| /* |
| * Basic I2C functions |
| * |
| * Copyright (c) 2004 Texas Instruments |
| * |
| * This package is free software; you can redistribute it and/or |
| * modify it under the terms of the license found in the file |
| * named COPYING that should have accompanied this file. |
| * |
| * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED |
| * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * Author: Jian Zhang jzhang@ti.com, Texas Instruments |
| * |
| * Copyright (c) 2003 Wolfgang Denk, wd@denx.de |
| * Rewritten to fit into the current U-Boot framework |
| * |
| * Adapted for OMAP2420 I2C, r-woodruff2@ti.com |
| * |
| * Copyright (c) 2013 Lubomir Popov <lpopov@mm-sol.com>, MM Solutions |
| * New i2c_read, i2c_write and i2c_probe functions, tested on OMAP4 |
| * (4430/60/70), OMAP5 (5430) and AM335X (3359); should work on older |
| * OMAPs and derivatives as well. The only anticipated exception would |
| * be the OMAP2420, which shall require driver modification. |
| * - Rewritten i2c_read to operate correctly with all types of chips |
| * (old function could not read consistent data from some I2C slaves). |
| * - Optimized i2c_write. |
| * - New i2c_probe, performs write access vs read. The old probe could |
| * hang the system under certain conditions (e.g. unconfigured pads). |
| * - The read/write/probe functions try to identify unconfigured bus. |
| * - Status functions now read irqstatus_raw as per TRM guidelines |
| * (except for OMAP243X and OMAP34XX). |
| * - Driver now supports up to I2C5 (OMAP5). |
| * |
| * Copyright (c) 2014 Hannes Schmelzer <oe5hpm@oevsv.at>, B&R |
| * - Added support for set_speed |
| * |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <i2c.h> |
| |
| #include <asm/arch/i2c.h> |
| #include <asm/io.h> |
| |
| #include "omap24xx_i2c.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define I2C_TIMEOUT 1000 |
| |
| /* Absolutely safe for status update at 100 kHz I2C: */ |
| #define I2C_WAIT 200 |
| |
| struct omap_i2c { |
| struct udevice *clk; |
| struct i2c *regs; |
| unsigned int speed; |
| int waitdelay; |
| int clk_id; |
| }; |
| |
| static int omap24_i2c_findpsc(u32 *pscl, u32 *psch, uint speed) |
| { |
| unsigned int sampleclk, prescaler; |
| int fsscll, fssclh; |
| |
| speed <<= 1; |
| prescaler = 0; |
| /* |
| * some divisors may cause a precission loss, but shouldn't |
| * be a big thing, because i2c_clk is then allready very slow. |
| */ |
| while (prescaler <= 0xFF) { |
| sampleclk = I2C_IP_CLK / (prescaler+1); |
| |
| fsscll = sampleclk / speed; |
| fssclh = fsscll; |
| fsscll -= I2C_FASTSPEED_SCLL_TRIM; |
| fssclh -= I2C_FASTSPEED_SCLH_TRIM; |
| |
| if (((fsscll > 0) && (fssclh > 0)) && |
| ((fsscll <= (255-I2C_FASTSPEED_SCLL_TRIM)) && |
| (fssclh <= (255-I2C_FASTSPEED_SCLH_TRIM)))) { |
| if (pscl) |
| *pscl = fsscll; |
| if (psch) |
| *psch = fssclh; |
| |
| return prescaler; |
| } |
| prescaler++; |
| } |
| return -1; |
| } |
| |
| /* |
| * Wait for the bus to be free by checking the Bus Busy (BB) |
| * bit to become clear |
| */ |
| static int wait_for_bb(struct i2c *i2c_base, int waitdelay) |
| { |
| int timeout = I2C_TIMEOUT; |
| u16 stat; |
| |
| writew(0xFFFF, &i2c_base->stat); /* clear current interrupts...*/ |
