blob: 27a2fc06e89312995d4b7a3757d4b783bac2cc5e [file] [log] [blame]
;****************************************************************************
;*
;* ========================================================================
;*
;* The contents of this file are subject to the SciTech MGL Public
;* License Version 1.0 (the "License"); you may not use this file
;* except in compliance with the License. You may obtain a copy of
;* the License at http://www.scitechsoft.com/mgl-license.txt
;*
;* Software distributed under the License is distributed on an
;* "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
;* implied. See the License for the specific language governing
;* rights and limitations under the License.
;*
;* The Original Code is Copyright (C) 1991-1998 SciTech Software, Inc.
;*
;* The Initial Developer of the Original Code is SciTech Software, Inc.
;* All Rights Reserved.
;*
;* ========================================================================
;*
;* Language: NetWide Assembler (NASM) or Turbo Assembler (TASM)
;* Environment: Any Intel Environment
;*
;* Description: Macros to provide memory model independant assembly language
;* module for C programming. Supports the large and flat memory
;* models.
;*
;* The defines that you should use when assembling modules that
;* use this macro package are:
;*
;* __LARGE__ Assemble for 16-bit large model
;* __FLAT__ Assemble for 32-bit FLAT memory model
;* __NOU__ No underscore for all external C labels
;* __NOU_VAR__ No underscore for global variables only
;*
;* The default settings are for 16-bit large memory model with
;* leading underscores for symbol names.
;*
;* The main intent of the macro file is to enable programmers
;* to write _one_ set of source that can be assembled to run
;* in either 16 bit real and protected modes or 32 bit
;* protected mode without the need to riddle the code with
;* 'if flatmodel' style conditional assembly (it is still there
;* but nicely hidden by a macro layer that enhances the
;* readability and understandability of the resulting code).
;*
;****************************************************************************
; Include the appropriate version in here depending on the assembler. NASM
; appears to always try and parse code, even if it is in a non-compiling
; block of a ifdef expression, and hence crashes if we include the TASM
; macro package in the same header file. Hence we split the macros up into
; two separate header files.
ifdef __NASM_MAJOR__
;============================================================================
; Macro package when compiling with NASM.
;============================================================================
; Turn off underscores for globals if disabled for all externals
%ifdef __NOU__
%define __NOU_VAR__
%endif
; Define the __WINDOWS__ symbol if we are compiling for any Windows
; environment
%ifdef __WINDOWS16__
%define __WINDOWS__ 1
%endif
%ifdef __WINDOWS32__
%define __WINDOWS__ 1
%define __WINDOWS32_386__ 1
%endif
; Macros for accessing 'generic' registers
%ifdef __FLAT__
%idefine _ax eax
%idefine _bx ebx
%idefine _cx ecx
%idefine _dx edx
%idefine _si esi
%idefine _di edi
%idefine _bp ebp
%idefine _sp esp
%idefine _es
%idefine UCHAR BYTE ; Size of a character
%idefine USHORT WORD ; Size of a short
%idefine UINT DWORD ; Size of an integer
%idefine ULONG DWORD ; Size of a long
%idefine BOOL DWORD ; Size of a boolean
%idefine DPTR DWORD ; Size of a data pointer
%idefine FDPTR FWORD ; Size of a far data pointer
%idefine NDPTR DWORD ; Size of a near data pointer
%idefine CPTR DWORD ; Size of a code pointer
%idefine FCPTR FWORD ; Size of a far code pointer
%idefine NCPTR DWORD ; Size of a near code pointer
%idefine FPTR NEAR ; Distance for function pointers
%idefine DUINT dd ; Declare a integer variable
%idefine intsize 4
%idefine flatmodel 1
%else
%idefine _ax ax
%idefine _bx bx
%idefine _cx cx
%idefine _dx dx
%idefine _si si
%idefine _di di
%idefine _bp bp
%idefine _sp sp
%idefine _es es:
%idefine UCHAR BYTE ; Size of a character
%idefine USHORT WORD ; Size of a short
%idefine UINT WORD ; Size of an integer
