| /* |
| * Copyright (C) 2014 Panasonic Corporation |
| * Copyright (C) 2013-2014, Altera Corporation <www.altera.com> |
| * Copyright (C) 2009-2010, Intel Corporation and its suppliers. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include <nand.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| |
| #include "denali.h" |
| |
| #define NAND_DEFAULT_TIMINGS -1 |
| |
| static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; |
| |
| /* |
| * We define a macro here that combines all interrupts this driver uses into |
| * a single constant value, for convenience. |
| */ |
| #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ |
| INTR_STATUS__ECC_TRANSACTION_DONE | \ |
| INTR_STATUS__ECC_ERR | \ |
| INTR_STATUS__PROGRAM_FAIL | \ |
| INTR_STATUS__LOAD_COMP | \ |
| INTR_STATUS__PROGRAM_COMP | \ |
| INTR_STATUS__TIME_OUT | \ |
| INTR_STATUS__ERASE_FAIL | \ |
| INTR_STATUS__RST_COMP | \ |
| INTR_STATUS__ERASE_COMP | \ |
| INTR_STATUS__ECC_UNCOR_ERR | \ |
| INTR_STATUS__INT_ACT | \ |
| INTR_STATUS__LOCKED_BLK) |
| |
| /* |
| * indicates whether or not the internal value for the flash bank is |
| * valid or not |
| */ |
| #define CHIP_SELECT_INVALID -1 |
| |
| #define SUPPORT_8BITECC 1 |
| |
| /* |
| * this macro allows us to convert from an MTD structure to our own |
| * device context (denali) structure. |
| */ |
| static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd) |
| { |
| return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand); |
| } |
| |
| /* |
| * These constants are defined by the driver to enable common driver |
| * configuration options. |
| */ |
| #define SPARE_ACCESS 0x41 |
| #define MAIN_ACCESS 0x42 |
| #define MAIN_SPARE_ACCESS 0x43 |
| #define PIPELINE_ACCESS 0x2000 |
| |
| #define DENALI_UNLOCK_START 0x10 |
| #define DENALI_UNLOCK_END 0x11 |
| #define DENALI_LOCK 0x21 |
| #define DENALI_LOCK_TIGHT 0x31 |
| #define DENALI_BUFFER_LOAD 0x60 |
| #define DENALI_BUFFER_WRITE 0x62 |
| |
| #define DENALI_READ 0 |
| #define DENALI_WRITE 0x100 |
| |
| /* types of device accesses. We can issue commands and get status */ |
| #define COMMAND_CYCLE 0 |
| #define ADDR_CYCLE 1 |
| #define STATUS_CYCLE 2 |
| |
| /* |
| * this is a helper macro that allows us to |
| * format the bank into the proper bits for the controller |
| */ |
| #define BANK(x) ((x) << 24) |
| |
| /* Interrupts are cleared by writing a 1 to the appropriate status bit */ |
| static inline void clear_interrupt(struct denali_nand_info *denali, |
| uint32_t irq_mask) |
| { |
| uint32_t intr_status_reg; |
| |
| intr_status_reg = INTR_STATUS(denali->flash_bank); |
| |
| writel(irq_mask, denali->flash_reg + intr_status_reg); |
| } |
| |
| static uint32_t read_interrupt_status(struct denali_nand_info *denali) |
| { |
| uint32_t intr_status_reg; |
| |
| intr_status_reg = INTR_STATUS(denali->flash_bank); |
| |
| return readl(denali->flash_reg + intr_status_reg); |
| } |
| |
| static void clear_interrupts(struct denali_nand_info *denali) |
| { |
| uint32_t status; |
| |
| status = read_interrupt_status(denali); |
| clear_interrupt(denali, status); |
| |
| denali->irq_status = 0; |
| } |
| |
| static void denali_irq_enable(struct denali_nand_info *denali, |
| uint32_t int_mask) |
| { |
| int i; |
| |
| for (i = 0; i < denali->max_banks; ++i) |
| writel(int_mask, denali->flash_reg + INTR_EN(i)); |
| } |
| |
| static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) |
| { |
| unsigned long timeout = 1000000; |
| uint32_t intr_status; |
| |
| do { |
| intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL; |
| if (intr_status & irq_mask) { |
| denali->irq_status &= ~irq_mask; |
| /* our interrupt was detected */ |
| break; |
| } |
| udelay(1); |
| timeout--; |
| } while (timeout != 0); |
| |
| if (timeout == 0) { |
| /* timeout */ |
| printf("Denali timeout with interrupt status %08x\n", |
| read_interrupt_status(denali)); |
| intr_status = 0; |
| } |
| return intr_status; |
| } |
| |
| /* |
| * Certain operations for the denali NAND controller use an indexed mode to |
| * read/write data. The operation is performed by writing the address value |
| * of the command to the device memory followed by the data. This function |
| * abstracts this common operation. |
| */ |
| static void index_addr(struct denali_nand_info *denali, |
| uint32_t address, uint32_t data) |
| { |
| writel(address, denali->flash_mem + INDEX_CTRL_REG); |
| writel(data, denali->flash_mem + INDEX_DATA_REG); |
| } |
| |
| /* Perform an indexed read of the device */ |
| static void index_addr_read_data(struct denali_nand_info *denali, |
| uint32_t address, uint32_t *pdata) |
| { |
| writel(address, denali->flash_mem + INDEX_CTRL_REG); |
| *pdata = readl(denali->flash_mem + INDEX_DATA_REG); |
| } |
| |
| /* |
| * We need to buffer some data for some of the NAND core routines. |
