blob: be16c99e170eb6e1783ec5cd4b42a2d623a747ae [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2013 Google, Inc
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <malloc.h>
#include <asm/io.h>
#include <dm/test.h>
#include <dm/root.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <dm/util.h>
#include <dm/lists.h>
#include <dm/of_access.h>
#include <test/ut.h>
DECLARE_GLOBAL_DATA_PTR;
static int testfdt_drv_ping(struct udevice *dev, int pingval, int *pingret)
{
const struct dm_test_pdata *pdata = dev->platdata;
struct dm_test_priv *priv = dev_get_priv(dev);
*pingret = pingval + pdata->ping_add;
priv->ping_total += *pingret;
return 0;
}
static const struct test_ops test_ops = {
.ping = testfdt_drv_ping,
};
static int testfdt_ofdata_to_platdata(struct udevice *dev)
{
struct dm_test_pdata *pdata = dev_get_platdata(dev);
pdata->ping_add = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"ping-add", -1);
pdata->base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
"ping-expect");
return 0;
}
static int testfdt_drv_probe(struct udevice *dev)
{
struct dm_test_priv *priv = dev_get_priv(dev);
priv->ping_total += DM_TEST_START_TOTAL;
/*
* If this device is on a bus, the uclass_flag will be set before
* calling this function. In the meantime the uclass_postp is
* initlized to a value -1. These are used respectively by
* dm_test_bus_child_pre_probe_uclass() and
* dm_test_bus_child_post_probe_uclass().
*/
priv->uclass_total += priv->uclass_flag;
priv->uclass_postp = -1;
return 0;
}
static const struct udevice_id testfdt_ids[] = {
{
.compatible = "denx,u-boot-fdt-test",
.data = DM_TEST_TYPE_FIRST },
{
.compatible = "google,another-fdt-test",
.data = DM_TEST_TYPE_SECOND },
{ }
};
U_BOOT_DRIVER(testfdt_drv) = {
.name = "testfdt_drv",
.of_match = testfdt_ids,
.id = UCLASS_TEST_FDT,
.ofdata_to_platdata = testfdt_ofdata_to_platdata,
.probe = testfdt_drv_probe,
.ops = &test_ops,
.priv_auto_alloc_size = sizeof(struct dm_test_priv),
.platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
};
static const struct udevice_id testfdt1_ids[] = {
{
.compatible = "denx,u-boot-fdt-test1",
.data = DM_TEST_TYPE_FIRST },
{ }
};
U_BOOT_DRIVER(testfdt1_drv) = {
.name = "testfdt1_drv",
.of_match = testfdt1_ids,
.id = UCLASS_TEST_FDT,
.ofdata_to_platdata = testfdt_ofdata_to_platdata,
.probe = testfdt_drv_probe,
.ops = &test_ops,
.priv_auto_alloc_size = sizeof(struct dm_test_priv),
.platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
.flags = DM_FLAG_PRE_RELOC,
};
/* From here is the testfdt uclass code */
int testfdt_ping(struct udevice *dev, int pingval, int *pingret)
{
const struct test_ops *ops = device_get_ops(dev);
if (!ops->ping)
return -ENOSYS;
return ops->ping(dev, pingval, pingret);
}
UCLASS_DRIVER(testfdt) = {
.name = "testfdt",
.id = UCLASS_TEST_FDT,
.flags = DM_UC_FLAG_SEQ_ALIAS,
};
struct dm_testprobe_pdata {
int probe_err;
};
static int testprobe_drv_probe(struct udevice *dev)
{
struct dm_testprobe_pdata *pdata = dev_get_platdata(dev);
return pdata->probe_err;
}
static const struct udevice_id testprobe_ids[] = {
{ .compatible = "denx,u-boot-probe-test" },
{ }
};
U_BOOT_DRIVER(testprobe_drv) = {
.name = "testprobe_drv",
.of_match = testprobe_ids,
.id = UCLASS_TEST_PROBE,
.probe = testprobe_drv_probe,
.platdata_auto_alloc_size = sizeof(struct dm_testprobe_pdata),
};
UCLASS_DRIVER(testprobe) = {
.name = "testprobe",
.id = UCLASS_TEST_PROBE,
.flags = DM_UC_FLAG_SEQ_ALIAS,
};
int dm_check_devices(struct unit_test_state *uts, int num_devices)
{
struct udevice *dev;
int ret;
int i;
/*
* Now check that the ping adds are what we expect. This is using the
* ping-add property in each node.