%idefine ULONG DWORD ; Size of a long
%idefine BOOL WORD ; Size of a boolean
%idefine DPTR DWORD ; Size of a data pointer
%idefine FDPTR DWORD ; Size of a far data pointer
%idefine NDPTR WORD ; Size of a near data pointer
%idefine CPTR DWORD ; Size of a code pointer
%idefine FCPTR DWORD ; Size of a far code pointer
%idefine NCPTR WORD ; Size of a near code pointer
%idefine FPTR FAR ; Distance for function pointers
%idefine DUINT dw ; Declare a integer variable
%idefine intsize 2
%endif
%idefine invert ~
%idefine offset
%idefine use_nasm
; Convert all jumps to near jumps, since NASM does not so this automatically
%idefine jo jo near
%idefine jno jno near
%idefine jz jz near
%idefine jnz jnz near
%idefine je je near
%idefine jne jne near
%idefine jb jb near
%idefine jbe jbe near
%idefine ja ja near
%idefine jae jae near
%idefine jl jl near
%idefine jle jle near
%idefine jg jg near
%idefine jge jge near
%idefine jc jc near
%idefine jnc jnc near
%idefine js js near
%idefine jns jns near
%ifdef DOUBLE
%idefine REAL QWORD
%idefine DREAL dq
%else
%idefine REAL DWORD
%idefine DREAL dd
%endif
; Boolean truth values (same as those in debug.h)
%idefine False 0
%idefine True 1
%idefine No 0
%idefine Yes 1
%idefine Yes 1
; Macro to be invoked at the start of all modules to set up segments for
; later use. Does nothing for NASM.
%imacro header 1
%endmacro
; Macro to begin a data segment
%imacro begdataseg 1
%ifdef __GNUC__
segment .data public class=DATA use32 flat
%else
%ifdef flatmodel
segment _DATA public align=4 class=DATA use32 flat
%else
segment _DATA public align=4 class=DATA use16
%endif
%endif
%endmacro
; Macro to end a data segment
%imacro enddataseg 1
%endmacro
; Macro to begin a code segment
%imacro begcodeseg 1
%ifdef __PIC__
%ifdef __LINUX__
extern _GLOBAL_OFFSET_TABLE_
%else
extern __GLOBAL_OFFSET_TABLE_
%endif
%endif
%ifdef __GNUC__
segment .text public class=CODE use32 flat
%else
%ifdef flatmodel
segment _TEXT public align=16 class=CODE use32 flat
%else
segment %1_TEXT public align=16 class=CODE use16
%endif
%endif
%endmacro
; Macro to begin a near code segment
%imacro begcodeseg_near 0
%ifdef __GNUC__
segment .text public class=CODE use32 flat
%else
%ifdef flatmodel
segment _TEXT public align=16 class=CODE use32 flat
%else
segment _TEXT public align=16 class=CODE use16
%endif
%endif
%endmacro
; Macro to end a code segment
%imacro endcodeseg 1
%endmacro
; Macro to end a near code segment
%imacro endcodeseg_near 0
%endmacro
; Macro for an extern C symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
%imacro cextern 2
%ifdef __NOU_VAR__
extern %1
%else
extern _%1
%define %1 _%1
%endif
%endmacro
%imacro cexternfunc 2
%ifdef __NOU__
extern %1
%else
extern _%1
%define %1 _%1
%endif
%endmacro
; Macro for a public C symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
%imacro cpublic 1
%ifdef __NOU_VAR__
global %1
%1:
%else
global _%1
_%1:
%define %1 _%1
%endif
%endmacro
; Macro for an global C symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
%imacro cglobal 1
%ifdef __NOU_VAR__
global %1
%else
global _%1
%define %1 _%1
%endif
%endmacro
; Macro for an global C function symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
%imacro cglobalfunc 1
%ifdef __PIC__
global %1:function
%else
%ifdef __NOU__
global %1
%else
global _%1
%define %1 _%1
%endif
%endif
%endmacro
; Macro to start a C callable function. This will be a far function for
; 16-bit code, and a near function for 32-bit code.
%imacro cprocstatic 1
%push cproc
%1:
%ifdef flatmodel
%stacksize flat
%define ret retn
%else
%stacksize large
%define ret retf
%endif
%assign %$localsize 0
%endmacro
%imacro cprocstart 1
%push cproc
cglobalfunc %1
%1:
%ifdef flatmodel
%stacksize flat
%define ret retn
%else
%stacksize large
%define ret retf
%endif
%assign %$localsize 0
%endmacro
; This macro sets up a procedure to be exported from a 16 bit DLL. Since the
; calling conventions are always _far _pascal for 16 bit DLL's, we actually
; rename this routine with an extra underscore with 'C' calling conventions
; and a small DLL stub will be provided by the high level code to call the
; assembler routine.
