blob: 33b9ed8d0acf0d9c73258d53f8321a93ef75c7b9 [file] [log] [blame]
/*
* Copyright 2017-2018 NXP
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <dm.h>
#include <errno.h>
#include <watchdog.h>
#include <clk.h>
#include "fsl_fspi.h"
DECLARE_GLOBAL_DATA_PTR;
#define RX_BUFFER_SIZE 0x200
#define TX_BUFFER_SIZE 0x400
#define AHB_BUFFER_SIZE 0x800
#define OFFSET_BITS_MASK_4B GENMASK(31, 0)
#define OFFSET_BITS_MASK GENMASK(23, 0)
#define FLASH_STATUS_WEL 0x02
/* SEQID */
#define SEQID_READ 0
#define SEQID_WREN 1
#define SEQID_FAST_READ 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#define SEQID_BE_4K 8
#ifdef CONFIG_SPI_FLASH_BAR
#define SEQID_BRRD 9
#define SEQID_BRWR 10
#define SEQID_RDEAR 11
#define SEQID_WREAR 12
#endif
#define SEQID_RDEVCR 13
#define SEQID_WREVCR 14
#define SEQID_QUAD_OUTPUT 15
#define SEQID_RDFSR 16
#define SEQID_EN4B 17
/* FSPI CMD */
#define FSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
#define FSPI_CMD_RDSR 0x05 /* Read status register */
#define FSPI_CMD_WREN 0x06 /* Write enable */
#define FSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define FSPI_CMD_READ 0x03 /* Read data bytes */
#define FSPI_CMD_BE_4K 0x20 /* 4K erase */
#define FSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
#define FSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
#define FSPI_CMD_RDID 0x9f /* Read JEDEC ID */
/* Used for Micron, winbond and Macronix flashes */
#define FSPI_CMD_WREAR 0xc5 /* EAR register write */
#define FSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
/* Used for Spansion flashes only. */
#define FSPI_CMD_BRRD 0x16 /* Bank register read */
#define FSPI_CMD_BRWR 0x17 /* Bank register write */
/* 4-byte address FSPI CMD - used on Spansion and some Macronix flashes */
#define FSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
#define FSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
#define FSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
#define FSPI_CMD_BE_4K_4B 0x21 /* 4K erase */
#define FSPI_CMD_RD_EVCR 0x65 /* Read EVCR register */
#define FSPI_CMD_WR_EVCR 0x61 /* Write EVCR register */
#define FSPI_CMD_EN4B 0xB7
/* 1-1-4 READ CMD */
#define FSPI_CMD_QUAD_OUTPUT 0x6b
#define FSPI_CMD_DDR_QUAD_OUTPUT 0x6d
/* read flag status register */
#define FSPI_CMD_RDFSR 0x70
/* fsl_fspi_platdata flags */
#define FSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
/* default SCK frequency, unit: HZ */
#define FSL_FSPI_DEFAULT_SCK_FREQ 50000000
/* FSPI max chipselect signals number */
#define FSL_FSPI_MAX_CHIPSELECT_NUM 4
#ifdef CONFIG_DM_SPI
/**
* struct fsl_fspi_platdata - platform data for NXP FSPI
*
* @flags: Flags for FSPI FSPI_FLAG_...
* @speed_hz: Default SCK frequency
* @reg_base: Base address of FSPI registers
* @amba_base: Base address of FSPI memory mapping
* @amba_total_size: size of FSPI memory mapping
* @flash_num: Number of active slave devices
* @num_chipselect: Number of FSPI chipselect signals
*/
struct fsl_fspi_platdata {
u32 flags;
u32 speed_hz;
u32 reg_base;
u32 amba_base;
u32 amba_total_size;
u32 flash_num;
u32 num_chipselect;
};
#endif
/**
* struct fsl_fspi_priv - private data for NXP FSPI
*
* @flags: Flags for FSPI FSPI_FLAG_...