| * The operations manage buffering that data. |
| */ |
| static void reset_buf(struct denali_nand_info *denali) |
| { |
| denali->buf.head = 0; |
| denali->buf.tail = 0; |
| } |
| |
| static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) |
| { |
| denali->buf.buf[denali->buf.tail++] = byte; |
| } |
| |
| /* resets a specific device connected to the core */ |
| static void reset_bank(struct denali_nand_info *denali) |
| { |
| uint32_t irq_status; |
| uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT; |
| |
| clear_interrupts(denali); |
| |
| writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); |
| |
| irq_status = wait_for_irq(denali, irq_mask); |
| if (irq_status & INTR_STATUS__TIME_OUT) |
| debug("reset bank failed.\n"); |
| } |
| |
| /* Reset the flash controller */ |
| static uint32_t denali_nand_reset(struct denali_nand_info *denali) |
| { |
| int i; |
| |
| for (i = 0; i < denali->max_banks; i++) |
| writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| denali->flash_reg + INTR_STATUS(i)); |
| |
| for (i = 0; i < denali->max_banks; i++) { |
| writel(1 << i, denali->flash_reg + DEVICE_RESET); |
| while (!(readl(denali->flash_reg + INTR_STATUS(i)) & |
| (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) |
| if (readl(denali->flash_reg + INTR_STATUS(i)) & |
| INTR_STATUS__TIME_OUT) |
| debug("NAND Reset operation timed out on bank" |
| " %d\n", i); |
| } |
| |
| for (i = 0; i < denali->max_banks; i++) |
| writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| denali->flash_reg + INTR_STATUS(i)); |
| |
| return 0; |
| } |
| |
| /* |
| * this routine calculates the ONFI timing values for a given mode and |
| * programs the clocking register accordingly. The mode is determined by |
| * the get_onfi_nand_para routine. |
| */ |
| static void nand_onfi_timing_set(struct denali_nand_info *denali, |
| uint16_t mode) |
| { |
| uint32_t trea[6] = {40, 30, 25, 20, 20, 16}; |
| uint32_t trp[6] = {50, 25, 17, 15, 12, 10}; |
| uint32_t treh[6] = {30, 15, 15, 10, 10, 7}; |
| uint32_t trc[6] = {100, 50, 35, 30, 25, 20}; |
| uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15}; |
| uint32_t trloh[6] = {0, 0, 0, 0, 5, 5}; |
| uint32_t tcea[6] = {100, 45, 30, 25, 25, 25}; |
| uint32_t tadl[6] = {200, 100, 100, 100, 70, 70}; |
| uint32_t trhw[6] = {200, 100, 100, 100, 100, 100}; |
| uint32_t trhz[6] = {200, 100, 100, 100, 100, 100}; |
| uint32_t twhr[6] = {120, 80, 80, 60, 60, 60}; |
| uint32_t tcs[6] = {70, 35, 25, 25, 20, 15}; |
| |
| uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid; |
| uint32_t dv_window = 0; |
| uint32_t en_lo, en_hi; |
| uint32_t acc_clks; |
| uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; |
| |
| en_lo = DIV_ROUND_UP(trp[mode], CLK_X); |
| en_hi = DIV_ROUND_UP(treh[mode], CLK_X); |
| if ((en_hi * CLK_X) < (treh[mode] + 2)) |
| en_hi++; |
| |
| if ((en_lo + en_hi) * CLK_X < trc[mode]) |
| en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X), |
| CLK_X); |
| |
| if ((en_lo + en_hi) < CLK_MULTI) |
| en_lo += CLK_MULTI - en_lo - en_hi; |
| |
| while (dv_window < 8) { |
| data_invalid_rhoh = en_lo * CLK_X + trhoh[mode]; |
| |
| data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode]; |
| |
| data_invalid = data_invalid_rhoh < data_invalid_rloh ? |
| data_invalid_rhoh : data_invalid_rloh; |
| |
| dv_window = data_invalid - trea[mode]; |
| |
| if (dv_window < 8) |
| en_lo++; |
| } |
| |
| acc_clks = DIV_ROUND_UP(trea[mode], CLK_X); |
| |
| while (acc_clks * CLK_X - trea[mode] < 3) |
| acc_clks++; |
| |
| if (data_invalid - acc_clks * CLK_X < 2) |
| debug("%s, Line %d: Warning!\n", __FILE__, __LINE__); |
| |
| addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X); |
| re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X); |
| re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X); |
| we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X); |
| cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X); |
| if (cs_cnt == 0) |
| cs_cnt = 1; |
| |
| if (tcea[mode]) { |
| while (cs_cnt * CLK_X + trea[mode] < tcea[mode]) |
| cs_cnt++; |
| } |
| |
| /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ |
| if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 && |
| readl(denali->flash_reg + DEVICE_ID) == 0x88) |
| acc_clks = 6; |
| |
| writel(acc_clks, denali->flash_reg + ACC_CLKS); |
| writel(re_2_we, denali->flash_reg + RE_2_WE); |
| writel(re_2_re, denali->flash_reg + RE_2_RE); |
| writel(we_2_re, denali->flash_reg + WE_2_RE); |
| writel(addr_2_data, denali->flash_reg + ADDR_2_DATA); |
| writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); |
| writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); |
| writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT); |
| } |
| |