%imacro cprocstartdll16 1
%ifdef __WINDOWS16__
cprocstart _%1
%else
cprocstart %1
%endif
%endmacro
; Macro to start a C callable near function.
%imacro cprocnear 1
%push cproc
cglobalfunc %1
%1:
%define ret retn
%ifdef flatmodel
%stacksize flat
%else
%stacksize small
%endif
%assign %$localsize 0
%endmacro
; Macro to start a C callable far function.
%imacro cprocfar 1
%push cproc
cglobalfunc %1
%1:
%define ret retf
%ifdef flatmodel
%stacksize flat
%else
%stacksize large
%endif
%assign %$localsize 0
%endmacro
; Macro to end a C function
%imacro cprocend 0
%pop
%endmacro
; Macros for entering and exiting C callable functions. Note that we must
; always save and restore the SI and DI registers for C functions, and for
; 32 bit C functions we also need to save and restore EBX and clear the
; direction flag.
%imacro enter_c 0
push _bp
mov _bp,_sp
%ifnidn %$localsize,0
sub _sp,%$localsize
%endif
%ifdef flatmodel
push ebx
%endif
push _si
push _di
%endmacro
%imacro leave_c 0
pop _di
pop _si
%ifdef flatmodel
pop ebx
cld
%endif
%ifnidn %$localsize,0
mov _sp,_bp
%endif
pop _bp
%endmacro
%imacro use_ebx 0
%ifdef flatmodel
push ebx
%endif
%endmacro
%imacro unuse_ebx 0
%ifdef flatmodel
pop ebx
%endif
%endmacro
; Macros for saving and restoring the value of DS,ES,FS,GS when it is to
; be used in assembly routines. This evaluates to nothing in the flat memory
; model, but is saves and restores DS in the large memory model.
%imacro use_ds 0
%ifndef flatmodel
push ds
%endif
%endmacro
%imacro unuse_ds 0
%ifndef flatmodel
pop ds
%endif
%endmacro
%imacro use_es 0
%ifndef flatmodel
push es
%endif
%endmacro
%imacro unuse_es 0
%ifndef flatmodel
pop es
%endif
%endmacro
; Macros for loading the address of a data pointer into a segment and
; index register pair. The %imacro explicitly loads DS or ES in the 16 bit
; memory model, or it simply loads the offset into the register in the flat
; memory model since DS and ES always point to all addressable memory. You
; must use the correct _REG (ie: _BX) %imacros for documentation purposes.
%imacro _lds 2
%ifdef flatmodel
mov %1,%2
%else
lds %1,%2
%endif
%endmacro
%imacro _les 2
%ifdef flatmodel
mov %1,%2
%else
les %1,%2
%endif
%endmacro
; Macros for adding and subtracting a value from registers. Two value are
; provided, one for 16 bit modes and another for 32 bit modes (the extended
; register is used in 32 bit modes).
%imacro _add 3
%ifdef flatmodel
add e%1, %3
%else
add %1, %2
%endif
%endmacro
%imacro _sub 3
%ifdef flatmodel
sub e%1, %3
%else
sub %1, %2
%endif
%endmacro
; Macro to clear the high order word for the 32 bit extended registers.
; This is used to convert an unsigned 16 bit value to an unsigned 32 bit
; value, and will evaluate to nothing in 16 bit modes.
%imacro clrhi 1
%ifdef flatmodel
movzx e%1,%1
%endif
%endmacro
%imacro sgnhi 1
%ifdef flatmodel
movsx e%1,%1
%endif
%endmacro
; Macro to load an extended register with an integer value in either mode
%imacro loadint 2
%ifdef flatmodel
mov e%1,%2
%else
xor e%1,e%1
mov %1,%2
%endif
%endmacro
; Macros to load and store integer values with string instructions
%imacro LODSINT 0
%ifdef flatmodel
lodsd
%else
lodsw
%endif
%endmacro
%imacro STOSINT 0
%ifdef flatmodel
stosd
%else
stosw
%endif
%endmacro
; Macros to provide resb, resw, resd compatibility with NASM
%imacro dclb 1
times %1 db 0
%endmacro
%imacro dclw 1
times %1 dw 0
%endmacro
%imacro dcld 1
times %1 dd 0
%endmacro
; Macro to get the addres of the GOT for Linux/FreeBSD shared
; libraries into the EBX register.