* @bus_clk: FSPI input clk frequency
* @speed_hz: Default SCK frequency
* @cur_seqid: current LUT table sequence id
* @sf_addr: flash access offset
* @amba_base: Base address of FSPI memory mapping of every CS
* @amba_total_size: size of FSPI memory mapping
* @cur_amba_base: Base address of FSPI memory mapping of current CS
* @flash_num: Number of active slave devices
* @num_chipselect: Number of FSPI chipselect signals
* @regs: Point to FSPI register structure for I/O access
*/
struct fsl_fspi_priv {
u32 flags;
u32 bus_clk;
u32 speed_hz;
u32 cur_seqid;
u32 sf_addr;
u32 amba_base[FSL_FSPI_MAX_CHIPSELECT_NUM];
u32 amba_total_size;
u32 cur_amba_base;
u32 flash_num;
u32 num_chipselect;
struct fsl_fspi_regs *regs;
};
#ifndef CONFIG_DM_SPI
struct fsl_fspi {
struct spi_slave slave;
struct fsl_fspi_priv priv;
};
#endif
static u32 fspi_read32(u32 flags, u32 *addr)
{
return flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
in_be32(addr) : in_le32(addr);
}
static void fspi_write32(u32 flags, u32 *addr, u32 val)
{
flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
out_be32(addr, val) : out_le32(addr, val);
}
/* FSPI support swapping the flash read/write data
* in hardware
*/
static inline u32 fspi_endian_xchg(u32 data)
{
return data;
}
static void fspi_set_lut(struct fsl_fspi_priv *priv)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 lut_base;
/* Unlock the LUT */
fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_UNLOCK);
/* READ */
lut_base = SEQID_READ * 4;
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_READ) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
fspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(0) | PAD0(LUT_PAD1) |
INSTR0(LUT_READ));
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Write Enable */
lut_base = SEQID_WREN * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_WREN) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Fast Read */
lut_base = SEQID_FAST_READ * 4;
#ifdef CONFIG_SPI_FLASH_BAR
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_FAST_READ_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
INSTR1(LUT_ADDR));
#endif
fspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
OPRND1(0) | PAD1(LUT_PAD1) |
INSTR1(LUT_READ));
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Read Status */
lut_base = SEQID_RDSR * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDSR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Erase a sector */
lut_base = SEQID_SE * 4;
#ifdef CONFIG_SPI_FLASH_BAR
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_SE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_SE) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_CHIP_ERASE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Page Program */
lut_base = SEQID_PP * 4;
#ifdef CONFIG_SPI_FLASH_BAR
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_PP) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_PP) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
fspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(0) |
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* READ ID */
lut_base = SEQID_RDID * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDID) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* SUB SECTOR 4K ERASE */
lut_base = SEQID_BE_4K * 4;
#ifdef CONFIG_SPI_FLASH_BAR
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BE_4K) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BE_4K) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BE_4K_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
#ifdef CONFIG_SPI_FLASH_BAR
/*
* BRRD BRWR RDEAR WREAR are all supported, because it is hard to
* dynamically check whether to set BRRD BRWR or RDEAR WREAR during
* initialization.
*/
lut_base = SEQID_BRRD * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BRRD) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
lut_base = SEQID_BRWR * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BRWR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
lut_base = SEQID_RDEAR * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDEAR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
lut_base = SEQID_WREAR * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_WREAR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
#endif
lut_base = SEQID_RDEVCR * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RD_EVCR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
lut_base = SEQID_WREVCR * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_WR_EVCR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
#ifdef CONFIG_FSPI_QUAD_SUPPORT
/* QUAD OUTPUT READ */
lut_base = SEQID_QUAD_OUTPUT * 4;
fspi_write32(priv->flags, &regs->lut[lut_base],
OPRND0(FSPI_CMD_DDR_QUAD_OUTPUT) | PAD0(LUT_PAD1) |
INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR_DDR));
fspi_write32(priv->flags, &regs->lut[lut_base + 1],
OPRND0(0xc) | PAD0(LUT_PAD4) |
INSTR0(LUT_DUMMY_DDR) | OPRND1(0) |
PAD1(LUT_PAD4) | INSTR1(LUT_READ_DDR));
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
#endif
/* Read Flag Status */
lut_base = SEQID_RDFSR * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDFSR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Enter 4 bytes address mode */
lut_base = SEQID_EN4B * 4;
fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_EN4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
/* Lock the LUT */
fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_LOCK);
}
#if defined(CONFIG_SYS_FSL_FSPI_AHB)
/*
* If we have changed the content of the flash by writing or erasing,
* we need to invalidate the AHB buffer. If we do not do so, we may read out
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
* domain at the same time.
