blob: 232fa40eb53e54d0548cc3ff60c00d5fd2cd59a4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016 Google, Inc
*
* Based on code from coreboot src/soc/intel/broadwell/cpu.c
*/
#include <common.h>
#include <dm.h>
#include <cpu.h>
#include <asm/cpu.h>
#include <asm/cpu_x86.h>
#include <asm/cpu_common.h>
#include <asm/intel_regs.h>
#include <asm/msr.h>
#include <asm/post.h>
#include <asm/turbo.h>
#include <asm/arch/cpu.h>
#include <asm/arch/pch.h>
#include <asm/arch/rcb.h>
struct cpu_broadwell_priv {
bool ht_disabled;
};
/* Convert time in seconds to POWER_LIMIT_1_TIME MSR value */
static const u8 power_limit_time_sec_to_msr[] = {
[0] = 0x00,
[1] = 0x0a,
[2] = 0x0b,
[3] = 0x4b,
[4] = 0x0c,
[5] = 0x2c,
[6] = 0x4c,
[7] = 0x6c,
[8] = 0x0d,
[10] = 0x2d,
[12] = 0x4d,
[14] = 0x6d,
[16] = 0x0e,
[20] = 0x2e,
[24] = 0x4e,
[28] = 0x6e,
[32] = 0x0f,
[40] = 0x2f,
[48] = 0x4f,
[56] = 0x6f,
[64] = 0x10,
[80] = 0x30,
[96] = 0x50,
[112] = 0x70,
[128] = 0x11,
};
/* Convert POWER_LIMIT_1_TIME MSR value to seconds */
static const u8 power_limit_time_msr_to_sec[] = {
[0x00] = 0,
[0x0a] = 1,
[0x0b] = 2,
[0x4b] = 3,
[0x0c] = 4,
[0x2c] = 5,
[0x4c] = 6,
[0x6c] = 7,
[0x0d] = 8,
[0x2d] = 10,
[0x4d] = 12,
[0x6d] = 14,
[0x0e] = 16,
[0x2e] = 20,
[0x4e] = 24,
[0x6e] = 28,
[0x0f] = 32,
[0x2f] = 40,
[0x4f] = 48,
[0x6f] = 56,
[0x10] = 64,
[0x30] = 80,
[0x50] = 96,
[0x70] = 112,
[0x11] = 128,
};
int arch_cpu_init_dm(void)
{
struct udevice *dev;
int ret;
/* Start up the LPC so we have serial */
ret = uclass_first_device(UCLASS_LPC, &dev);
if (ret)
return ret;
if (!dev)
return -ENODEV;
ret = cpu_set_flex_ratio_to_tdp_nominal();
if (ret)
return ret;
return 0;
}
void set_max_freq(void)
{
msr_t msr, perf_ctl, platform_info;
/* Check for configurable TDP option */
platform_info = msr_read(MSR_PLATFORM_INFO);
if ((platform_info.hi >> 1) & 3) {
/* Set to nominal TDP ratio */
msr = msr_read(MSR_CONFIG_TDP_NOMINAL);
perf_ctl.lo = (msr.lo & 0xff) << 8;
} else {
/* Platform Info bits 15:8 give max ratio */
msr = msr_read(MSR_PLATFORM_INFO);
perf_ctl.lo = msr.lo & 0xff00;
}
perf_ctl.hi = 0;
msr_write(IA32_PERF_CTL, perf_ctl);
debug("CPU: frequency set to %d MHz\n",
((perf_ctl.lo >> 8) & 0xff) * CPU_BCLK);
}
int arch_cpu_init(void)
{
post_code(POST_CPU_INIT);
return x86_cpu_init_f();
}
int checkcpu(void)
{
int ret;
set_max_freq();
ret = cpu_common_init();
if (ret)
return ret;
gd->arch.pei_boot_mode = PEI_BOOT_NONE;
return 0;
}
int print_cpuinfo(void)
{
char processor_name[CPU_MAX_NAME_LEN];
const char *name;
/* Print processor name */
name = cpu_get_name(processor_name);
printf("CPU: %s\n", name);
return 0;
}
/*
* The core 100MHz BLCK is disabled in deeper c-states. One needs to calibrate
* the 100MHz BCLCK against the 24MHz BLCK to restore the clocks properly
* when a core is woken up
*/
static int pcode_ready(void)
{
int wait_count;
const int delay_step = 10;
wait_count = 0;
do {
if (!(readl(MCHBAR_REG(BIOS_MAILBOX_INTERFACE)) &