| #if defined(CONFIG_OMAP243X) || defined(CONFIG_OMAP34XX) |
| while ((stat = readw(&i2c_base->stat) & I2C_STAT_BB) && timeout--) { |
| #else |
| /* Read RAW status */ |
| while ((stat = readw(&i2c_base->irqstatus_raw) & |
| I2C_STAT_BB) && timeout--) { |
| #endif |
| writew(stat, &i2c_base->stat); |
| udelay(waitdelay); |
| } |
| |
| if (timeout <= 0) { |
| printf("Timed out in wait_for_bb: status=%04x\n", |
| stat); |
| return 1; |
| } |
| writew(0xFFFF, &i2c_base->stat); /* clear delayed stuff*/ |
| return 0; |
| } |
| |
| /* |
| * Wait for the I2C controller to complete current action |
| * and update status |
| */ |
| static u16 wait_for_event(struct i2c *i2c_base, int waitdelay) |
| { |
| u16 status; |
| int timeout = I2C_TIMEOUT; |
| |
| do { |
| udelay(waitdelay); |
| #if defined(CONFIG_OMAP243X) || defined(CONFIG_OMAP34XX) |
| status = readw(&i2c_base->stat); |
| #else |
| /* Read RAW status */ |
| status = readw(&i2c_base->irqstatus_raw); |
| #endif |
| } while (!(status & |
| (I2C_STAT_ROVR | I2C_STAT_XUDF | I2C_STAT_XRDY | |
| I2C_STAT_RRDY | I2C_STAT_ARDY | I2C_STAT_NACK | |
| I2C_STAT_AL)) && timeout--); |
| |
| if (timeout <= 0) { |
| printf("Timed out in wait_for_event: status=%04x\n", |
| status); |
| /* |
| * If status is still 0 here, probably the bus pads have |
| * not been configured for I2C, and/or pull-ups are missing. |
| */ |
| printf("Check if pads/pull-ups of bus are properly configured\n"); |
| writew(0xFFFF, &i2c_base->stat); |
| status = 0; |
| } |
| |
| return status; |
| } |
| |
| static void flush_fifo(struct i2c *i2c_base) |
| { |
| u16 stat; |
| |
| /* |
| * note: if you try and read data when its not there or ready |
| * you get a bus error |
| */ |
| while (1) { |
| stat = readw(&i2c_base->stat); |
| if (stat == I2C_STAT_RRDY) { |
| readb(&i2c_base->data); |
| writew(I2C_STAT_RRDY, &i2c_base->stat); |
| udelay(1000); |
| } else |
| break; |
| } |
| } |
| |
| static int __omap24_i2c_setspeed(struct i2c *i2c_base, uint speed, |
| int *waitdelay) |
| { |
| int psc, fsscll = 0, fssclh = 0; |
| int hsscll = 0, hssclh = 0; |
| u32 scll = 0, sclh = 0; |
| |
| if (speed >= OMAP_I2C_HIGH_SPEED) { |
| /* High speed */ |
| psc = I2C_IP_CLK / I2C_INTERNAL_SAMPLING_CLK; |
| psc -= 1; |
| if (psc < I2C_PSC_MIN) { |
| printf("Error : I2C unsupported prescaler %d\n", psc); |
| return -1; |
| } |
| |
| /* For first phase of HS mode */ |
| fsscll = I2C_INTERNAL_SAMPLING_CLK / (2 * speed); |
| |
| fssclh = fsscll; |
| |
| fsscll -= I2C_HIGHSPEED_PHASE_ONE_SCLL_TRIM; |
| fssclh -= I2C_HIGHSPEED_PHASE_ONE_SCLH_TRIM; |
| if (((fsscll < 0) || (fssclh < 0)) || |
| ((fsscll > 255) || (fssclh > 255))) { |
| puts("Error : I2C initializing first phase clock\n"); |
| return -1; |
| } |
| |
| /* For second phase of HS mode */ |
| hsscll = hssclh = I2C_INTERNAL_SAMPLING_CLK / (2 * speed); |
| |
| hsscll -= I2C_HIGHSPEED_PHASE_TWO_SCLL_TRIM; |
| hssclh -= I2C_HIGHSPEED_PHASE_TWO_SCLH_TRIM; |
| if (((fsscll < 0) || (fssclh < 0)) || |
| ((fsscll > 255) || (fssclh > 255))) { |
| puts("Error : I2C initializing second phase clock\n"); |
| return -1; |
| } |
| |
| scll = (unsigned int)hsscll << 8 | (unsigned int)fsscll; |
| sclh = (unsigned int)hssclh << 8 | (unsigned int)fssclh; |