*/
static inline void fspi_ahb_invalid(struct fsl_fspi_priv *priv)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 reg;
reg = fspi_read32(priv->flags, &regs->mcr0);
reg |= FLEXSPI_MCR0_SWRST_MASK;
fspi_write32(priv->flags, &regs->mcr0, reg);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
while ((fspi_read32(priv->flags, &regs->mcr0) & 1))
;
}
#define FSPI_AHB_BASE_ADDR 0x08000000
/* Read out the data from the AHB buffer. */
static inline void fspi_ahb_read(struct fsl_fspi_priv *priv, u8 *rxbuf, int len)
{
/* Read out the data directly from the AHB buffer. */
memcpy(rxbuf, (u8 *)(0x08000000 + (uintptr_t)priv->sf_addr) , len);
}
/*
* There are two different ways to read out the data from the flash:
* the "IP Command Read" and the "AHB Command Read".
*
* The IC guy suggests we use the "AHB Command Read" which is faster
* then the "IP Command Read". (What's more is that there is a bug in
* the "IP Command Read" in the Vybrid.)
*
* After we set up the registers for the "AHB Command Read", we can use
* the memcpy to read the data directly. A "missed" access to the buffer
* causes the controller to clear the buffer, and use the sequence pointed
* by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
*/
static void fspi_init_ahb_read(struct fsl_fspi_priv *priv)
{
struct fsl_fspi_regs *regs = priv->regs;
int i;
/* AHB configuration for access buffer 0~7 .*/
for (i = 0; i < 7; i++)
fspi_write32(priv->flags, &regs->ahbrxbuf0cr0 + i, 0);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the read
* performance
*/
fspi_write32(priv->flags, &regs->ahbrxbuf7cr0, AHB_BUFFER_SIZE / 8 |
FLEXSPI_AHBRXBUF0CR7_PREF_MASK);
fspi_write32(priv->flags, &regs->ahbcr, FLEXSPI_AHBCR_PREF_EN_MASK);
/*
* Set the default lut sequence for AHB Read.
* Parallel mode is disabled.
*/
#ifdef CONFIG_FSPI_QUAD_SUPPORT
fspi_write32(priv->flags, &regs->flsha1cr2, SEQID_QUAD_OUTPUT);
#else
fspi_write32(priv->flags, &regs->flsha1cr2, SEQID_FAST_READ);
#endif
}
#endif
#ifdef CONFIG_SPI_FLASH_BAR
/* Bank register read/write, EAR register read/write */
static void fspi_op_rdbank(struct fsl_fspi_priv *priv, u8 *rxbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 data, seqid;
/* invalid the RXFIFO first */
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
if (priv->cur_seqid == FSPI_CMD_BRRD)
seqid = SEQID_BRRD;
else
seqid = SEQID_RDEAR;
fspi_write32(priv->flags, &regs->ipcr1,
(seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
while (1) {
data = fspi_read32(priv->flags, &regs->rfdr[0]);
memcpy(rxbuf, &data, len);
break;
}
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
#endif
static void fspi_op_rdevcr(struct fsl_fspi_priv *priv, u8 *rxbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 data;
/* invalid the RXFIFO first */
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_RDEVCR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
while (1) {
data = fspi_read32(priv->flags, &regs->rfdr[0]);
memcpy(rxbuf, &data, len);
break;
}
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
static void fspi_op_wrevcr(struct fsl_fspi_priv *priv, u8 *txbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
/* invalid the TXFIFO first */
fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
/* Wait for TXFIFO empty*/
while (!(fspi_read32(priv->flags, &regs->intr) & FLEXSPI_INTR_IPTXWE_MASK))
;
/* write the data to TXFIFO */
memcpy(&regs->tfdr, txbuf, len);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPTXWE_MASK);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_WREVCR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr) & FLEXSPI_INTR_IPCMDDONE_MASK))
;
/* invalid the TXFIFO first */
fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
static void fspi_op_rdid(struct fsl_fspi_priv *priv, u32 *rxbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 data, size;
int i;
/* invalid the RXFIFO first */
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_RDID << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
i = 0;
while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
data = fspi_read32(priv->flags, &regs->rfdr[i]);
size = (len < 4) ? len : 4;
memcpy(rxbuf, &data, size);
len -= size;
rxbuf++;
i++;
}
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
#ifndef CONFIG_SYS_FSL_FSPI_AHB
/* If not use AHB read, read data from ip interface */
static void fspi_op_read(struct fsl_fspi_priv *priv, u32 *rxbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
int i, size, rx_size;
u32 to_or_from;
to_or_from = priv->sf_addr + priv->cur_amba_base;
/* invalid the RXFIFO */
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
while (len > 0) {
WATCHDOG_RESET();
fspi_write32(priv->flags, &regs->ipcr0, to_or_from);
rx_size = (len > RX_BUFFER_SIZE) ?