| /* queries the NAND device to see what ONFI modes it supports. */ |
| static uint32_t get_onfi_nand_para(struct denali_nand_info *denali) |
| { |
| int i; |
| |
| /* |
| * we needn't to do a reset here because driver has already |
| * reset all the banks before |
| */ |
| if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) & |
| ONFI_TIMING_MODE__VALUE)) |
| return -EIO; |
| |
| for (i = 5; i > 0; i--) { |
| if (readl(denali->flash_reg + ONFI_TIMING_MODE) & |
| (0x01 << i)) |
| break; |
| } |
| |
| nand_onfi_timing_set(denali, i); |
| |
| /* |
| * By now, all the ONFI devices we know support the page cache |
| * rw feature. So here we enable the pipeline_rw_ahead feature |
| */ |
| |
| return 0; |
| } |
| |
| static void get_samsung_nand_para(struct denali_nand_info *denali, |
| uint8_t device_id) |
| { |
| if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ |
| /* Set timing register values according to datasheet */ |
| writel(5, denali->flash_reg + ACC_CLKS); |
| writel(20, denali->flash_reg + RE_2_WE); |
| writel(12, denali->flash_reg + WE_2_RE); |
| writel(14, denali->flash_reg + ADDR_2_DATA); |
| writel(3, denali->flash_reg + RDWR_EN_LO_CNT); |
| writel(2, denali->flash_reg + RDWR_EN_HI_CNT); |
| writel(2, denali->flash_reg + CS_SETUP_CNT); |
| } |
| } |
| |
| static void get_toshiba_nand_para(struct denali_nand_info *denali) |
| { |
| uint32_t tmp; |
| |
| /* |
| * Workaround to fix a controller bug which reports a wrong |
| * spare area size for some kind of Toshiba NAND device |
| */ |
| if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && |
| (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { |
| writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| tmp = readl(denali->flash_reg + DEVICES_CONNECTED) * |
| readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| } |
| } |
| |
| static void get_hynix_nand_para(struct denali_nand_info *denali, |
| uint8_t device_id) |
| { |
| uint32_t main_size, spare_size; |
| |
| switch (device_id) { |
| case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ |
| case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ |
| writel(128, denali->flash_reg + PAGES_PER_BLOCK); |
| writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| main_size = 4096 * |
| readl(denali->flash_reg + DEVICES_CONNECTED); |
| spare_size = 224 * |
| readl(denali->flash_reg + DEVICES_CONNECTED); |
| writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); |
| writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| writel(0, denali->flash_reg + DEVICE_WIDTH); |
| break; |
| default: |
| debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n" |
| "Will use default parameter values instead.\n", |
| device_id); |
| } |
| } |
| |
| /* |
| * determines how many NAND chips are connected to the controller. Note for |
| * Intel CE4100 devices we don't support more than one device. |
| */ |
| static void find_valid_banks(struct denali_nand_info *denali) |
| { |
| uint32_t id[denali->max_banks]; |
| int i; |
| |
| denali->total_used_banks = 1; |
| for (i = 0; i < denali->max_banks; i++) { |
| index_addr(denali, MODE_11 | (i << 24) | 0, 0x90); |
| index_addr(denali, MODE_11 | (i << 24) | 1, 0); |
| index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]); |
| |
| if (i == 0) { |
| if (!(id[i] & 0x0ff)) |
| break; |
| } else { |
| if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) |
| denali->total_used_banks++; |
| else |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Use the configuration feature register to determine the maximum number of |
| * banks that the hardware supports. |
| */ |
| static void detect_max_banks(struct denali_nand_info *denali) |
| { |
| uint32_t features = readl(denali->flash_reg + FEATURES); |
| /* |
| * Read the revision register, so we can calculate the max_banks |
| * properly: the encoding changed from rev 5.0 to 5.1 |
| */ |
| u32 revision = MAKE_COMPARABLE_REVISION( |
| readl(denali->flash_reg + REVISION)); |
| if (revision < REVISION_5_1) |
| denali->max_banks = 2 << (features & FEATURES__N_BANKS); |
| else |
| denali->max_banks = 1 << (features & FEATURES__N_BANKS); |
| } |
| |
| static void detect_partition_feature(struct denali_nand_info *denali) |
| { |
| /* |
| * For MRST platform, denali->fwblks represent the |
| * number of blocks firmware is taken, |
| * FW is in protect partition and MTD driver has no |
| * permission to access it. So let driver know how many |
| * blocks it can't touch. |
| */ |
| if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { |
| if ((readl(denali->flash_reg + PERM_SRC_ID(1)) & |
| PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { |
| denali->fwblks = |
| ((readl(denali->flash_reg + MIN_MAX_BANK(1)) & |
| MIN_MAX_BANK__MIN_VALUE) * |
| denali->blksperchip) |
| + |
| (readl(denali->flash_reg + MIN_BLK_ADDR(1)) & |