%imacro get_GOT 1
call %%getgot
%%getgot: pop %1
add %1,_GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
%endmacro
; Macro to get the address of a *local* variable that is global to
; a single module in a manner that will work correctly when compiled
; into a Linux shared library. Note that this will *not* work for
; variables that are defined as global to all modules. For that
; use the LEA_G macro
%macro LEA_L 2
%ifdef __PIC__
get_GOT %1
lea %1,[%1+%2 wrt ..gotoff]
%else
lea %1,[%2]
%endif
%endmacro
; Same macro as above but for global variables public to *all*
; modules.
%macro LEA_G 2
%ifdef __PIC__
get_GOT %1
mov %1,[%1+%2 wrt ..got]
%else
lea %1,[%2]
%endif
%endmacro
; macros to declare assembler function stubs for function structures
%imacro BEGIN_STUBS_DEF 2
begdataseg _STUBS
%ifdef __NOU_VAR__
extern %1
%define STUBS_START %1
%else
extern _%1
%define STUBS_START _%1
%endif
enddataseg _STUBS
begcodeseg _STUBS
%assign off %2
%endmacro
%imacro DECLARE_STUB 1
%ifdef __PIC__
global %1:function
%1:
get_GOT eax
mov eax,[eax+STUBS_START wrt ..got]
jmp [eax+off]
%else
%ifdef __NOU__
global %1
%1:
%else
global _%1
_%1:
%endif
jmp [DWORD STUBS_START+off]
%endif
%assign off off+4
%endmacro
%imacro SKIP_STUB 1
%assign off off+4
%endmacro
%imacro DECLARE_STDCALL 2
%ifdef STDCALL_MANGLE
global _%1@%2
_%1@%2:
%else
%ifdef STDCALL_USCORE
global _%1
_%1:
%else
global %1
%1:
%endif
%endif
jmp [DWORD STUBS_START+off]
%assign off off+4
%endmacro
%imacro END_STUBS_DEF 0
endcodeseg _STUBS
%endmacro
; macros to declare assembler import stubs for binary loadable drivers
%imacro BEGIN_IMPORTS_DEF 1
BEGIN_STUBS_DEF %1,4
%endmacro
%imacro DECLARE_IMP 2
DECLARE_STUB %1
%endmacro
%imacro SKIP_IMP 2
SKIP_STUB %1
%endmacro
%imacro SKIP_IMP2 1
DECLARE_STUB %1
%endmacro
%imacro SKIP_IMP3 1
SKIP_STUB %1
%endmacro
%imacro END_IMPORTS_DEF 0
END_STUBS_DEF
%endmacro
else ; __NASM_MAJOR__
;============================================================================
; Macro package when compiling with TASM.
;============================================================================
; Turn off underscores for globals if disabled for all externals
ifdef __NOU__
__NOU_VAR__ = 1
endif
; Define the __WINDOWS__ symbol if we are compiling for any Windows
; environment
ifdef __WINDOWS16__
__WINDOWS__ = 1
endif
ifdef __WINDOWS32__
__WINDOWS__ = 1
__WINDOWS32_386__ = 1
endif
ifdef __WIN386__
__WINDOWS__ = 1
__WINDOWS32_386__ = 1
endif
ifdef __VXD__
__WINDOWS__ = 1
__WINDOWS32_386__ = 1
MASM
.386
NO_SEGMENTS = 1
include vmm.inc ; IGNORE DEPEND
include vsegment.inc ; IGNORE DEPEND
IDEAL
endif
; Macros for accessing 'generic' registers
ifdef __FLAT__
_ax EQU eax ; EAX is used for accumulator
_bx EQU ebx ; EBX is used for accumulator
_cx EQU ecx ; ECX is used for looping
_dx EQU edx ; EDX is used for data register
_si EQU esi ; ESI is the source index register
_di EQU edi ; EDI is the destination index register
_bp EQU ebp ; EBP is used for base pointer register
_sp EQU esp ; ESP is used for stack pointer register
_es EQU ; ES and DS are the same in 32 bit PM
typedef UCHAR BYTE ; Size of a character
typedef USHORT WORD ; Size of a short
typedef UINT DWORD ; Size of an integer
typedef ULONG DWORD ; Size of a long
