine) |
| * @name Name of key |
| * @engine Engine to use for signing |
| * @rsap Returns RSA object, or NULL on failure |
| * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) |
| */ |
| static int rsa_get_priv_key(const char *keydir, const char *name, |
| ENGINE *engine, RSA **rsap) |
| { |
| if (engine) |
| return rsa_engine_get_priv_key(keydir, name, engine, rsap); |
| return rsa_pem_get_priv_key(keydir, name, rsap); |
| } |
| |
| static int rsa_init(void) |
| { |
| int ret; |
| |
| ret = SSL_library_init(); |
| if (!ret) { |
| fprintf(stderr, "Failure to init SSL library\n"); |
| return -1; |
| } |
| SSL_load_error_strings(); |
| |
| OpenSSL_add_all_algorithms(); |
| OpenSSL_add_all_digests(); |
| OpenSSL_add_all_ciphers(); |
| |
| return 0; |
| } |
| |
| static int rsa_engine_init(const char *engine_id, ENGINE **pe) |
| { |
| ENGINE *e; |
| int ret; |
| |
| ENGINE_load_builtin_engines(); |
| |
| e = ENGINE_by_id(engine_id); |
| if (!e) { |
| fprintf(stderr, "Engine isn't available\n"); |
| ret = -1; |
| goto err_engine_by_id; |
| } |
| |
| if (!ENGINE_init(e)) { |
| fprintf(stderr, "Couldn't initialize engine\n"); |
| ret = -1; |
| goto err_engine_init; |
| } |
| |
| if (!ENGINE_set_default_RSA(e)) { |
| fprintf(stderr, "Couldn't set engine as default for RSA\n"); |
| ret = -1; |
| goto err_set_rsa; |
| } |
| |
| *pe = e; |
| |
| return 0; |
| |
| err_set_rsa: |
| ENGINE_finish(e); |
| err_engine_init: |
| ENGINE_free(e); |
| err_engine_by_id: |
| ENGINE_cleanup(); |
| return ret; |
| } |
| |
| static void rsa_remove(void) |
| { |
| CRYPTO_cleanup_all_ex_data(); |
| ERR_free_strings(); |
| #ifdef HAVE_ERR_REMOVE_THREAD_STATE |
| ERR_remove_thread_state(NULL); |
| #else |
| ERR_remove_state(0); |
| #endif |
| EVP_cleanup(); |
| } |
| |
| static void rsa_engine_remove(ENGINE *e) |
| { |
| if (e) { |
| ENGINE_finish(e); |
| ENGINE_free(e); |
| } |
| } |
| |
| static int rsa_sign_with_key(RSA *rsa, struct checksum_algo *checksum_algo, |
| const struct image_region region[], int region_count, |
| uint8_t **sigp, uint *sig_size) |
| { |
| EVP_PKEY *key; |
| EVP_MD_CTX *context; |
| int size, ret = 0; |
| uint8_t *sig; |
| int i; |
| |
| key = EVP_PKEY_new(); |
| if (!key) |
| return rsa_err("EVP_PKEY object creation failed"); |
| |
| if (!EVP_PKEY_set1_RSA(key, rsa)) { |
| ret = rsa_err("EVP key setup failed"); |
| goto err_set; |
| } |
| |
| size = EVP_PKEY_size(key); |
| sig = malloc(size); |
| if (!sig) { |
| fprintf(stderr, "Out of memory for signature (%d bytes)\n", |
| size); |
| ret = -ENOMEM; |
| goto err_alloc; |
| } |
| |
| context = EVP_MD_CTX_create(); |
| if (!context) { |
| ret = rsa_err("EVP context creation failed"); |
| goto err_create; |
| } |
| EVP_MD_CTX_init(context); |
| if (!EVP_SignInit(context, checksum_algo->calculate_sign())) { |
| ret = rsa_err("Signer setup failed"); |
| goto err_sign; |
| } |
| |
| for (i = 0; i < region_count; i++) { |
| if (!EVP_SignUpdate(context, region[i].data, region[i].size)) { |
| ret = rsa_err("Signing data failed"); |
| goto err_sign; |
| } |
| } |
| |
| if (!EVP_SignFinal(context, sig, sig_size, key)) { |
| ret = rsa_err("Could not obtain signature"); |
| goto err_sign; |
| } |
| EVP_MD_CTX_cleanup(context); |
| EVP_MD_CTX_destroy(context); |
| EVP_PKEY_free(key); |
| |
| debug("Got signature: %d bytes, expected %d\n", *sig_size, size); |
| *sigp = sig; |
| *sig_size = size; |
| |
| return 0; |
| |
| err_sign: |
| EVP_MD_CTX_destroy(context); |
| err_create: |
| free(sig); |
| err_alloc: |
| err_set: |
| EVP_PKEY_free(key); |
| return ret; |
| } |
| |
| int rsa_sign(struct image_sign_info *info, |
| const struct image_region region[], int region_count, |
| uint8_t **sigp, uint *sig_len) |