RX_BUFFER_SIZE : len;
#ifdef CONFIG_FSPI_QUAD_SUPPORT
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_QUAD_OUTPUT << FLEXSPI_IPCR1_SEQID_SHIFT) |
rx_size);
#else
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_FAST_READ << FLEXSPI_IPCR1_SEQID_SHIFT) |
rx_size);
#endif
to_or_from += rx_size;
len -= rx_size;
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
size = rx_size / 8;
for (i = 0; i < size; ++i) {
/* Wait for RXFIFO available*/
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPRXWA_MASK))
;
memcpy(rxbuf, &regs->rfdr, 8);
rxbuf += 2;
/* move the FIFO pointer */
fspi_write32(priv->flags, &regs->intr,
FLEXSPI_INTR_IPRXWA_MASK);
}
size = rx_size % 8;
if (size) {
/* Wait for data filled*/
while (!(fspi_read32(priv->flags, &regs->iprxfsts)
& FLEXSPI_IPRXFSTS_FILL_MASK))
;
memcpy(rxbuf, &regs->rfdr, size);
}
/* invalid the RXFIFO */
fspi_write32(priv->flags, &regs->iprxfcr,
FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr,
FLEXSPI_INTR_IPCMDDONE_MASK);
}
}
#endif
static void fspi_op_write(struct fsl_fspi_priv *priv, u8 *txbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 seqid;
int i, size, tx_size;
u32 to_or_from = 0;
/* invalid the TXFIFO first */
fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_WREN << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
/* invalid the TXFIFO first */
fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
to_or_from = priv->sf_addr + priv->cur_amba_base;
while (len > 0) {
/* Default is page programming */
seqid = SEQID_PP;
#ifdef CONFIG_SPI_FLASH_BAR
if (priv->cur_seqid == FSPI_CMD_BRWR)
seqid = SEQID_BRWR;
else if (priv->cur_seqid == FSPI_CMD_WREAR)
seqid = SEQID_WREAR;
#endif
fspi_write32(priv->flags, &regs->ipcr0, to_or_from);
tx_size = (len > TX_BUFFER_SIZE) ?
TX_BUFFER_SIZE : len;
to_or_from += tx_size;
len -= tx_size;
size = tx_size / 8;
for (i = 0; i < size; i++) {
/* Wait for TXFIFO empty*/
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPTXWE_MASK))
;
memcpy(&regs->tfdr, txbuf, 8);
txbuf += 8;
fspi_write32(priv->flags, &regs->intr,
FLEXSPI_INTR_IPTXWE_MASK);
}
size = tx_size % 8;
if (size) {
/* Wait for TXFIFO empty*/
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPTXWE_MASK))
;
memcpy(&regs->tfdr, txbuf, size);
fspi_write32(priv->flags, &regs->intr,
FLEXSPI_INTR_IPTXWE_MASK);
}
fspi_write32(priv->flags, &regs->ipcr1,
(seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | tx_size);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
/* invalid the TXFIFO first */
fspi_write32(priv->flags, &regs->iptxfcr,
FLEXSPI_IPTXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr,
FLEXSPI_INTR_IPCMDDONE_MASK);
}
}
static void fspi_op_rdsr(struct fsl_fspi_priv *priv, void *rxbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 data;
/* invalid the RXFIFO first */
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_RDSR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
data = fspi_read32(priv->flags, &regs->rfdr[0]);