typedef BOOL DWORD ; Size of a boolean
typedef DPTR DWORD ; Size of a data pointer
typedef FDPTR FWORD ; Size of a far data pointer
typedef NDPTR DWORD ; Size of a near data pointer
typedef CPTR DWORD ; Size of a code pointer
typedef FCPTR FWORD ; Size of a far code pointer
typedef NCPTR DWORD ; Size of a near code pointer
typedef DUINT DWORD ; Declare a integer variable
FPTR EQU NEAR ; Distance for function pointers
intsize = 4 ; Size of an integer
flatmodel = 1 ; This is a flat memory model
P386 ; Turn on 386 code generation
MODEL FLAT ; Set up for 32 bit simplified FLAT model
else
_ax EQU ax ; AX is used for accumulator
_bx EQU bx ; BX is used for accumulator
_cx EQU cx ; CX is used for looping
_dx EQU dx ; DX is used for data register
_si EQU si ; SI is the source index register
_di EQU di ; DI is the destination index register
_bp EQU bp ; BP is used for base pointer register
_sp EQU sp ; SP is used for stack pointer register
_es EQU es: ; ES is used for segment override
typedef UCHAR BYTE ; Size of a character
typedef USHORT WORD ; Size of a short
typedef UINT WORD ; Size of an integer
typedef ULONG DWORD ; Size of a long
typedef BOOL WORD ; Size of a boolean
typedef DPTR DWORD ; Size of a data pointer
typedef FDPTR DWORD ; Size of a far data pointer
typedef NDPTR WORD ; Size of a near data pointer
typedef CPTR DWORD ; Size of a code pointer
typedef FCPTR DWORD ; Size of a far code pointer
typedef NCPTR WORD ; Size of a near code pointer
typedef DUINT WORD ; Declare a integer variable
FPTR EQU FAR ; Distance for function pointers
intsize = 2 ; Size of an integer
P386 ; Turn on 386 code generation
endif
invert EQU not
; Provide a typedef for real floating point numbers
ifdef DOUBLE
typedef REAL QWORD
typedef DREAL QWORD
else
typedef REAL DWORD
typedef DREAL DWORD
endif
; Macros to access the floating point stack registers to convert them
; from NASM style to TASM style
st0 EQU st(0)
st1 EQU st(1)
st2 EQU st(2)
st3 EQU st(3)
st4 EQU st(4)
st5 EQU st(5)
st6 EQU st(6)
st7 EQU st(7)
st8 EQU st(8)
; Boolean truth values (same as those in debug.h)
ifndef __VXD__
False = 0
True = 1
No = 0
Yes = 1
Yes = 1
endif
; Macros for the _DATA data segment. This segment contains initialised data.
MACRO begdataseg name
ifdef __VXD__
MASM
VXD_LOCKED_DATA_SEG
IDEAL
else
ifdef flatmodel
DATASEG
else
SEGMENT _DATA DWORD PUBLIC USE16 'DATA'
endif
endif
ENDM
MACRO enddataseg name
ifdef __VXD__
MASM
VXD_LOCKED_DATA_ENDS
IDEAL
else
ifndef flatmodel
ENDS _DATA
endif
endif
ENDM
; Macro for the main code segment.
MACRO begcodeseg name
ifdef __VXD__
MASM
VXD_LOCKED_CODE_SEG
IDEAL
else
ifdef flatmodel
CODESEG
ASSUME CS:FLAT,DS:FLAT,SS:FLAT
else
SEGMENT &name&_TEXT PARA PUBLIC USE16 'CODE'
ASSUME CS:&name&_TEXT,DS:_DATA
endif
endif
ENDM
; Macro for a near code segment
MACRO begcodeseg_near
ifdef flatmodel
CODESEG
ASSUME CS:FLAT,DS:FLAT,SS:FLAT
else
SEGMENT _TEXT PARA PUBLIC USE16 'CODE'
ASSUME CS:_TEXT,DS:_DATA
endif
ENDM
MACRO endcodeseg name
ifdef __VXD__
MASM
VXD_LOCKED_CODE_ENDS
IDEAL
else
ifndef flatmodel
ENDS &name&_TEXT
endif
endif
ENDM
MACRO endcodeseg_near
ifndef flatmodel
ENDS _TEXT
endif
ENDM
; Macro to be invoked at the start of all modules to set up segments for
; later use.