*/
for (i = 0; i < num_devices; i++) {
uint32_t base;
ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
ut_assert(!ret);
/*
* Get the 'ping-expect' property, which tells us what the
* ping add should be. We don't use the platdata because we
* want to test the code that sets that up
* (testfdt_drv_probe()).
*/
base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
"ping-expect");
debug("dev=%d, base=%d: %s\n", i, base,
fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
ut_assert(!dm_check_operations(uts, dev, base,
dev_get_priv(dev)));
}
return 0;
}
/* Test that FDT-based binding works correctly */
static int dm_test_fdt(struct unit_test_state *uts)
{
const int num_devices = 8;
struct udevice *dev;
struct uclass *uc;
int ret;
int i;
ret = dm_scan_fdt(gd->fdt_blob, false);
ut_assert(!ret);
ret = uclass_get(UCLASS_TEST_FDT, &uc);
ut_assert(!ret);
/* These are num_devices compatible root-level device tree nodes */
ut_asserteq(num_devices, list_count_items(&uc->dev_head));
/* Each should have platform data but no private data */
for (i = 0; i < num_devices; i++) {
ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
ut_assert(!ret);
ut_assert(!dev_get_priv(dev));
ut_assert(dev->platdata);
}
ut_assertok(dm_check_devices(uts, num_devices));
return 0;
}
DM_TEST(dm_test_fdt, 0);
static int dm_test_alias_highest_id(struct unit_test_state *uts)
{
int ret;
ret = dev_read_alias_highest_id("eth");
ut_asserteq(5, ret);
ret = dev_read_alias_highest_id("gpio");
ut_asserteq(2, ret);
ret = dev_read_alias_highest_id("pci");
ut_asserteq(2, ret);
ret = dev_read_alias_highest_id("i2c");
ut_asserteq(0, ret);
ret = dev_read_alias_highest_id("deadbeef");
ut_asserteq(-1, ret);
return 0;
}
DM_TEST(dm_test_alias_highest_id, 0);
static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
{
struct uclass *uc;
int ret;
ret = dm_scan_fdt(gd->fdt_blob, true);
ut_assert(!ret);
ret = uclass_get(UCLASS_TEST_FDT, &uc);
ut_assert(!ret);
/*
* These are 2 pre-reloc devices:
* one with "u-boot,dm-pre-reloc" property (a-test node), and the other
* one whose driver marked with DM_FLAG_PRE_RELOC flag (h-test node).
*/
ut_asserteq(2, list_count_items(&uc->dev_head));
return 0;
}
DM_TEST(dm_test_fdt_pre_reloc, 0);
/* Test that sequence numbers are allocated properly */
static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
{
struct udevice *dev;
/* A few basic santiy tests */
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, true, &dev));
ut_asserteq_str("b-test", dev->name);
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, true, &dev));
ut_asserteq_str("a-test", dev->name);
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 5,
true, &dev));
ut_asserteq_ptr(NULL, dev);
/* Test aliases */
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
ut_asserteq_str("e-test", dev->name);
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
true, &dev));
/*
* Note that c-test nodes are not probed since it is not a top-level
* node
*/
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
ut_asserteq_str("b-test", dev->name);
/*
* d-test wants sequence number 3 also, but it can't have it because
* b-test gets it first.