| MIN_BLK_ADDR__VALUE); |
| } else { |
| denali->fwblks = SPECTRA_START_BLOCK; |
| } |
| } else { |
| denali->fwblks = SPECTRA_START_BLOCK; |
| } |
| } |
| |
| static uint32_t denali_nand_timing_set(struct denali_nand_info *denali) |
| { |
| uint32_t id_bytes[8], addr; |
| uint8_t maf_id, device_id; |
| int i; |
| |
| /* |
| * Use read id method to get device ID and other params. |
| * For some NAND chips, controller can't report the correct |
| * device ID by reading from DEVICE_ID register |
| */ |
| addr = MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, addr | 0, 0x90); |
| index_addr(denali, addr | 1, 0); |
| for (i = 0; i < 8; i++) |
| index_addr_read_data(denali, addr | 2, &id_bytes[i]); |
| maf_id = id_bytes[0]; |
| device_id = id_bytes[1]; |
| |
| if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & |
| ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ |
| if (get_onfi_nand_para(denali)) |
| return -EIO; |
| } else if (maf_id == 0xEC) { /* Samsung NAND */ |
| get_samsung_nand_para(denali, device_id); |
| } else if (maf_id == 0x98) { /* Toshiba NAND */ |
| get_toshiba_nand_para(denali); |
| } else if (maf_id == 0xAD) { /* Hynix NAND */ |
| get_hynix_nand_para(denali, device_id); |
| } |
| |
| find_valid_banks(denali); |
| |
| detect_partition_feature(denali); |
| |
| /* |
| * If the user specified to override the default timings |
| * with a specific ONFI mode, we apply those changes here. |
| */ |
| if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) |
| nand_onfi_timing_set(denali, onfi_timing_mode); |
| |
| return 0; |
| } |
| |
| /* |
| * validation function to verify that the controlling software is making |
| * a valid request |
| */ |
| static inline bool is_flash_bank_valid(int flash_bank) |
| { |
| return flash_bank >= 0 && flash_bank < 4; |
| } |
| |
| static void denali_irq_init(struct denali_nand_info *denali) |
| { |
| uint32_t int_mask; |
| int i; |
| |
| /* Disable global interrupts */ |
| writel(0, denali->flash_reg + GLOBAL_INT_ENABLE); |
| |
| int_mask = DENALI_IRQ_ALL; |
| |
| /* Clear all status bits */ |
| for (i = 0; i < denali->max_banks; ++i) |
| writel(0xFFFF, denali->flash_reg + INTR_STATUS(i)); |
| |
| denali_irq_enable(denali, int_mask); |
| } |
| |
| /* |
| * This helper function setups the registers for ECC and whether or not |
| * the spare area will be transferred. |
| */ |
| static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, |
| bool transfer_spare) |
| { |
| int ecc_en_flag, transfer_spare_flag; |
| |
| /* set ECC, transfer spare bits if needed */ |
| ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; |
| |
| /* Enable spare area/ECC per user's request. */ |
| writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| /* applicable for MAP01 only */ |
| writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); |
| } |
| |
| /* |
| * sends a pipeline command operation to the controller. See the Denali NAND |
| * controller's user guide for more information (section 4.2.3.6). |
| */ |
| static int denali_send_pipeline_cmd(struct denali_nand_info *denali, |
| bool ecc_en, bool transfer_spare, |
| int access_type, int op) |
| { |
| uint32_t addr, cmd, irq_status; |
| static uint32_t page_count = 1; |
| |
| setup_ecc_for_xfer(denali, ecc_en, transfer_spare); |
| |
| clear_interrupts(denali); |
| |
| addr = BANK(denali->flash_bank) | denali->page; |
| |
| /* setup the acccess type */ |
| cmd = MODE_10 | addr; |
| index_addr(denali, cmd, access_type); |
| |
| /* setup the pipeline command */ |
| index_addr(denali, cmd, 0x2000 | op | page_count); |
| |
| cmd = MODE_01 | addr; |
| writel(cmd, denali->flash_mem + INDEX_CTRL_REG); |
| |
| if (op == DENALI_READ) { |
| /* wait for command to be accepted */ |
| irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP); |
| |
| if (irq_status == 0) |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* helper function that simply writes a buffer to the flash */ |
| static int write_data_to_flash_mem(struct denali_nand_info *denali, |
| const uint8_t *buf, int len) |
| { |
| uint32_t *buf32; |
| int i; |
| |
| /* |
| * verify that the len is a multiple of 4. |
| * see comment in read_data_from_flash_mem() |
| */ |
| BUG_ON((len % 4) != 0); |
| |
| /* write the data to the flash memory */ |
| buf32 = (uint32_t *)buf; |
| for (i = 0; i < len / 4; i++) |
| writel(*buf32++, denali->flash_mem + INDEX_DATA_REG); |
| return i * 4; /* intent is to return the number of bytes read */ |
| } |
| |
| /* helper function that simply reads a buffer from the flash */ |
| static int read_data_from_flash_mem(struct denali_nand_info *denali, |
| uint8_t *buf, int len) |
| { |
| uint32_t *buf32; |
| int i; |
| |
| /* |
| * we assume that len will be a multiple of 4, if not it would be nice |