| |
| } else { |
| /* Standard and fast speed */ |
| psc = omap24_i2c_findpsc(&scll, &sclh, speed); |
| if (0 > psc) { |
| puts("Error : I2C initializing clock\n"); |
| return -1; |
| } |
| } |
| |
| *waitdelay = (10000000 / speed) * 2; /* wait for 20 clkperiods */ |
| writew(0, &i2c_base->con); |
| writew(psc, &i2c_base->psc); |
| writew(scll, &i2c_base->scll); |
| writew(sclh, &i2c_base->sclh); |
| writew(I2C_CON_EN, &i2c_base->con); |
| writew(0xFFFF, &i2c_base->stat); /* clear all pending status */ |
| |
| return 0; |
| } |
| |
| static void omap24_i2c_deblock(struct i2c *i2c_base) |
| { |
| int i; |
| u16 systest; |
| u16 orgsystest; |
| |
| /* set test mode ST_EN = 1 */ |
| orgsystest = readw(&i2c_base->systest); |
| systest = orgsystest; |
| /* enable testmode */ |
| systest |= I2C_SYSTEST_ST_EN; |
| writew(systest, &i2c_base->systest); |
| systest &= ~I2C_SYSTEST_TMODE_MASK; |
| systest |= 3 << I2C_SYSTEST_TMODE_SHIFT; |
| writew(systest, &i2c_base->systest); |
| |
| /* set SCL, SDA = 1 */ |
| systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O; |
| writew(systest, &i2c_base->systest); |
| udelay(10); |
| |
| /* toggle scl 9 clocks */ |
| for (i = 0; i < 9; i++) { |
| /* SCL = 0 */ |
| systest &= ~I2C_SYSTEST_SCL_O; |
| writew(systest, &i2c_base->systest); |
| udelay(10); |
| /* SCL = 1 */ |
| systest |= I2C_SYSTEST_SCL_O; |
| writew(systest, &i2c_base->systest); |
| udelay(10); |
| } |
| |
| /* send stop */ |
| systest &= ~I2C_SYSTEST_SDA_O; |
| writew(systest, &i2c_base->systest); |
| udelay(10); |
| systest |= I2C_SYSTEST_SCL_O | I2C_SYSTEST_SDA_O; |
| writew(systest, &i2c_base->systest); |
| udelay(10); |
| |
| /* restore original mode */ |
| writew(orgsystest, &i2c_base->systest); |
| } |
| |
| static void __omap24_i2c_init(struct i2c *i2c_base, int speed, int slaveadd, |
| int *waitdelay) |
| { |
| int timeout = I2C_TIMEOUT; |
| int deblock = 1; |
| |
| retry: |
| if (readw(&i2c_base->con) & I2C_CON_EN) { |
| writew(0, &i2c_base->con); |
| udelay(50000); |
| } |
| |
| writew(0x2, &i2c_base->sysc); /* for ES2 after soft reset */ |
| udelay(1000); |
| |
| writew(I2C_CON_EN, &i2c_base->con); |
| while (!(readw(&i2c_base->syss) & I2C_SYSS_RDONE) && timeout--) { |
| if (timeout <= 0) { |
| puts("ERROR: Timeout in soft-reset\n"); |
| return; |
| } |
| udelay(1000); |
| } |
| |
| if (0 != __omap24_i2c_setspeed(i2c_base, speed, waitdelay)) { |
| printf("ERROR: failed to setup I2C bus-speed!\n"); |
| return; |
| } |
| |
| /* own address */ |
| writew(slaveadd, &i2c_base->oa); |
| |
| #if defined(CONFIG_OMAP243X) || defined(CONFIG_OMAP34XX) |
| /* |
| * Have to enable interrupts for OMAP2/3, these IPs don't have |
| * an 'irqstatus_raw' register and we shall have to poll 'stat' |
| */ |
| writew(I2C_IE_XRDY_IE | I2C_IE_RRDY_IE | I2C_IE_ARDY_IE | |
| I2C_IE_NACK_IE | I2C_IE_AL_IE, &i2c_base->ie); |
| #endif |
| udelay(1000); |
| flush_fifo(i2c_base); |
| writew(0xFFFF, &i2c_base->stat); |
| |
| /* Handle possible failed I2C state */ |
| if (wait_for_bb(i2c_base, *waitdelay)) |
| if (deblock == 1) { |
| omap24_i2c_deblock(i2c_base); |
| deblock = 0; |
| goto retry; |
| } |
| } |
| |
| /* |
| * i2c_probe: Use write access. Allows to identify addresses that are |