MAILBOX_RUN_BUSY))
return 0;
wait_count += delay_step;
udelay(delay_step);
} while (wait_count < 1000);
return -ETIMEDOUT;
}
static u32 pcode_mailbox_read(u32 command)
{
int ret;
ret = pcode_ready();
if (ret) {
debug("PCODE: mailbox timeout on wait ready\n");
return ret;
}
/* Send command and start transaction */
writel(command | MAILBOX_RUN_BUSY, MCHBAR_REG(BIOS_MAILBOX_INTERFACE));
ret = pcode_ready();
if (ret) {
debug("PCODE: mailbox timeout on completion\n");
return ret;
}
/* Read mailbox */
return readl(MCHBAR_REG(BIOS_MAILBOX_DATA));
}
static int pcode_mailbox_write(u32 command, u32 data)
{
int ret;
ret = pcode_ready();
if (ret) {
debug("PCODE: mailbox timeout on wait ready\n");
return ret;
}
writel(data, MCHBAR_REG(BIOS_MAILBOX_DATA));
/* Send command and start transaction */
writel(command | MAILBOX_RUN_BUSY, MCHBAR_REG(BIOS_MAILBOX_INTERFACE));
ret = pcode_ready();
if (ret) {
debug("PCODE: mailbox timeout on completion\n");
return ret;
}
return 0;
}
/* @dev is the CPU device */
static void initialize_vr_config(struct udevice *dev)
{
int ramp, min_vid;
msr_t msr;
debug("Initializing VR config\n");
/* Configure VR_CURRENT_CONFIG */
msr = msr_read(MSR_VR_CURRENT_CONFIG);
/*
* Preserve bits 63 and 62. Bit 62 is PSI4 enable, but it is only valid
* on ULT systems
*/
msr.hi &= 0xc0000000;
msr.hi |= (0x01 << (52 - 32)); /* PSI3 threshold - 1A */
msr.hi |= (0x05 << (42 - 32)); /* PSI2 threshold - 5A */
msr.hi |= (0x14 << (32 - 32)); /* PSI1 threshold - 20A */
msr.hi |= (1 << (62 - 32)); /* Enable PSI4 */
/* Leave the max instantaneous current limit (12:0) to default */
msr_write(MSR_VR_CURRENT_CONFIG, msr);
/* Configure VR_MISC_CONFIG MSR */
msr = msr_read(MSR_VR_MISC_CONFIG);
/* Set the IOUT_SLOPE scalar applied to dIout in U10.1.9 format */
msr.hi &= ~(0x3ff << (40 - 32));
msr.hi |= (0x200 << (40 - 32)); /* 1.0 */
/* Set IOUT_OFFSET to 0 */
msr.hi &= ~0xff;
/* Set entry ramp rate to slow */
msr.hi &= ~(1 << (51 - 32));
/* Enable decay mode on C-state entry */
msr.hi |= (1 << (52 - 32));
/* Set the slow ramp rate */
msr.hi &= ~(0x3 << (53 - 32));
/* Configure the C-state exit ramp rate */
ramp = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"intel,slow-ramp", -1);
if (ramp != -1) {
/* Configured slow ramp rate */
msr.hi |= ((ramp & 0x3) << (53 - 32));
/* Set exit ramp rate to slow */
msr.hi &= ~(1 << (50 - 32));
} else {
/* Fast ramp rate / 4 */
msr.hi |= (0x01 << (53 - 32));
/* Set exit ramp rate to fast */
msr.hi |= (1 << (50 - 32));
}
/* Set MIN_VID (31:24) to allow CPU to have full control */
msr.lo &= ~0xff000000;
min_vid = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"intel,min-vid", 0);
msr.lo |= (min_vid & 0xff) << 24;
msr_write(MSR_VR_MISC_CONFIG, msr);
/* Configure VR_MISC_CONFIG2 MSR */
msr = msr_read(MSR_VR_MISC_CONFIG2);
msr.lo &= ~0xffff;
/*
* Allow CPU to control minimum voltage completely (15:8) and
* set the fast ramp voltage in 10mV steps
*/