| * to know about it ASAP rather than have random failures... |
| * This assumption is based on the fact that this function is designed |
| * to be used to read flash pages, which are typically multiples of 4. |
| */ |
| BUG_ON((len % 4) != 0); |
| |
| /* transfer the data from the flash */ |
| buf32 = (uint32_t *)buf; |
| for (i = 0; i < len / 4; i++) |
| *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG); |
| |
| return i * 4; /* intent is to return the number of bytes read */ |
| } |
| |
| static void denali_mode_main_access(struct denali_nand_info *denali) |
| { |
| uint32_t addr, cmd; |
| |
| addr = BANK(denali->flash_bank) | denali->page; |
| cmd = MODE_10 | addr; |
| index_addr(denali, cmd, MAIN_ACCESS); |
| } |
| |
| static void denali_mode_main_spare_access(struct denali_nand_info *denali) |
| { |
| uint32_t addr, cmd; |
| |
| addr = BANK(denali->flash_bank) | denali->page; |
| cmd = MODE_10 | addr; |
| index_addr(denali, cmd, MAIN_SPARE_ACCESS); |
| } |
| |
| /* writes OOB data to the device */ |
| static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t irq_status; |
| uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | |
| INTR_STATUS__PROGRAM_FAIL; |
| int status = 0; |
| |
| denali->page = page; |
| |
| if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| DENALI_WRITE) == 0) { |
| write_data_to_flash_mem(denali, buf, mtd->oobsize); |
| |
| /* wait for operation to complete */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| if (irq_status == 0) { |
| dev_err(denali->dev, "OOB write failed\n"); |
| status = -EIO; |
| } |
| } else { |
| printf("unable to send pipeline command\n"); |
| status = -EIO; |
| } |
| return status; |
| } |
| |
| /* reads OOB data from the device */ |
| static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t irq_mask = INTR_STATUS__LOAD_COMP; |
| uint32_t irq_status, addr, cmd; |
| |
| denali->page = page; |
| |
| if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| DENALI_READ) == 0) { |
| read_data_from_flash_mem(denali, buf, mtd->oobsize); |
| |
| /* |
| * wait for command to be accepted |
| * can always use status0 bit as the |
| * mask is identical for each bank. |
| */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| if (irq_status == 0) |
| printf("page on OOB timeout %d\n", denali->page); |
| |
| /* |
| * We set the device back to MAIN_ACCESS here as I observed |
| * instability with the controller if you do a block erase |
| * and the last transaction was a SPARE_ACCESS. Block erase |
| * is reliable (according to the MTD test infrastructure) |
| * if you are in MAIN_ACCESS. |
| */ |
| addr = BANK(denali->flash_bank) | denali->page; |
| cmd = MODE_10 | addr; |
| index_addr(denali, cmd, MAIN_ACCESS); |
| } |
| } |
| |
| /* |
| * this function examines buffers to see if they contain data that |
| * indicate that the buffer is part of an erased region of flash. |
| */ |
| static bool is_erased(uint8_t *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| if (buf[i] != 0xFF) |
| return false; |
| return true; |
| } |
| |
| /* programs the controller to either enable/disable DMA transfers */ |
| static void denali_enable_dma(struct denali_nand_info *denali, bool en) |
| { |
| writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE); |
| readl(denali->flash_reg + DMA_ENABLE); |
| } |
| |
| /* setups the HW to perform the data DMA */ |
| static void denali_setup_dma(struct denali_nand_info *denali, int op) |
| { |
| uint32_t mode; |
| const int page_count = 1; |
| uint64_t addr = (unsigned long)denali->buf.dma_buf; |
| |
| flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf)); |
| |
| /* For Denali controller that is 64 bit bus IP core */ |
| #ifdef CONFIG_SYS_NAND_DENALI_64BIT |
| mode = MODE_10 | BANK(denali->flash_bank) | denali->page; |
| |
| /* DMA is a three step process */ |
| |
| /* 1. setup transfer type, interrupt when complete, |
| burst len = 64 bytes, the number of pages */ |
| index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count); |
| |
| /* 2. set memory low address bits 31:0 */ |
| index_addr(denali, mode, addr); |
| |
| /* 3. set memory high address bits 64:32 */ |
| index_addr(denali, mode, addr >> 32); |
| #else |
| mode = MODE_10 | BANK(denali->flash_bank); |
| |
| /* DMA is a four step process */ |
| |
| /* 1. setup transfer type and # of pages */ |
| index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| |
| /* 2. set memory high address bits 23:8 */ |
| index_addr(denali, mode | (((addr >> 16) & 0xffff) << 8), 0x2200); |
| |
| /* 3. set memory low address bits 23:8 */ |
| index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300); |
| |
| /* 4. interrupt when complete, burst len = 64 bytes */ |
| index_addr(denali, mode | 0x14000, 0x2400); |
| #endif |
| } |
| |
| /* Common DMA function */ |