| * write-only (like the config register of dual-port EEPROMs) |
| */ |
| static int __omap24_i2c_probe(struct i2c *i2c_base, int waitdelay, uchar chip) |
| { |
| u16 status; |
| int res = 1; /* default = fail */ |
| |
| if (chip == readw(&i2c_base->oa)) |
| return res; |
| |
| /* Wait until bus is free */ |
| if (wait_for_bb(i2c_base, waitdelay)) |
| return res; |
| |
| /* No data transfer, slave addr only */ |
| writew(chip, &i2c_base->sa); |
| /* Stop bit needed here */ |
| writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX | |
| I2C_CON_STP, &i2c_base->con); |
| |
| status = wait_for_event(i2c_base, waitdelay); |
| |
| if ((status & ~I2C_STAT_XRDY) == 0 || (status & I2C_STAT_AL)) { |
| /* |
| * With current high-level command implementation, notifying |
| * the user shall flood the console with 127 messages. If |
| * silent exit is desired upon unconfigured bus, remove the |
| * following 'if' section: |
| */ |
| if (status == I2C_STAT_XRDY) |
| printf("i2c_probe: pads on bus probably not configured (status=0x%x)\n", |
| status); |
| |
| goto pr_exit; |
| } |
| |
| /* Check for ACK (!NAK) */ |
| if (!(status & I2C_STAT_NACK)) { |
| res = 0; /* Device found */ |
| udelay(waitdelay);/* Required by AM335X in SPL */ |
| /* Abort transfer (force idle state) */ |
| writew(I2C_CON_MST | I2C_CON_TRX, &i2c_base->con); /* Reset */ |
| udelay(1000); |
| writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_TRX | |
| I2C_CON_STP, &i2c_base->con); /* STP */ |
| } |
| pr_exit: |
| flush_fifo(i2c_base); |
| writew(0xFFFF, &i2c_base->stat); |
| return res; |
| } |
| |
| /* |
| * i2c_read: Function now uses a single I2C read transaction with bulk transfer |
| * of the requested number of bytes (note that the 'i2c md' command |
| * limits this to 16 bytes anyway). If CONFIG_I2C_REPEATED_START is |
| * defined in the board config header, this transaction shall be with |
| * Repeated Start (Sr) between the address and data phases; otherwise |
| * Stop-Start (P-S) shall be used (some I2C chips do require a P-S). |
| * The address (reg offset) may be 0, 1 or 2 bytes long. |
| * Function now reads correctly from chips that return more than one |
| * byte of data per addressed register (like TI temperature sensors), |
| * or that do not need a register address at all (such as some clock |
| * distributors). |
| */ |
| static int __omap24_i2c_read(struct i2c *i2c_base, int waitdelay, uchar chip, |
| uint addr, int alen, uchar *buffer, int len) |
| { |
| int i2c_error = 0; |
| u16 status; |
| |
| if (alen < 0) { |
| puts("I2C read: addr len < 0\n"); |
| return 1; |
| } |
| if (len < 0) { |
| puts("I2C read: data len < 0\n"); |
| return 1; |
| } |
| if (buffer == NULL) { |
| puts("I2C read: NULL pointer passed\n"); |
| return 1; |
| } |
| |
| if (alen > 2) { |
| printf("I2C read: addr len %d not supported\n", alen); |
| return 1; |
| } |
| |
| if (addr + len > (1 << 16)) { |
| puts("I2C read: address out of range\n"); |
| return 1; |
| } |
| |
| #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW |
| /* |
| * EEPROM chips that implement "address overflow" are ones |
| * like Catalyst 24WC04/08/16 which has 9/10/11 bits of |
| * address and the extra bits end up in the "chip address" |