*/
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
ut_asserteq_str("d-test", dev->name);
/* d-test actually gets 0 */
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 0, &dev));
ut_asserteq_str("d-test", dev->name);
/* initially no one wants seq 1 */
ut_asserteq(-ENODEV, uclass_get_device_by_seq(UCLASS_TEST_FDT, 1,
&dev));
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 0, &dev));
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 4, &dev));
/* But now that it is probed, we can find it */
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 1, &dev));
ut_asserteq_str("f-test", dev->name);
return 0;
}
DM_TEST(dm_test_fdt_uclass_seq, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
/* Test that we can find a device by device tree offset */
static int dm_test_fdt_offset(struct unit_test_state *uts)
{
const void *blob = gd->fdt_blob;
struct udevice *dev;
int node;
node = fdt_path_offset(blob, "/e-test");
ut_assert(node > 0);
ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
&dev));
ut_asserteq_str("e-test", dev->name);
/* This node should not be bound */
node = fdt_path_offset(blob, "/junk");
ut_assert(node > 0);
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
node, &dev));
/* This is not a top level node so should not be probed */
node = fdt_path_offset(blob, "/some-bus/c-test@5");
ut_assert(node > 0);
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
node, &dev));
return 0;
}
DM_TEST(dm_test_fdt_offset,
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
/**
* Test various error conditions with uclass_first_device() and
* uclass_next_device()
*/
static int dm_test_first_next_device(struct unit_test_state *uts)
{
struct dm_testprobe_pdata *pdata;
struct udevice *dev, *parent = NULL;
int count;
int ret;
/* There should be 4 devices */
for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
dev;
ret = uclass_next_device(&dev)) {
count++;
parent = dev_get_parent(dev);
}
ut_assertok(ret);
ut_asserteq(4, count);
/* Remove them and try again, with an error on the second one */
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
pdata = dev_get_platdata(dev);
pdata->probe_err = -ENOMEM;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev));
ut_asserteq(-ENOMEM, uclass_next_device(&dev));
ut_asserteq_ptr(dev, NULL);
/* Now an error on the first one */
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
pdata = dev_get_platdata(dev);
pdata->probe_err = -ENOENT;
device_remove(parent, DM_REMOVE_NORMAL);
ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev));
return 0;
}
DM_TEST(dm_test_first_next_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
/**
* check_devices() - Check return values and pointers
*
* This runs through a full sequence of uclass_first_device_check()...
* uclass_next_device_check() checking that the return values and devices
* are correct.
*
* @uts: Test state
* @devlist: List of expected devices
* @mask: Indicates which devices should return an error. Device n should
* return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
* bit n is clear.
*/
static int check_devices(struct unit_test_state *uts,
struct udevice *devlist[], int mask)
{
int expected_ret;
struct udevice *dev;
int i;
expected_ret = (mask & 1) ? -ENOENT : 0;
mask >>= 1;
ut_asserteq(expected_ret,
uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
for (i = 0; i < 4; i++) {
ut_asserteq_ptr(devlist[i], dev);
expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
mask >>= 1;
ut_asserteq(expected_ret, uclass_next_device_check(&dev));
}
ut_asserteq_ptr(NULL, dev);
return 0;
}
/* Test uclass_first_device_check() and uclass_next_device_check() */
static int dm_test_first_next_ok_device(struct unit_test_state *uts)
{
struct dm_testprobe_pdata *pdata;
struct udevice *dev, *parent = NULL, *devlist[4];
int count;
int ret;
/* There should be 4 devices */
count = 0;
for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
dev;
ret = uclass_next_device_check(&dev)) {
ut_assertok(ret);
devlist[count++] = dev;
parent = dev_get_parent(dev);
}
ut_asserteq(4, count);
ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
ut_assertok(check_devices(uts, devlist, 0));
/* Remove them and try again, with an error on the second one */