| static uint32_t denali_dma_configuration(struct denali_nand_info *denali, |
| uint32_t ops, bool raw_xfer, |
| uint32_t irq_mask, int oob_required) |
| { |
| uint32_t irq_status = 0; |
| /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */ |
| setup_ecc_for_xfer(denali, !raw_xfer, oob_required); |
| |
| /* clear any previous interrupt flags */ |
| clear_interrupts(denali); |
| |
| /* enable the DMA */ |
| denali_enable_dma(denali, true); |
| |
| /* setup the DMA */ |
| denali_setup_dma(denali, ops); |
| |
| /* wait for operation to complete */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| /* if ECC fault happen, seems we need delay before turning off DMA. |
| * If not, the controller will go into non responsive condition */ |
| if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) |
| udelay(100); |
| |
| /* disable the DMA */ |
| denali_enable_dma(denali, false); |
| |
| return irq_status; |
| } |
| |
| static int write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, bool raw_xfer, int oob_required) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| |
| uint32_t irq_status = 0; |
| uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| |
| denali->status = 0; |
| |
| /* copy buffer into DMA buffer */ |
| memcpy(denali->buf.dma_buf, buf, mtd->writesize); |
| |
| /* need extra memcpy for raw transfer */ |
| if (raw_xfer) |
| memcpy(denali->buf.dma_buf + mtd->writesize, |
| chip->oob_poi, mtd->oobsize); |
| |
| /* setting up DMA */ |
| irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer, |
| irq_mask, oob_required); |
| |
| /* if timeout happen, error out */ |
| if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { |
| debug("DMA timeout for denali write_page\n"); |
| denali->status = NAND_STATUS_FAIL; |
| return -EIO; |
| } |
| |
| if (irq_status & INTR_STATUS__LOCKED_BLK) { |
| debug("Failed as write to locked block\n"); |
| denali->status = NAND_STATUS_FAIL; |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /* NAND core entry points */ |
| |
| /* |
| * this is the callback that the NAND core calls to write a page. Since |
| * writing a page with ECC or without is similar, all the work is done |
| * by write_page above. |
| */ |
| static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| |
| /* |
| * for regular page writes, we let HW handle all the ECC |
| * data written to the device. |
| */ |
| if (oob_required) |
| /* switch to main + spare access */ |
| denali_mode_main_spare_access(denali); |
| else |
| /* switch to main access only */ |
| denali_mode_main_access(denali); |
| |
| return write_page(mtd, chip, buf, false, oob_required); |
| } |
| |
| /* |
| * This is the callback that the NAND core calls to write a page without ECC. |
| * raw access is similar to ECC page writes, so all the work is done in the |
| * write_page() function above. |
| */ |
| static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| |
| /* |
| * for raw page writes, we want to disable ECC and simply write |
| * whatever data is in the buffer. |
| */ |
| |
| if (oob_required) |
| /* switch to main + spare access */ |
| denali_mode_main_spare_access(denali); |
| else |
| /* switch to main access only */ |
| denali_mode_main_access(denali); |
| |
| return write_page(mtd, chip, buf, true, oob_required); |
| } |
| |
| static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| return write_oob_data(mtd, chip->oob_poi, page); |
| } |
| |
| /* raw include ECC value and all the spare area */ |
| static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| |
| uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| |
| if (denali->page != page) { |
| debug("Missing NAND_CMD_READ0 command\n"); |
| return -EIO; |
| } |
| |
| if (oob_required) |
| /* switch to main + spare access */ |
| denali_mode_main_spare_access(denali); |
| else |
| /* switch to main access only */ |
| denali_mode_main_access(denali); |
| |
| /* setting up the DMA where ecc_enable is false */ |
| irq_status = denali_dma_configuration(denali, DENALI_READ, true, |
| irq_mask, oob_required); |
| |
| /* if timeout happen, error out */ |
| if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { |
| debug("DMA timeout for denali_read_page_raw\n"); |
| return -EIO; |
| } |
| |
| /* splitting the content to destination buffer holder */ |
| memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize), |
| mtd->oobsize); |
| memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| |
| return 0; |
| } |
| |
| static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; |
| |
| if (denali->page != page) { |
| debug("Missing NAND_CMD_READ0 command\n"); |
| return -EIO; |
| } |
| |
| if (oob_required) |
| /* switch to main + spare access */ |
| denali_mode_main_spare_access(denali); |
| else |
| /* switch to main access only */ |