if (cpu_get_family_model() == BROADWELL_FAMILY_ULT)
msr.lo |= 0x006a; /* 1.56V */
else
msr.lo |= 0x006f; /* 1.60V */
msr_write(MSR_VR_MISC_CONFIG2, msr);
/* Set C9/C10 VCC Min */
pcode_mailbox_write(MAILBOX_BIOS_CMD_WRITE_C9C10_VOLTAGE, 0x1f1f);
}
static int calibrate_24mhz_bclk(void)
{
int err_code;
int ret;
ret = pcode_ready();
if (ret)
return ret;
/* A non-zero value initiates the PCODE calibration */
writel(~0, MCHBAR_REG(BIOS_MAILBOX_DATA));
writel(MAILBOX_RUN_BUSY | MAILBOX_BIOS_CMD_FSM_MEASURE_INTVL,
MCHBAR_REG(BIOS_MAILBOX_INTERFACE));
ret = pcode_ready();
if (ret)
return ret;
err_code = readl(MCHBAR_REG(BIOS_MAILBOX_INTERFACE)) & 0xff;
debug("PCODE: 24MHz BLCK calibration response: %d\n", err_code);
/* Read the calibrated value */
writel(MAILBOX_RUN_BUSY | MAILBOX_BIOS_CMD_READ_CALIBRATION,
MCHBAR_REG(BIOS_MAILBOX_INTERFACE));
ret = pcode_ready();
if (ret)
return ret;
debug("PCODE: 24MHz BLCK calibration value: 0x%08x\n",
readl(MCHBAR_REG(BIOS_MAILBOX_DATA)));
return 0;
}
static void configure_pch_power_sharing(void)
{
u32 pch_power, pch_power_ext, pmsync, pmsync2;
int i;
/* Read PCH Power levels from PCODE */
pch_power = pcode_mailbox_read(MAILBOX_BIOS_CMD_READ_PCH_POWER);
pch_power_ext = pcode_mailbox_read(MAILBOX_BIOS_CMD_READ_PCH_POWER_EXT);
debug("PCH Power: PCODE Levels 0x%08x 0x%08x\n", pch_power,
pch_power_ext);
pmsync = readl(RCB_REG(PMSYNC_CONFIG));
pmsync2 = readl(RCB_REG(PMSYNC_CONFIG2));
/*
* Program PMSYNC_TPR_CONFIG PCH power limit values
* pmsync[0:4] = mailbox[0:5]
* pmsync[8:12] = mailbox[6:11]
* pmsync[16:20] = mailbox[12:17]
*/
for (i = 0; i < 3; i++) {
u32 level = pch_power & 0x3f;
pch_power >>= 6;
pmsync &= ~(0x1f << (i * 8));
pmsync |= (level & 0x1f) << (i * 8);
}
writel(pmsync, RCB_REG(PMSYNC_CONFIG));
/*
* Program PMSYNC_TPR_CONFIG2 Extended PCH power limit values
* pmsync2[0:4] = mailbox[23:18]
* pmsync2[8:12] = mailbox_ext[6:11]
* pmsync2[16:20] = mailbox_ext[12:17]
* pmsync2[24:28] = mailbox_ext[18:22]
*/
pmsync2 &= ~0x1f;
pmsync2 |= pch_power & 0x1f;
for (i = 1; i < 4; i++) {
u32 level = pch_power_ext & 0x3f;
pch_power_ext >>= 6;
pmsync2 &= ~(0x1f << (i * 8));
pmsync2 |= (level & 0x1f) << (i * 8);
}
writel(pmsync2, RCB_REG(PMSYNC_CONFIG2));
}
static int bsp_init_before_ap_bringup(struct udevice *dev)
{
int ret;
initialize_vr_config(dev);
ret = calibrate_24mhz_bclk();
if (ret)
return ret;
configure_pch_power_sharing();
return 0;
}
int cpu_config_tdp_levels(void)
{
msr_t platform_info;
/* Bits 34:33 indicate how many levels supported */
platform_info = msr_read(MSR_PLATFORM_INFO);
return (platform_info.hi >> 1) & 3;
}
static void set_max_ratio(void)
{
msr_t msr, perf_ctl;
perf_ctl.hi = 0;
/* Check for configurable TDP option */
if (turbo_get_state() == TURBO_ENABLED) {
msr = msr_read(MSR_NHM_TURBO_RATIO_LIMIT);
perf_ctl.lo = (msr.lo & 0xff) << 8;
} else if (cpu_config_tdp_levels()) {
/* Set to nominal TDP ratio */
msr = msr_read(MSR_CONFIG_TDP_NOMINAL);