| { |
| RSA *rsa; |
| ENGINE *e = NULL; |
| int ret; |
| |
| ret = rsa_init(); |
| if (ret) |
| return ret; |
| |
| if (info->engine_id) { |
| ret = rsa_engine_init(info->engine_id, &e); |
| if (ret) |
| goto err_engine; |
| } |
| |
| ret = rsa_get_priv_key(info->keydir, info->keyname, e, &rsa); |
| if (ret) |
| goto err_priv; |
| ret = rsa_sign_with_key(rsa, info->checksum, region, |
| region_count, sigp, sig_len); |
| if (ret) |
| goto err_sign; |
| |
| RSA_free(rsa); |
| if (info->engine_id) |
| rsa_engine_remove(e); |
| rsa_remove(); |
| |
| return ret; |
| |
| err_sign: |
| RSA_free(rsa); |
| err_priv: |
| if (info->engine_id) |
| rsa_engine_remove(e); |
| err_engine: |
| rsa_remove(); |
| return ret; |
| } |
| |
| /* |
| * rsa_get_exponent(): - Get the public exponent from an RSA key |
| */ |
| static int rsa_get_exponent(RSA *key, uint64_t *e) |
| { |
| int ret; |
| BIGNUM *bn_te; |
| uint64_t te; |
| |
| ret = -EINVAL; |
| bn_te = NULL; |
| |
| if (!e) |
| goto cleanup; |
| |
| if (BN_num_bits(key->e) > 64) |
| goto cleanup; |
| |
| *e = BN_get_word(key->e); |
| |
| if (BN_num_bits(key->e) < 33) { |
| ret = 0; |
| goto cleanup; |
| } |
| |
| bn_te = BN_dup(key->e); |
| if (!bn_te) |
| goto cleanup; |
| |
| if (!BN_rshift(bn_te, bn_te, 32)) |
| goto cleanup; |
| |
| if (!BN_mask_bits(bn_te, 32)) |
| goto cleanup; |
| |
| te = BN_get_word(bn_te); |
| te <<= 32; |
| *e |= te; |
| ret = 0; |
| |
| cleanup: |
| if (bn_te) |
| BN_free(bn_te); |
| |
| return ret; |
| } |
| |
| /* |
| * rsa_get_params(): - Get the important parameters of an RSA public key |
| */ |
| int rsa_get_params(RSA *key, uint64_t *exponent, uint32_t *n0_invp, |
| BIGNUM **modulusp, BIGNUM **r_squaredp) |
| { |
| BIGNUM *big1, *big2, *big32, *big2_32; |
| BIGNUM *n, *r, *r_squared, *tmp; |
| BN_CTX *bn_ctx = BN_CTX_new(); |
| int ret = 0; |
| |
| /* Initialize BIGNUMs */ |
| big1 = BN_new(); |
| big2 = BN_new(); |
| big32 = BN_new(); |
| r = BN_new(); |
| r_squared = BN_new(); |
| tmp = BN_new(); |
| big2_32 = BN_new(); |
| n = BN_new(); |
| if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 || |
| !n) { |
| fprintf(stderr, "Out of memory (bignum)\n"); |
| return -ENOMEM; |
| } |
| |
| if (0 != rsa_get_exponent(key, exponent)) |
| ret = -1; |
| |
| if (!BN_copy(n, key->n) || !BN_set_word(big1, 1L) || |
| !BN_set_word(big2, 2L) || !BN_set_word(big32, 32L)) |
| ret = -1; |
| |
| /* big2_32 = 2^32 */ |
| if (!BN_exp(big2_32, big2, big32, bn_ctx)) |
| ret = -1; |
| |
| /* Calculate n0_inv = -1 / n[0] mod 2^32 */ |
| if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) || |
| !BN_sub(tmp, big2_32, tmp)) |
| ret = -1; |
| *n0_invp = BN_get_word(tmp); |
| |
| /* Calculate R = 2^(# of key bits) */ |
| if (!BN_set_word(tmp, BN_num_bits(n)) || |
| !BN_exp(r, big2, tmp, bn_ctx)) |
| ret = -1; |
| |
| /* Calculate r_squared = R^2 mod n */ |
| if (!BN_copy(r_squared, r) || |
| !BN_mul(tmp, r_squared, r, bn_ctx) || |
| !BN_mod(r_squared, tmp, n, bn_ctx)) |
| ret = -1; |
| |
| *modulusp = n; |
| *r_squaredp = r_squared; |
| |
| BN_free(big1); |
| BN_free(big2); |
| BN_free(big32); |
| BN_free(r); |
| BN_free(tmp); |
| BN_free(big2_32); |
| if (ret) { |
| fprintf(stderr, "Bignum operations failed\n"); |
| return -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static int fdt_add_bignum(void *blob, int noffset, const char *prop_name, |
| BIGNUM *num, int num_bits) |
| { |
| int nwords = num_bits / 32; |
| int size; |
| uint32_t *buf, *ptr; |
| BIGNUM *tmp, *big2, *big32, *big2_32; |
| BN_CTX *ctx; |
| int ret; |
| |
| tmp = BN_new(); |
| big2 = BN_new(); |
| big32 = BN_new(); |
| big2_32 = BN_new(); |
| if (!tmp || !big2 || !big32 || !big2_32) { |