MACRO header name
begdataseg name
enddataseg name
ENDM
; Macro for an extern C symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
MACRO cextern name,size
ifdef __NOU_VAR__
EXTRN name:size
else
EXTRN _&name&:size
name EQU _&name&
endif
ENDM
MACRO cexternfunc name,size
ifdef __NOU__
EXTRN name:size
else
EXTRN _&name&:size
name EQU _&name&
endif
ENDM
MACRO stdexternfunc name,num_args,size
ifdef STDCALL_MANGLE
EXTRN _&name&@&num_args&:size
name EQU _&name&@&num_args
else
EXTRN name:size
endif
ENDM
; Macro for a public C symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
MACRO cpublic name
ifdef __NOU_VAR__
name:
PUBLIC name
else
_&name&:
PUBLIC _&name&
name EQU _&name&
endif
ENDM
; Macro for an global C symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
MACRO cglobal name
ifdef __NOU_VAR__
PUBLIC name
else
PUBLIC _&name&
name EQU _&name&
endif
ENDM
; Macro for an global C function symbol. If the C compiler requires leading
; underscores, then the underscores are added to the symbol names, otherwise
; they are left off. The symbol name is referenced in the assembler code
; using the non-underscored symbol name.
MACRO cglobalfunc name
ifdef __NOU__
PUBLIC name
else
PUBLIC _&name&
name EQU _&name&
endif
ENDM
; Macro to start a C callable function. This will be a far function for
; 16-bit code, and a near function for 32-bit code.
MACRO cprocstatic name ; Set up model independant private proc
ifdef flatmodel
PROC name NEAR
else
PROC name FAR
endif
LocalSize = 0
ENDM
MACRO cprocstart name ; Set up model independant proc
ifdef flatmodel
ifdef __NOU__
PROC name NEAR
else
PROC _&name& NEAR
endif
else
ifdef __NOU__
PROC name FAR
else
PROC _&name& FAR
endif
endif
LocalSize = 0
cglobalfunc name
ENDM
MACRO cprocnear name ; Set up near proc
ifdef __NOU__
PROC name NEAR
else
PROC _&name& NEAR
endif
LocalSize = 0
cglobalfunc name
ENDM
MACRO cprocfar name ; Set up far proc
ifdef __NOU__
PROC name FAR
else
PROC _&name& FAR
endif
LocalSize = 0
cglobalfunc name
ENDM
MACRO cprocend ; End procedure macro
ENDP
ENDM
; This macro sets up a procedure to be exported from a 16 bit DLL. Since the
; calling conventions are always _far _pascal for 16 bit DLL's, we actually
; rename this routine with an extra underscore with 'C' calling conventions
; and a small DLL stub will be provided by the high level code to call the
; assembler routine.
MACRO cprocstartdll16 name
ifdef __WINDOWS16__
cprocstart _&name&
else
cprocstart name
endif
ENDM
; Macros for entering and exiting C callable functions. Note that we must
; always save and restore the SI and DI registers for C functions, and for
; 32 bit C functions we also need to save and restore EBX and clear the
; direction flag.
MACRO save_c_regs
ifdef flatmodel
push ebx
endif
push _si
push _di
ENDM
MACRO enter_c
push _bp
mov _bp,_sp
IFDIFI <LocalSize>,<0>
sub _sp,LocalSize
ENDIF
save_c_regs
ENDM
MACRO restore_c_regs
pop _di
pop _si
ifdef flatmodel
pop ebx
endif
ENDM
MACRO leave_c
restore_c_regs
cld
IFDIFI <LocalSize>,<0>
mov _sp,_bp
ENDIF
pop _bp
ENDM
MACRO use_ebx
ifdef flatmodel
push ebx
endif
ENDM
MACRO unuse_ebx
ifdef flatmodel
pop ebx
endif
ENDM
; Macros for saving and restoring the value of DS,ES,FS,GS when it is to
; be used in assembly routines. This evaluates to nothing in the flat memory
; model, but is saves and restores DS in the large memory model.