perf_ctl.lo = (msr.lo & 0xff) << 8;
} else {
/* Platform Info bits 15:8 give max ratio */
msr = msr_read(MSR_PLATFORM_INFO);
perf_ctl.lo = msr.lo & 0xff00;
}
msr_write(IA32_PERF_CTL, perf_ctl);
debug("cpu: frequency set to %d\n",
((perf_ctl.lo >> 8) & 0xff) * CPU_BCLK);
}
int broadwell_init(struct udevice *dev)
{
struct cpu_broadwell_priv *priv = dev_get_priv(dev);
int num_threads;
int num_cores;
msr_t msr;
int ret;
msr = msr_read(CORE_THREAD_COUNT_MSR);
num_threads = (msr.lo >> 0) & 0xffff;
num_cores = (msr.lo >> 16) & 0xffff;
debug("CPU has %u cores, %u threads enabled\n", num_cores,
num_threads);
priv->ht_disabled = num_threads == num_cores;
ret = bsp_init_before_ap_bringup(dev);
if (ret)
return ret;
set_max_ratio();
return ret;
}
static void configure_mca(void)
{
msr_t msr;
const unsigned int mcg_cap_msr = 0x179;
int i;
int num_banks;
msr = msr_read(mcg_cap_msr);
num_banks = msr.lo & 0xff;
msr.lo = 0;
msr.hi = 0;
/*
* TODO(adurbin): This should only be done on a cold boot. Also, some
* of these banks are core vs package scope. For now every CPU clears
* every bank
*/
for (i = 0; i < num_banks; i++)
msr_write(MSR_IA32_MC0_STATUS + (i * 4), msr);
}
static void enable_lapic_tpr(void)
{
msr_t msr;
msr = msr_read(MSR_PIC_MSG_CONTROL);
msr.lo &= ~(1 << 10); /* Enable APIC TPR updates */
msr_write(MSR_PIC_MSG_CONTROL, msr);
}
static void configure_c_states(void)
{
msr_t msr;
msr = msr_read(MSR_PMG_CST_CONFIG_CONTROL);
msr.lo |= (1 << 31); /* Timed MWAIT Enable */
msr.lo |= (1 << 30); /* Package c-state Undemotion Enable */
msr.lo |= (1 << 29); /* Package c-state Demotion Enable */
msr.lo |= (1 << 28); /* C1 Auto Undemotion Enable */
msr.lo |= (1 << 27); /* C3 Auto Undemotion Enable */
msr.lo |= (1 << 26); /* C1 Auto Demotion Enable */
msr.lo |= (1 << 25); /* C3 Auto Demotion Enable */
msr.lo &= ~(1 << 10); /* Disable IO MWAIT redirection */
/* The deepest package c-state defaults to factory-configured value */
msr_write(MSR_PMG_CST_CONFIG_CONTROL, msr);
msr = msr_read(MSR_MISC_PWR_MGMT);
msr.lo &= ~(1 << 0); /* Enable P-state HW_ALL coordination */
msr_write(MSR_MISC_PWR_MGMT, msr);
msr = msr_read(MSR_POWER_CTL);
msr.lo |= (1 << 18); /* Enable Energy Perf Bias MSR 0x1b0 */
msr.lo |= (1 << 1); /* C1E Enable */
msr.lo |= (1 << 0); /* Bi-directional PROCHOT# */
msr_write(MSR_POWER_CTL, msr);
/* C-state Interrupt Response Latency Control 0 - package C3 latency */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_0_LIMIT;
msr_write(MSR_C_STATE_LATENCY_CONTROL_0, msr);
/* C-state Interrupt Response Latency Control 1 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_1_LIMIT;
msr_write(MSR_C_STATE_LATENCY_CONTROL_1, msr);
/* C-state Interrupt Response Latency Control 2 - package C6/C7 short */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_2_LIMIT;
msr_write(MSR_C_STATE_LATENCY_CONTROL_2, msr);
/* C-state Interrupt Response Latency Control 3 - package C8 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_3_LIMIT;