pdata = dev_get_platdata(devlist[1]);
pdata->probe_err = -ENOENT - 1;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(check_devices(uts, devlist, 1 << 1));
/* Now an error on the first one */
pdata = dev_get_platdata(devlist[0]);
pdata->probe_err = -ENOENT - 0;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(check_devices(uts, devlist, 3 << 0));
/* Now errors on all */
pdata = dev_get_platdata(devlist[2]);
pdata->probe_err = -ENOENT - 2;
pdata = dev_get_platdata(devlist[3]);
pdata->probe_err = -ENOENT - 3;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(check_devices(uts, devlist, 0xf << 0));
return 0;
}
DM_TEST(dm_test_first_next_ok_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
static const struct udevice_id fdt_dummy_ids[] = {
{ .compatible = "denx,u-boot-fdt-dummy", },
{ }
};
UCLASS_DRIVER(fdt_dummy) = {
.name = "fdt-dummy",
.id = UCLASS_TEST_DUMMY,
.flags = DM_UC_FLAG_SEQ_ALIAS,
};
U_BOOT_DRIVER(fdt_dummy_drv) = {
.name = "fdt_dummy_drv",
.of_match = fdt_dummy_ids,
.id = UCLASS_TEST_DUMMY,
};
static int dm_test_fdt_translation(struct unit_test_state *uts)
{
struct udevice *dev;
/* Some simple translations */
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
ut_asserteq_str("dev@0,0", dev->name);
ut_asserteq(0x8000, dev_read_addr(dev));
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, true, &dev));
ut_asserteq_str("dev@1,100", dev->name);
ut_asserteq(0x9000, dev_read_addr(dev));
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, true, &dev));
ut_asserteq_str("dev@2,200", dev->name);
ut_asserteq(0xA000, dev_read_addr(dev));
/* No translation for busses with #size-cells == 0 */
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, true, &dev));
ut_asserteq_str("dev@42", dev->name);
ut_asserteq(0x42, dev_read_addr(dev));
return 0;
}
DM_TEST(dm_test_fdt_translation, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
addr = devfdt_get_addr(dev);
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_flat,
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
static int dm_test_fdt_remap_addr_index_flat(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
addr = devfdt_get_addr_index(dev, 0);
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, devfdt_remap_addr_index(dev, 0));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_index_flat,
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
static int dm_test_fdt_remap_addr_name_flat(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
addr = devfdt_get_addr_name(dev, "sandbox-dummy-0");
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, devfdt_remap_addr_name(dev, "sandbox-dummy-0"));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_name_flat,
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
addr = dev_read_addr(dev);
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, dev_remap_addr(dev));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_live,
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
static int dm_test_fdt_remap_addr_index_live(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
addr = dev_read_addr_index(dev, 0);
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, dev_remap_addr_index(dev, 0));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_index_live,
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
static int dm_test_fdt_remap_addr_name_live(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
addr = dev_read_addr_name(dev, "sandbox-dummy-0");
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, dev_remap_addr_name(dev, "sandbox-dummy-0"));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_name_live,
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
static int dm_test_fdt_livetree_writing(struct unit_test_state *uts)
{
struct udevice *dev;
ofnode node;
if (!of_live_active()) {
printf("Live tree not active; ignore test\n");
return 0;
}
/* Test enabling devices */
node = ofnode_path("/usb@2");
ut_assert(!of_device_is_available(ofnode_to_np(node)));
ofnode_set_enabled(node, true);
ut_assert(of_device_is_available(ofnode_to_np(node)));
device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node,
&dev);
ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, true, &dev));
/* Test string property setting */
ut_assert(device_is_compatible(dev, "sandbox,usb"));
ofnode_write_string(node, "compatible", "gdsys,super-usb");
ut_assert(device_is_compatible(dev, "gdsys,super-usb"));
ofnode_write_string(node, "compatible", "sandbox,usb");
ut_assert(device_is_compatible(dev, "sandbox,usb"));
/* Test setting generic properties */
/* Non-existent in DTB */
ut_asserteq(FDT_ADDR_T_NONE, dev_read_addr(dev));
/* reg = 0x42, size = 0x100 */
ut_assertok(ofnode_write_prop(node, "reg", 8,
"\x00\x00\x00\x42\x00\x00\x01\x00"));
ut_asserteq(0x42, dev_read_addr(dev));
/* Test disabling devices */
device_remove(dev, DM_REMOVE_NORMAL);
device_unbind(dev);
ut_assert(of_device_is_available(ofnode_to_np(node)));
ofnode_set_enabled(node, false);
ut_assert(!of_device_is_available(ofnode_to_np(node)));
return 0;
}
DM_TEST(dm_test_fdt_livetree_writing, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts)
{
ofnode node;
if (!of_live_active()) {
printf("Live tree not active; ignore test\n");
return 0;
}
node = ofnode_path("/usb@2");
/* Test enabling devices */
ut_assert(!of_device_is_available(ofnode_to_np(node)));
dev_enable_by_path("/usb@2");
ut_assert(of_device_is_available(ofnode_to_np(node)));
/* Test disabling devices */
ut_assert(of_device_is_available(ofnode_to_np(node)));
dev_disable_by_path("/usb@2");
ut_assert(!of_device_is_available(ofnode_to_np(node)));
return 0;
}
DM_TEST(dm_test_fdt_disable_enable_by_path, DM_TESTF_SCAN_PDATA |
DM_TESTF_SCAN_FDT);
/* Test a few uclass phandle functions */
static int dm_test_fdt_phandle(struct unit_test_state *uts)
{
struct udevice *back, *dev, *dev2;
ut_assertok(uclass_find_first_device(UCLASS_PANEL_BACKLIGHT, &back));
ut_asserteq(-ENOENT, uclass_find_device_by_phandle(UCLASS_REGULATOR,
back, "missing", &dev));
ut_assertok(uclass_find_device_by_phandle(UCLASS_REGULATOR, back,
"power-supply", &dev));
ut_asserteq(0, device_active(dev));
ut_asserteq_str("ldo1", dev->name);
ut_assertok(uclass_get_device_by_phandle(UCLASS_REGULATOR, back,
"power-supply", &dev2));
ut_asserteq_ptr(dev, dev2);
return 0;
}
DM_TEST(dm_test_fdt_phandle, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
/* Test device_find_first_child_by_uclass() */
static int dm_test_first_child(struct unit_test_state *uts)
{
struct udevice *i2c, *dev, *dev2;
ut_assertok(uclass_first_device_err(UCLASS_I2C, &i2c));
ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_RTC, &dev));
ut_asserteq_str("rtc@43", dev->name);
ut_assertok(device_find_child_by_name(i2c, "rtc@43", &dev2));
ut_asserteq_ptr(dev, dev2);
ut_assertok(device_find_child_by_name(i2c, "rtc@61", &dev2));
ut_asserteq_str("rtc@61", dev2->name);
ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_I2C_EEPROM,
&dev));
ut_asserteq_str("eeprom@2c", dev->name);
ut_assertok(device_find_child_by_name(i2c, "eeprom@2c", &dev2));
ut_asserteq_ptr(dev, dev2);
ut_asserteq(-ENODEV, device_find_first_child_by_uclass(i2c,
UCLASS_VIDEO, &dev));
ut_asserteq(-ENODEV, device_find_child_by_name(i2c, "missing", &dev));
return 0;
}
DM_TEST(dm_test_first_child, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
/* Test integer functions in dm_read_...() */
static int dm_test_read_int(struct unit_test_state *uts)
{
struct udevice *dev;
u32 val32;
s32 sval;
uint val;
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
ut_asserteq_str("a-test", dev->name);
ut_assertok(dev_read_u32(dev, "int-value", &val32));
ut_asserteq(1234, val32);
ut_asserteq(-EINVAL, dev_read_u32(dev, "missing", &val32));
ut_asserteq(6, dev_read_u32_default(dev, "missing", 6));
ut_asserteq(1234, dev_read_u32_default(dev, "int-value", 6));
ut_asserteq(1234, val32);
ut_asserteq(-EINVAL, dev_read_s32(dev, "missing", &sval));
ut_asserteq(6, dev_read_s32_default(dev, "missing", 6));
ut_asserteq(-1234, dev_read_s32_default(dev, "uint-value", 6));
ut_assertok(dev_read_s32(dev, "uint-value", &sval));
ut_asserteq(-1234, sval);
val = 0;
ut_asserteq(-EINVAL, dev_read_u32u(dev, "missing", &val));
ut_assertok(dev_read_u32u(dev, "uint-value", &val));
ut_asserteq(-1234, val);
return 0;
}
DM_TEST(dm_test_read_int, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);