MACRO use_ds
ifndef flatmodel
push ds
endif
ENDM
MACRO unuse_ds
ifndef flatmodel
pop ds
endif
ENDM
MACRO use_es
ifndef flatmodel
push es
endif
ENDM
MACRO unuse_es
ifndef flatmodel
pop es
endif
ENDM
; Macros for loading the address of a data pointer into a segment and
; index register pair. The macro explicitly loads DS or ES in the 16 bit
; memory model, or it simply loads the offset into the register in the flat
; memory model since DS and ES always point to all addressable memory. You
; must use the correct _REG (ie: _BX) macros for documentation purposes.
MACRO _lds reg, addr
ifdef flatmodel
mov reg,addr
else
lds reg,addr
endif
ENDM
MACRO _les reg, addr
ifdef flatmodel
mov reg,addr
else
les reg,addr
endif
ENDM
; Macros for adding and subtracting a value from registers. Two value are
; provided, one for 16 bit modes and another for 32 bit modes (the extended
; register is used in 32 bit modes).
MACRO _add reg, val16, val32
ifdef flatmodel
add e&reg&, val32
else
add reg, val16
endif
ENDM
MACRO _sub reg, val16, val32
ifdef flatmodel
sub e&reg&, val32
else
sub reg, val16
endif
ENDM
; Macro to clear the high order word for the 32 bit extended registers.
; This is used to convert an unsigned 16 bit value to an unsigned 32 bit
; value, and will evaluate to nothing in 16 bit modes.
MACRO clrhi reg
ifdef flatmodel
movzx e&reg&,reg
endif
ENDM
MACRO sgnhi reg
ifdef flatmodel
movsx e&reg&,reg
endif
ENDM
; Macro to load an extended register with an integer value in either mode
MACRO loadint reg,val
ifdef flatmodel
mov e&reg&,val
else
xor e&reg&,e&reg&
mov reg,val
endif
ENDM
; Macros to load and store integer values with string instructions
MACRO LODSINT
ifdef flatmodel
lodsd
else
lodsw
endif
ENDM
MACRO STOSINT
ifdef flatmodel
stosd
else
stosw
endif
ENDM
; Macros to provide resb, resw, resd compatibility with NASM
MACRO dclb count
db count dup (0)
ENDM
MACRO dclw count
dw count dup (0)
ENDM
MACRO dcld count
dd count dup (0)
ENDM
; Macros to provide resb, resw, resd compatibility with NASM
MACRO resb count
db count dup (?)
ENDM
MACRO resw count
dw count dup (?)
ENDM
MACRO resd count
dd count dup (?)
ENDM
; Macros to declare assembler stubs for function structures
MACRO BEGIN_STUBS_DEF name, firstOffset
begdataseg _STUBS
ifdef __NOU_VAR__
EXTRN name:DWORD
STUBS_START = name
else
EXTRN _&name&:DWORD
name EQU _&name&
STUBS_START = _&name
endif
enddataseg _STUBS
begcodeseg _STUBS
off = firstOffset
ENDM
MACRO DECLARE_STUB name
ifdef __NOU__
name:
PUBLIC name
else
_&name:
PUBLIC _&name
endif
jmp [DWORD STUBS_START+off]
off = off + 4
ENDM
MACRO SKIP_STUB name
off = off + 4
ENDM
MACRO DECLARE_STDCALL name,num_args
ifdef STDCALL_MANGLE
_&name&@&num_args&:
PUBLIC _&name&@&num_args&
else
name:
PUBLIC name
endif
jmp [DWORD STUBS_START+off]
off = off + 4
ENDM
MACRO END_STUBS_DEF
endcodeseg _STUBS
ENDM
MACRO BEGIN_IMPORTS_DEF name
BEGIN_STUBS_DEF name,4
ENDM
ifndef LOCAL_DECLARE_IMP
MACRO DECLARE_IMP name, numArgs
DECLARE_STUB name
ENDM
MACRO SKIP_IMP name
SKIP_STUB name
ENDM
MACRO SKIP_IMP2 name, numArgs
DECLARE_STUB name
ENDM
MACRO SKIP_IMP3 name
SKIP_STUB name
ENDM
endif
MACRO END_IMPORTS_DEF
END_STUBS_DEF
ENDM
MACRO LEA_L reg,name
lea reg,[name]
ENDM
MACRO LEA_G reg,name
lea reg,[name]
ENDM
endif