msr_write(MSR_C_STATE_LATENCY_CONTROL_3, msr);
/* C-state Interrupt Response Latency Control 4 - package C9 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_4_LIMIT;
msr_write(MSR_C_STATE_LATENCY_CONTROL_4, msr);
/* C-state Interrupt Response Latency Control 5 - package C10 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_5_LIMIT;
msr_write(MSR_C_STATE_LATENCY_CONTROL_5, msr);
}
static void configure_misc(void)
{
msr_t msr;
msr = msr_read(MSR_IA32_MISC_ENABLE);
msr.lo |= (1 << 0); /* Fast String enable */
msr.lo |= (1 << 3); /* TM1/TM2/EMTTM enable */
msr.lo |= (1 << 16); /* Enhanced SpeedStep Enable */
msr_write(MSR_IA32_MISC_ENABLE, msr);
/* Disable thermal interrupts */
msr.lo = 0;
msr.hi = 0;
msr_write(MSR_IA32_THERM_INTERRUPT, msr);
/* Enable package critical interrupt only */
msr.lo = 1 << 4;
msr.hi = 0;
msr_write(MSR_IA32_PACKAGE_THERM_INTERRUPT, msr);
}
static void configure_thermal_target(struct udevice *dev)
{
int tcc_offset;
msr_t msr;
tcc_offset = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"intel,tcc-offset", 0);
/* Set TCC activaiton offset if supported */
msr = msr_read(MSR_PLATFORM_INFO);
if ((msr.lo & (1 << 30)) && tcc_offset) {
msr = msr_read(MSR_TEMPERATURE_TARGET);
msr.lo &= ~(0xf << 24); /* Bits 27:24 */
msr.lo |= (tcc_offset & 0xf) << 24;
msr_write(MSR_TEMPERATURE_TARGET, msr);
}
}
static void configure_dca_cap(void)
{
struct cpuid_result cpuid_regs;
msr_t msr;
/* Check feature flag in CPUID.(EAX=1):ECX[18]==1 */
cpuid_regs = cpuid(1);
if (cpuid_regs.ecx & (1 << 18)) {
msr = msr_read(MSR_IA32_PLATFORM_DCA_CAP);
msr.lo |= 1;
msr_write(MSR_IA32_PLATFORM_DCA_CAP, msr);
}
}
static void set_energy_perf_bias(u8 policy)
{
msr_t msr;
int ecx;
/* Determine if energy efficient policy is supported */
ecx = cpuid_ecx(0x6);
if (!(ecx & (1 << 3)))
return;
/* Energy Policy is bits 3:0 */
msr = msr_read(MSR_IA32_ENERGY_PERFORMANCE_BIAS);
msr.lo &= ~0xf;
msr.lo |= policy & 0xf;
msr_write(MSR_IA32_ENERGY_PERFORMANCE_BIAS, msr);
debug("cpu: energy policy set to %u\n", policy);
}
/* All CPUs including BSP will run the following function */
static void cpu_core_init(struct udevice *dev)
{
/* Clear out pending MCEs */
configure_mca();
/* Enable the local cpu apics */
enable_lapic_tpr();
/* Configure C States */
configure_c_states();
/* Configure Enhanced SpeedStep and Thermal Sensors */
configure_misc();
/* Thermal throttle activation offset */
configure_thermal_target(dev);
/* Enable Direct Cache Access */
configure_dca_cap();
/* Set energy policy */
set_energy_perf_bias(ENERGY_POLICY_NORMAL);
/* Enable Turbo */
turbo_enable();
}
/*
* Configure processor power limits if possible
* This must be done AFTER set of BIOS_RESET_CPL
*/
void cpu_set_power_limits(int power_limit_1_time)
{
msr_t msr;
msr_t limit;
unsigned power_unit;
unsigned tdp, min_power, max_power, max_time;
u8 power_limit_1_val;
msr = msr_read(MSR_PLATFORM_INFO);