| denali_mode_main_access(denali); |
| |
| /* setting up the DMA where ecc_enable is true */ |
| irq_status = denali_dma_configuration(denali, DENALI_READ, false, |
| irq_mask, oob_required); |
| |
| memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| |
| /* check whether any ECC error */ |
| if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) { |
| /* is the ECC cause by erase page, check using read_page_raw */ |
| debug(" Uncorrected ECC detected\n"); |
| denali_read_page_raw(mtd, chip, buf, oob_required, |
| denali->page); |
| |
| if (is_erased(buf, mtd->writesize) == true && |
| is_erased(chip->oob_poi, mtd->oobsize) == true) { |
| debug(" ECC error cause by erased block\n"); |
| /* false alarm, return the 0xFF */ |
| } else { |
| return -EBADMSG; |
| } |
| } |
| memcpy(buf, denali->buf.dma_buf, mtd->writesize); |
| return 0; |
| } |
| |
| static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| read_oob_data(mtd, chip->oob_poi, page); |
| |
| return 0; |
| } |
| |
| static uint8_t denali_read_byte(struct mtd_info *mtd) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t addr, result; |
| |
| addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| index_addr_read_data(denali, addr | 2, &result); |
| return (uint8_t)result & 0xFF; |
| } |
| |
| static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t i, addr, result; |
| |
| /* delay for tR (data transfer from Flash array to data register) */ |
| udelay(25); |
| |
| /* ensure device completed else additional delay and polling */ |
| wait_for_irq(denali, INTR_STATUS__INT_ACT); |
| |
| addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| for (i = 0; i < len; i++) { |
| index_addr_read_data(denali, (uint32_t)addr | 2, &result); |
| write_byte_to_buf(denali, result); |
| } |
| memcpy(buf, denali->buf.buf, len); |
| } |
| |
| static void denali_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| |
| denali->flash_bank = chip; |
| } |
| |
| static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| int status = denali->status; |
| |
| denali->status = 0; |
| |
| return status; |
| } |
| |
| static int denali_erase(struct mtd_info *mtd, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| |
| uint32_t cmd, irq_status; |
| |
| clear_interrupts(denali); |
| |
| /* setup page read request for access type */ |
| cmd = MODE_10 | BANK(denali->flash_bank) | page; |
| index_addr(denali, cmd, 0x1); |
| |
| /* wait for erase to complete or failure to occur */ |
| irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | |
| INTR_STATUS__ERASE_FAIL); |
| |
| if (irq_status & INTR_STATUS__ERASE_FAIL || |
| irq_status & INTR_STATUS__LOCKED_BLK) |
| return NAND_STATUS_FAIL; |
| |
| return 0; |
| } |
| |
| static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, |
| int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t addr; |
| |
| switch (cmd) { |
| case NAND_CMD_PAGEPROG: |
| break; |
| case NAND_CMD_STATUS: |
| addr = MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, addr | 0, cmd); |
| break; |
| case NAND_CMD_READID: |
| case NAND_CMD_PARAM: |
| reset_buf(denali); |
| /* |
| * sometimes ManufactureId read from register is not right |
| * e.g. some of Micron MT29F32G08QAA MLC NAND chips |
| * So here we send READID cmd to NAND insteand |
| */ |
| addr = MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, addr | 0, cmd); |
| index_addr(denali, addr | 1, col & 0xFF); |
| if (cmd == NAND_CMD_PARAM) |
| udelay(50); |
| break; |
| case NAND_CMD_RNDOUT: |
| addr = MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, addr | 0, cmd); |
| index_addr(denali, addr | 1, col & 0xFF); |
| index_addr(denali, addr | 1, col >> 8); |
| index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART); |
| break; |
| case NAND_CMD_READ0: |
| case NAND_CMD_SEQIN: |
| denali->page = page; |
| break; |
| case NAND_CMD_RESET: |
| reset_bank(denali); |
| break; |
| case NAND_CMD_READOOB: |
| /* TODO: Read OOB data */ |
| break; |
| case NAND_CMD_ERASE1: |
| /* |
| * supporting block erase only, not multiblock erase as |
| * it will cross plane and software need complex calculation |
| * to identify the block count for the cross plane |
| */ |
| denali_erase(mtd, page); |
| break; |
| case NAND_CMD_ERASE2: |
| /* nothing to do here as it was done during NAND_CMD_ERASE1 */ |
| break; |
| case NAND_CMD_UNLOCK1: |
| addr = MODE_10 | BANK(denali->flash_bank) | page; |
| index_addr(denali, addr | 0, DENALI_UNLOCK_START); |
| break; |
| case NAND_CMD_UNLOCK2: |
| addr = MODE_10 | BANK(denali->flash_bank) | page; |
| index_addr(denali, addr | 0, DENALI_UNLOCK_END); |
| break; |
| case NAND_CMD_LOCK: |
| addr = MODE_10 | BANK(denali->flash_bank); |
| index_addr(denali, addr | 0, DENALI_LOCK); |
| break; |
| default: |