memcpy(rxbuf, &data, len);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
static void fspi_op_rdfsr(struct fsl_fspi_priv *priv, void *rxbuf, u32 len)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 data;
/* invalid the RXFIFO first */
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_RDFSR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
data = fspi_read32(priv->flags, &regs->rfdr[0]);
memcpy(rxbuf, &data, len);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
static void fspi_op_erase(struct fsl_fspi_priv *priv)
{
struct fsl_fspi_regs *regs = priv->regs;
u32 to_or_from = 0;
to_or_from = priv->sf_addr + priv->cur_amba_base;
fspi_write32(priv->flags, &regs->ipcr0, to_or_from);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_WREN << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
if (priv->cur_seqid == FSPI_CMD_SE || priv->cur_seqid == FSPI_CMD_SE_4B) {
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_SE << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
} else if (priv->cur_seqid == FSPI_CMD_BE_4K || priv->cur_seqid == FSPI_CMD_BE_4K_4B) {
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_BE_4K << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
}
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
static void fspi_op_enter_4bytes(struct fsl_fspi_priv *priv)
{
struct fsl_fspi_regs *regs = priv->regs;
/* invalid the TXFIFO first */
fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);
fspi_write32(priv->flags, &regs->ipcr1,
(SEQID_EN4B << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
/* Trigger the command */
fspi_write32(priv->flags, &regs->ipcmd, 1);
/* Wait for command done */
while (!(fspi_read32(priv->flags, &regs->intr)
& FLEXSPI_INTR_IPCMDDONE_MASK))
;
fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}
int fspi_xfer(struct fsl_fspi_priv *priv, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
u32 bytes = DIV_ROUND_UP(bitlen, 8);
static u32 wr_sfaddr;
u32 txbuf = 0;
if (dout) {
if (flags & SPI_XFER_BEGIN) {
priv->cur_seqid = *(u8 *)dout;
if (bytes > 1) {
int i, addr_bytes;
if (FSL_FSPI_FLASH_SIZE <= SZ_16M)
addr_bytes = 3;
else
#ifdef CONFIG_SPI_FLASH_BAR
addr_bytes = 3;
#else
addr_bytes = 4;
#endif
dout = (u8 *)dout + 1;
txbuf = *(u8 *)dout;
for (i = 1; i < addr_bytes; i++) {
txbuf <<= 8;
txbuf |= *(((u8 *)dout) + i);
}
debug("seqid 0x%x addr 0x%x\n", priv->cur_seqid, txbuf);
}
}
if (flags == SPI_XFER_END) {
if (priv->cur_seqid == FSPI_CMD_WR_EVCR) {
fspi_op_wrevcr(priv, (u8 *)dout, bytes);
return 0;
} else if ((priv->cur_seqid == FSPI_CMD_SE) ||
(priv->cur_seqid == FSPI_CMD_BE_4K) ||
(priv->cur_seqid == FSPI_CMD_SE_4B) ||
(priv->cur_seqid == FSPI_CMD_BE_4K_4B)) {
int i;
txbuf = *(u8 *)dout;
for (i = 1; i < bytes; i++) {
txbuf <<= 8;
txbuf |= *(((u8 *)dout) + i);
}
priv->sf_addr = txbuf;
fspi_op_erase(priv);
#ifdef CONFIG_SYS_FSL_FSPI_AHB
fspi_ahb_invalid(priv);
#endif
return 0;
}
priv->sf_addr = wr_sfaddr;
fspi_op_write(priv, (u8 *)dout, bytes);
return 0;
}
if (priv->cur_seqid == FSPI_CMD_QUAD_OUTPUT ||