if (power_limit_1_time > ARRAY_SIZE(power_limit_time_sec_to_msr))
power_limit_1_time = 28;
if (!(msr.lo & PLATFORM_INFO_SET_TDP))
return;
/* Get units */
msr = msr_read(MSR_PKG_POWER_SKU_UNIT);
power_unit = 2 << ((msr.lo & 0xf) - 1);
/* Get power defaults for this SKU */
msr = msr_read(MSR_PKG_POWER_SKU);
tdp = msr.lo & 0x7fff;
min_power = (msr.lo >> 16) & 0x7fff;
max_power = msr.hi & 0x7fff;
max_time = (msr.hi >> 16) & 0x7f;
debug("CPU TDP: %u Watts\n", tdp / power_unit);
if (power_limit_time_msr_to_sec[max_time] > power_limit_1_time)
power_limit_1_time = power_limit_time_msr_to_sec[max_time];
if (min_power > 0 && tdp < min_power)
tdp = min_power;
if (max_power > 0 && tdp > max_power)
tdp = max_power;
power_limit_1_val = power_limit_time_sec_to_msr[power_limit_1_time];
/* Set long term power limit to TDP */
limit.lo = 0;
limit.lo |= tdp & PKG_POWER_LIMIT_MASK;
limit.lo |= PKG_POWER_LIMIT_EN;
limit.lo |= (power_limit_1_val & PKG_POWER_LIMIT_TIME_MASK) <<
PKG_POWER_LIMIT_TIME_SHIFT;
/* Set short term power limit to 1.25 * TDP */
limit.hi = 0;
limit.hi |= ((tdp * 125) / 100) & PKG_POWER_LIMIT_MASK;
limit.hi |= PKG_POWER_LIMIT_EN;
/* Power limit 2 time is only programmable on server SKU */
msr_write(MSR_PKG_POWER_LIMIT, limit);
/* Set power limit values in MCHBAR as well */
writel(limit.lo, MCHBAR_REG(MCH_PKG_POWER_LIMIT_LO));
writel(limit.hi, MCHBAR_REG(MCH_PKG_POWER_LIMIT_HI));
/* Set DDR RAPL power limit by copying from MMIO to MSR */
msr.lo = readl(MCHBAR_REG(MCH_DDR_POWER_LIMIT_LO));
msr.hi = readl(MCHBAR_REG(MCH_DDR_POWER_LIMIT_HI));
msr_write(MSR_DDR_RAPL_LIMIT, msr);
/* Use nominal TDP values for CPUs with configurable TDP */
if (cpu_config_tdp_levels()) {
msr = msr_read(MSR_CONFIG_TDP_NOMINAL);
limit.hi = 0;
limit.lo = msr.lo & 0xff;
msr_write(MSR_TURBO_ACTIVATION_RATIO, limit);
}
}
static int broadwell_get_info(struct udevice *dev, struct cpu_info *info)
{
msr_t msr;
msr = msr_read(IA32_PERF_CTL);
info->cpu_freq = ((msr.lo >> 8) & 0xff) * BROADWELL_BCLK * 1000000;
info->features = 1 << CPU_FEAT_L1_CACHE | 1 << CPU_FEAT_MMU |
1 << CPU_FEAT_UCODE | 1 << CPU_FEAT_DEVICE_ID;
return 0;
}
static int broadwell_get_count(struct udevice *dev)
{
return 4;
}
static int cpu_x86_broadwell_probe(struct udevice *dev)
{
if (dev->seq == 0) {
cpu_core_init(dev);
return broadwell_init(dev);
}
return 0;
}
static const struct cpu_ops cpu_x86_broadwell_ops = {
.get_desc = cpu_x86_get_desc,
.get_info = broadwell_get_info,
.get_count = broadwell_get_count,
.get_vendor = cpu_x86_get_vendor,
};
static const struct udevice_id cpu_x86_broadwell_ids[] = {
{ .compatible = "intel,core-i3-gen5" },
{ }
};
U_BOOT_DRIVER(cpu_x86_broadwell_drv) = {
.name = "cpu_x86_broadwell",
.id = UCLASS_CPU,
.of_match = cpu_x86_broadwell_ids,
.bind = cpu_x86_bind,
.probe = cpu_x86_broadwell_probe,
.ops = &cpu_x86_broadwell_ops,
.priv_auto_alloc_size = sizeof(struct cpu_broadwell_priv),
.flags = DM_FLAG_PRE_RELOC,
};