| printf(": unsupported command received 0x%x\n", cmd); |
| break; |
| } |
| } |
| /* end NAND core entry points */ |
| |
| /* Initialization code to bring the device up to a known good state */ |
| static void denali_hw_init(struct denali_nand_info *denali) |
| { |
| /* |
| * tell driver how many bit controller will skip before writing |
| * ECC code in OOB. This is normally used for bad block marker |
| */ |
| writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES, |
| denali->flash_reg + SPARE_AREA_SKIP_BYTES); |
| detect_max_banks(denali); |
| denali_nand_reset(denali); |
| writel(0x0F, denali->flash_reg + RB_PIN_ENABLED); |
| writel(CHIP_EN_DONT_CARE__FLAG, |
| denali->flash_reg + CHIP_ENABLE_DONT_CARE); |
| writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER); |
| |
| /* Should set value for these registers when init */ |
| writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| writel(1, denali->flash_reg + ECC_ENABLE); |
| denali_nand_timing_set(denali); |
| denali_irq_init(denali); |
| } |
| |
| static struct nand_ecclayout nand_oob; |
| |
| static int denali_init(struct denali_nand_info *denali) |
| { |
| struct mtd_info *mtd = nand_to_mtd(&denali->nand); |
| int ret; |
| |
| denali_hw_init(denali); |
| |
| mtd->name = "denali-nand"; |
| mtd->owner = THIS_MODULE; |
| |
| /* register the driver with the NAND core subsystem */ |
| denali->nand.select_chip = denali_select_chip; |
| denali->nand.cmdfunc = denali_cmdfunc; |
| denali->nand.read_byte = denali_read_byte; |
| denali->nand.read_buf = denali_read_buf; |
| denali->nand.waitfunc = denali_waitfunc; |
| |
| /* |
| * scan for NAND devices attached to the controller |
| * this is the first stage in a two step process to register |
| * with the nand subsystem |
| */ |
| if (nand_scan_ident(mtd, denali->max_banks, NULL)) { |
| ret = -ENXIO; |
| goto fail; |
| } |
| |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| /* check whether flash got BBT table (located at end of flash). As we |
| * use NAND_BBT_NO_OOB, the BBT page will start with |
| * bbt_pattern. We will have mirror pattern too */ |
| denali->nand.bbt_options |= NAND_BBT_USE_FLASH; |
| /* |
| * We are using main + spare with ECC support. As BBT need ECC support, |
| * we need to ensure BBT code don't write to OOB for the BBT pattern. |
| * All BBT info will be stored into data area with ECC support. |
| */ |
| denali->nand.bbt_options |= NAND_BBT_NO_OOB; |
| #endif |
| |
| denali->nand.ecc.mode = NAND_ECC_HW; |
| denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE; |
| |
| /* no subpage writes on denali */ |
| denali->nand.options |= NAND_NO_SUBPAGE_WRITE; |
| |
| /* |
| * Tell driver the ecc strength. This register may be already set |
| * correctly. So we read this value out. |
| */ |
| denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION); |
| switch (denali->nand.ecc.size) { |
| case 512: |
| denali->nand.ecc.bytes = |
| (denali->nand.ecc.strength * 13 + 15) / 16 * 2; |
| break; |
| case 1024: |
| denali->nand.ecc.bytes = |
| (denali->nand.ecc.strength * 14 + 15) / 16 * 2; |
| break; |
| default: |
| pr_err("Unsupported ECC size\n"); |
| ret = -EINVAL; |
| goto fail; |
| } |
| nand_oob.eccbytes = denali->nand.ecc.bytes; |
| denali->nand.ecc.layout = &nand_oob; |
| |
| writel(mtd->erasesize / mtd->writesize, |
| denali->flash_reg + PAGES_PER_BLOCK); |
| writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0, |
| denali->flash_reg + DEVICE_WIDTH); |
| writel(mtd->writesize, |
| denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| writel(mtd->oobsize, |
| denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0) |
| writel(1, denali->flash_reg + DEVICES_CONNECTED); |
| |
| /* override the default operations */ |
| denali->nand.ecc.read_page = denali_read_page; |
| denali->nand.ecc.read_page_raw = denali_read_page_raw; |
| denali->nand.ecc.write_page = denali_write_page; |
| denali->nand.ecc.write_page_raw = denali_write_page_raw; |
| denali->nand.ecc.read_oob = denali_read_oob; |
| denali->nand.ecc.write_oob = denali_write_oob; |
| |
| if (nand_scan_tail(mtd)) { |
| ret = -ENXIO; |
| goto fail; |
| } |
| |
| ret = nand_register(0, mtd); |
| |
| fail: |
| return ret; |
| } |
| |
| static int __board_nand_init(void) |
| { |
| struct denali_nand_info *denali; |
| |
| denali = kzalloc(sizeof(*denali), GFP_KERNEL); |
| if (!denali) |
| return -ENOMEM; |
| |
| /* |
| * In the future, these base addresses should be taken from |
| * Device Tree or platform data. |
| */ |
| denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE; |
| denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE; |
| |
| return denali_init(denali); |
| } |
| |
| void board_nand_init(void) |
| { |
| if (__board_nand_init() < 0) |
| pr_warn("Failed to initialize Denali NAND controller.\n"); |
| } |