priv->cur_seqid == FSPI_CMD_FAST_READ ||
priv->cur_seqid == FSPI_CMD_FAST_READ_4B) {
priv->sf_addr = txbuf;
} else if (priv->cur_seqid == FSPI_CMD_PP ||
priv->cur_seqid == FSPI_CMD_PP_4B) {
wr_sfaddr = txbuf;
} else if (priv->cur_seqid == FSPI_CMD_WR_EVCR) {
wr_sfaddr = 0;
} else if ((priv->cur_seqid == FSPI_CMD_BRWR) ||
(priv->cur_seqid == FSPI_CMD_WREAR)) {
#ifdef CONFIG_SPI_FLASH_BAR
wr_sfaddr = 0;
#endif
} else if (priv->cur_seqid == FSPI_CMD_EN4B) {
fspi_op_enter_4bytes(priv);
}
}
if (din) {
if (priv->cur_seqid == FSPI_CMD_QUAD_OUTPUT ||
priv->cur_seqid == FSPI_CMD_FAST_READ ||
priv->cur_seqid == FSPI_CMD_FAST_READ_4B) {
#ifdef CONFIG_SYS_FSL_FSPI_AHB
fspi_ahb_read(priv, din, bytes);
#else
fspi_op_read(priv, din, bytes);
#endif
} else if (priv->cur_seqid == FSPI_CMD_RDID)
fspi_op_rdid(priv, din, bytes);
else if (priv->cur_seqid == FSPI_CMD_RDSR)
fspi_op_rdsr(priv, din, bytes);
else if (priv->cur_seqid == FSPI_CMD_RDFSR)
fspi_op_rdfsr(priv, din, bytes);
else if (priv->cur_seqid == FSPI_CMD_RD_EVCR)
fspi_op_rdevcr(priv, din, bytes);
#ifdef CONFIG_SPI_FLASH_BAR
else if ((priv->cur_seqid == FSPI_CMD_BRRD) ||
(priv->cur_seqid == FSPI_CMD_RDEAR)) {
priv->sf_addr = 0;
fspi_op_rdbank(priv, din, bytes);
}
#endif
}
#ifdef CONFIG_SYS_FSL_FSPI_AHB
if ((priv->cur_seqid == FSPI_CMD_SE) ||
(priv->cur_seqid == FSPI_CMD_SE_4B) ||
(priv->cur_seqid == FSPI_CMD_PP) ||
(priv->cur_seqid == FSPI_CMD_PP_4B) ||
(priv->cur_seqid == FSPI_CMD_BE_4K) ||
(priv->cur_seqid == FSPI_CMD_BE_4K_4B) ||
(priv->cur_seqid == FSPI_CMD_WREAR) ||
(priv->cur_seqid == FSPI_CMD_BRWR))
fspi_ahb_invalid(priv);
#endif
return 0;
}
void fspi_module_disable(struct fsl_fspi_priv *priv, u8 disable)
{
u32 mcr_val;
mcr_val = fspi_read32(priv->flags, &priv->regs->mcr0);
if (disable)
mcr_val |= FLEXSPI_MCR0_MDIS_MASK;
else
mcr_val &= ~FLEXSPI_MCR0_MDIS_MASK;
fspi_write32(priv->flags, &priv->regs->mcr0, mcr_val);
}
void fspi_cfg_smpr(struct fsl_fspi_priv *priv, u32 clear_bits, u32 set_bits)
{
return;
#if 0
u32 smpr_val;
smpr_val = fspi_read32(priv->flags, &priv->regs->smpr);
smpr_val &= ~clear_bits;
smpr_val |= set_bits;
fspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
#endif
}
__weak void init_clk_fspi(int index)
{
}
#ifndef CONFIG_DM_SPI
static unsigned long spi_bases[] = {
FSPI0_BASE_ADDR,
};
static unsigned long amba_bases[] = {
FSPI0_AMBA_BASE,
};
static inline struct fsl_fspi *to_fspi_spi(struct spi_slave *slave)
{
return container_of(slave, struct fsl_fspi, slave);
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_fspi *fspi;
struct fsl_fspi_regs *regs;
u32 total_size;
if (bus >= ARRAY_SIZE(spi_bases))
return NULL;
if (cs >= FSL_FSPI_FLASH_NUM)
return NULL;
fspi = spi_alloc_slave(struct fsl_fspi, bus, cs);
if (!fspi)
return NULL;
#ifdef CONFIG_SYS_FSL_FSPI_BE
fspi->priv.flags |= FSPI_FLAG_REGMAP_ENDIAN_BIG;
#endif
init_clk_fspi(bus);
regs = (struct fsl_fspi_regs *)spi_bases[bus];
fspi->priv.regs = regs;
/*
* According cs, use different amba_base to choose the
* corresponding flash devices.