| fprintf(stderr, "Out of memory (bignum)\n"); |
| return -ENOMEM; |
| } |
| ctx = BN_CTX_new(); |
| if (!tmp) { |
| fprintf(stderr, "Out of memory (bignum context)\n"); |
| return -ENOMEM; |
| } |
| BN_set_word(big2, 2L); |
| BN_set_word(big32, 32L); |
| BN_exp(big2_32, big2, big32, ctx); /* B = 2^32 */ |
| |
| size = nwords * sizeof(uint32_t); |
| buf = malloc(size); |
| if (!buf) { |
| fprintf(stderr, "Out of memory (%d bytes)\n", size); |
| return -ENOMEM; |
| } |
| |
| /* Write out modulus as big endian array of integers */ |
| for (ptr = buf + nwords - 1; ptr >= buf; ptr--) { |
| BN_mod(tmp, num, big2_32, ctx); /* n = N mod B */ |
| *ptr = cpu_to_fdt32(BN_get_word(tmp)); |
| BN_rshift(num, num, 32); /* N = N/B */ |
| } |
| |
| /* |
| * We try signing with successively increasing size values, so this |
| * might fail several times |
| */ |
| ret = fdt_setprop(blob, noffset, prop_name, buf, size); |
| if (ret) |
| return -FDT_ERR_NOSPACE; |
| free(buf); |
| BN_free(tmp); |
| BN_free(big2); |
| BN_free(big32); |
| BN_free(big2_32); |
| |
| return ret; |
| } |
| |
| int rsa_add_verify_data(struct image_sign_info *info, void *keydest) |
| { |
| BIGNUM *modulus, *r_squared; |
| uint64_t exponent; |
| uint32_t n0_inv; |
| int parent, node; |
| char name[100]; |
| int ret; |
| int bits; |
| RSA *rsa; |
| ENGINE *e = NULL; |
| |
| debug("%s: Getting verification data\n", __func__); |
| if (info->engine_id) { |
| ret = rsa_engine_init(info->engine_id, &e); |
| if (ret) |
| return ret; |
| } |
| ret = rsa_get_pub_key(info->keydir, info->keyname, e, &rsa); |
| if (ret) |
| goto err_get_pub_key; |
| ret = rsa_get_params(rsa, &exponent, &n0_inv, &modulus, &r_squared); |
| if (ret) |
| goto err_get_params; |
| bits = BN_num_bits(modulus); |
| parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME); |
| if (parent == -FDT_ERR_NOTFOUND) { |
| parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME); |
| if (parent < 0) { |
| ret = parent; |
| if (ret != -FDT_ERR_NOSPACE) { |
| fprintf(stderr, "Couldn't create signature node: %s\n", |
| fdt_strerror(parent)); |
| } |
| } |
| } |
| if (ret) |
| goto done; |
| |
| /* Either create or overwrite the named key node */ |
| snprintf(name, sizeof(name), "key-%s", info->keyname); |
| node = fdt_subnode_offset(keydest, parent, name); |
| if (node == -FDT_ERR_NOTFOUND) { |
| node = fdt_add_subnode(keydest, parent, name); |
| if (node < 0) { |
| ret = node; |
| if (ret != -FDT_ERR_NOSPACE) { |
| fprintf(stderr, "Could not create key subnode: %s\n", |
| fdt_strerror(node)); |
| } |
| } |
| } else if (node < 0) { |
| fprintf(stderr, "Cannot select keys parent: %s\n", |
| fdt_strerror(node)); |
| ret = node; |
| } |
| |
| if (!ret) { |
| ret = fdt_setprop_string(keydest, node, "key-name-hint", |
| info->keyname); |
| } |
| if (!ret) |
| ret = fdt_setprop_u32(keydest, node, "rsa,num-bits", bits); |
| if (!ret) |
| ret = fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv); |
| if (!ret) { |
| ret = fdt_setprop_u64(keydest, node, "rsa,exponent", exponent); |
| } |
| if (!ret) { |
| ret = fdt_add_bignum(keydest, node, "rsa,modulus", modulus, |
| bits); |
| } |
| if (!ret) { |
| ret = fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared, |
| bits); |
| } |
| if (!ret) { |
| ret = fdt_setprop_string(keydest, node, FIT_ALGO_PROP, |
| info->name); |
| } |
| if (!ret && info->require_keys) { |
| ret = fdt_setprop_string(keydest, node, "required", |
| info->require_keys); |
| } |
| done: |
| BN_free(modulus); |
| BN_free(r_squared); |
| if (ret) |
| ret = ret == -FDT_ERR_NOSPACE ? -ENOSPC : -EIO; |
| err_get_params: |
| RSA_free(rsa); |
| err_get_pub_key: |
| if (info->engine_id) |
| rsa_engine_remove(e); |
| |
| return ret; |
| } |