*
* If not, only one flash device is used even if passing
* different cs using `sf probe`
*/
fspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_FSPI_FLASH_SIZE;
fspi->slave.max_write_size = TX_BUFFER_SIZE;
#ifdef CONFIG_FSPI_QUAD_SUPPORT
fspi->slave.mode |= SPI_RX_QUAD;
#endif
fspi_write32(fspi->priv.flags, &regs->mcr0,
FLEXSPI_MCR0_SWRST_MASK);
do {
udelay(1);
} while (0x1 & fspi_read32(fspi->priv.flags, &regs->mcr0));
/* Disable the module */
fspi_module_disable(&fspi->priv, 1);
/* Enable the module and set to proper value*/
fspi_write32(fspi->priv.flags, &regs->mcr0,
0xFFFF0000);
total_size = FSL_FSPI_FLASH_SIZE * FSL_FSPI_FLASH_NUM >> 10;
/*
* Any read access to non-implemented addresses will provide
* undefined results.
*
* In case single die flash devices, TOP_ADDR_MEMA2 and
* TOP_ADDR_MEMB2 should be initialized/programmed to
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
* setting the size of these devices to 0. This would ensure
* that the complete memory map is assigned to only one flash device.
*/
fspi_write32(fspi->priv.flags, &regs->flsha1cr0,
total_size);
fspi_write32(fspi->priv.flags, &regs->flsha2cr0,
0);
fspi_write32(fspi->priv.flags, &regs->flshb1cr0,
0);
fspi_write32(fspi->priv.flags, &regs->flshb2cr0,
0);
fspi_set_lut(&fspi->priv);
#ifdef CONFIG_SYS_FSL_FSPI_AHB
fspi_init_ahb_read(&fspi->priv);
#endif
fspi_module_disable(&fspi->priv, 0);
return &fspi->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_fspi *fspi = to_fspi_spi(slave);
free(fspi);
}
int spi_claim_bus(struct spi_slave *slave)
{
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Nothing to do */
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_fspi *fspi = to_fspi_spi(slave);
return fspi_xfer(&fspi->priv, bitlen, dout, din, flags);
}
void spi_init(void)
{
/* Nothing to do */
}
#else
static int fsl_fspi_child_pre_probe(struct udevice *dev)
{
struct spi_slave *slave = dev_get_parent_priv(dev);
slave->max_write_size = TX_BUFFER_SIZE;
#ifdef CONFIG_FSPI_QUAD_SUPPORT
slave->mode |= SPI_RX_QUAD;
#endif
return 0;
}
static int fsl_fspi_probe(struct udevice *bus)
{
u32 total_size;
struct fsl_fspi_platdata *plat = dev_get_platdata(bus);
struct fsl_fspi_priv *priv = dev_get_priv(bus);
struct dm_spi_bus *dm_spi_bus;
if (CONFIG_IS_ENABLED(CLK)) {
/* Assigned clock already set clock */
struct clk fspi_clk;
int ret;
ret = clk_get_by_name(bus, "fspi", &fspi_clk);
if (ret < 0) {
printf("Can't get fspi clk: %d\n", ret);
return ret;
}
ret = clk_enable(&fspi_clk);
if (ret < 0) {
printf("Can't enable fspi clk: %d\n", ret);
return ret;
}
} else {
init_clk_fspi(bus->seq);
}
dm_spi_bus = bus->uclass_priv;
dm_spi_bus->max_hz = plat->speed_hz;
priv->regs = (struct fsl_fspi_regs *)(uintptr_t)plat->reg_base;
priv->flags = plat->flags;
priv->speed_hz = plat->speed_hz;
priv->amba_base[0] = plat->amba_base;
priv->amba_total_size = plat->amba_total_size;
priv->flash_num = plat->flash_num;
priv->num_chipselect = plat->num_chipselect;
fspi_write32(priv->flags, &priv->regs->mcr0,
FLEXSPI_MCR0_SWRST_MASK);
do {
udelay(1);
} while (0x1 & fspi_read32(priv->flags, &priv->regs->mcr0));
/* Disable the module */
fspi_module_disable(priv, 1);
/* Enable the module and set to proper value*/
fspi_write32(priv->flags, &priv->regs->mcr0,
0xFFFF0000);
/* Reset the DLL register to default value */
fspi_write32(priv->flags, &priv->regs->dllacr, 0x0100);
fspi_write32(priv->flags, &priv->regs->dllbcr, 0x0100);
/* Flash Size in KByte */
total_size = FSL_FSPI_FLASH_SIZE * FSL_FSPI_FLASH_NUM >> 10;
/*
* Any read access to non-implemented addresses will provide
* undefined results.
*
* In case single die flash devices, TOP_ADDR_MEMA2 and
* TOP_ADDR_MEMB2 should be initialized/programmed to
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
* setting the size of these devices to 0. This would ensure
* that the complete memory map is assigned to only one flash device.
*/
fspi_write32(priv->flags, &priv->regs->flsha1cr0,
total_size);
fspi_write32(priv->flags, &priv->regs->flsha2cr0,
0);
fspi_write32(priv->flags, &priv->regs->flshb1cr0,
0);
fspi_write32(priv->flags, &priv->regs->flshb2cr0,
0);
fspi_set_lut(priv);
#ifdef CONFIG_SYS_FSL_FSPI_AHB
fspi_init_ahb_read(priv);
#endif
fspi_module_disable(priv, 0);
return 0;
}
static int fsl_fspi_ofdata_to_platdata(struct udevice *bus)
{
struct fdt_resource res_regs, res_mem;
struct fsl_fspi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = ofnode_to_offset(bus->node);
int ret, flash_num = 0, subnode;
if (fdtdec_get_bool(blob, node, "big-endian"))
plat->flags |= FSPI_FLAG_REGMAP_ENDIAN_BIG;
ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
"FlexSPI", &res_regs);
if (ret) {
debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
return -ENOMEM;
}
ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
"FlexSPI-memory", &res_mem);
if (ret) {
debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
return -ENOMEM;
}
/* Count flash numbers */
fdt_for_each_subnode(subnode, blob, node)
++flash_num;
if (flash_num == 0) {
debug("Error: Missing flashes!\n");
return -ENODEV;
}
plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
FSL_FSPI_DEFAULT_SCK_FREQ);
plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
FSL_FSPI_MAX_CHIPSELECT_NUM);
plat->reg_base = res_regs.start;
plat->amba_base = 0;
plat->amba_total_size = res_mem.end - res_mem.start + 1;
plat->flash_num = flash_num;
debug("%s: regs=<0x%x> <0x%x, 0x%x>, max-frequency=%d, endianess=%s\n",
__func__,
plat->reg_base,
plat->amba_base,
plat->amba_total_size,
plat->speed_hz,
plat->flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
);
return 0;
}
static int fsl_fspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_fspi_priv *priv;
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
return fspi_xfer(priv, bitlen, dout, din, flags);
}
static int fsl_fspi_claim_bus(struct udevice *dev)
{
struct fsl_fspi_priv *priv;
struct udevice *bus;
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
bus = dev->parent;
priv = dev_get_priv(bus);
priv->cur_amba_base =
priv->amba_base[0] + FSL_FSPI_FLASH_SIZE * slave_plat->cs;
return 0;
}
static int fsl_fspi_release_bus(struct udevice *dev)
{
return 0;
}
static int fsl_fspi_set_speed(struct udevice *bus, uint speed)
{
/* Nothing to do */
return 0;
}
static int fsl_fspi_set_mode(struct udevice *bus, uint mode)
{
/* Nothing to do */
return 0;
}
static const struct dm_spi_ops fsl_fspi_ops = {
.claim_bus = fsl_fspi_claim_bus,
.release_bus = fsl_fspi_release_bus,
.xfer = fsl_fspi_xfer,
.set_speed = fsl_fspi_set_speed,
.set_mode = fsl_fspi_set_mode,
};
static const struct udevice_id fsl_fspi_ids[] = {
{ .compatible = "fsl,imx8qm-flexspi" },
{ .compatible = "fsl,imx8qxp-flexspi" },
{ .compatible = "fsl,imx8mm-flexspi" },
{ }
};
U_BOOT_DRIVER(fsl_fspi) = {
.name = "fsl_fspi",
.id = UCLASS_SPI,
.of_match = fsl_fspi_ids,
.ops = &fsl_fspi_ops,
.ofdata_to_platdata = fsl_fspi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct fsl_fspi_platdata),
.priv_auto_alloc_size = sizeof(struct fsl_fspi_priv),
.probe = fsl_fspi_probe,
.child_pre_probe = fsl_fspi_child_pre_probe,
};
#endif