| * bit slots. This makes a 24WC08 (1Kbyte) chip look like |
| * four 256 byte chips. |
| * |
| * Note that we consider the length of the address field to |
| * still be one byte because the extra address bits are |
| * hidden in the chip address. |
| */ |
| if (alen > 0) |
| chip |= ((addr >> (alen * 8)) & |
| CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); |
| #endif |
| |
| /* Wait until bus not busy */ |
| if (wait_for_bb(i2c_base, waitdelay)) |
| return 1; |
| |
| /* Zero, one or two bytes reg address (offset) */ |
| writew(alen, &i2c_base->cnt); |
| /* Set slave address */ |
| writew(chip, &i2c_base->sa); |
| |
| if (alen) { |
| /* Must write reg offset first */ |
| #ifdef CONFIG_I2C_REPEATED_START |
| /* No stop bit, use Repeated Start (Sr) */ |
| writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | |
| I2C_CON_TRX, &i2c_base->con); |
| #else |
| /* Stop - Start (P-S) */ |
| writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_STP | |
| I2C_CON_TRX, &i2c_base->con); |
| #endif |
| /* Send register offset */ |
| while (1) { |
| status = wait_for_event(i2c_base, waitdelay); |
| /* Try to identify bus that is not padconf'd for I2C */ |
| if (status == I2C_STAT_XRDY) { |
| i2c_error = 2; |
| printf("i2c_read (addr phase): pads on bus probably not configured (status=0x%x)\n", |
| status); |
| goto rd_exit; |
| } |
| if (status == 0 || (status & I2C_STAT_NACK)) { |
| i2c_error = 1; |
| printf("i2c_read: error waiting for addr ACK (status=0x%x)\n", |
| status); |
| goto rd_exit; |
| } |
| if (alen) { |
| if (status & I2C_STAT_XRDY) { |
| alen--; |
| /* Do we have to use byte access? */ |
| writeb((addr >> (8 * alen)) & 0xff, |
| &i2c_base->data); |
| writew(I2C_STAT_XRDY, &i2c_base->stat); |
| } |
| } |
| if (status & I2C_STAT_ARDY) { |
| writew(I2C_STAT_ARDY, &i2c_base->stat); |
| break; |
| } |
| } |
| } |
| /* Set slave address */ |
| writew(chip, &i2c_base->sa); |
| /* Read len bytes from slave */ |
| writew(len, &i2c_base->cnt); |
| /* Need stop bit here */ |
| writew(I2C_CON_EN | I2C_CON_MST | |
| I2C_CON_STT | I2C_CON_STP, |
| &i2c_base->con); |
| |
| /* Receive data */ |
| while (1) { |
| status = wait_for_event(i2c_base, waitdelay); |
| /* |
| * Try to identify bus that is not padconf'd for I2C. This |
| * state could be left over from previous transactions if |
| * the address phase is skipped due to alen=0. |
| */ |
| if (status == I2C_STAT_XRDY) { |
| i2c_error = 2; |
| printf("i2c_read (data phase): pads on bus probably not configured (status=0x%x)\n", |
| status); |
| goto rd_exit; |
| } |
| if (status == 0 || (status & I2C_STAT_NACK)) { |
| i2c_error = 1; |
| goto rd_exit; |
| } |
| if (status & I2C_STAT_RRDY) { |
| *buffer++ = readb(&i2c_base->data); |
| writew(I2C_STAT_RRDY, &i2c_base->stat); |
| } |
| if (status & I2C_STAT_ARDY) { |
| writew(I2C_STAT_ARDY, &i2c_base->stat); |
| break; |
| } |
| } |
| |
| rd_exit: |
| flush_fifo(i2c_base); |
| writew(0xFFFF, &i2c_base->stat); |
| return i2c_error; |
| } |
| |
| /* i2c_write: Address (reg offset) may be 0, 1 or 2 bytes long. */ |
| static int __omap24_i2c_write(struct i2c *i2c_base, int waitdelay, uchar chip, |
| uint addr, int alen, uchar *buffer, int len) |
| { |
| int i; |
| u16 status; |
| int i2c_error = 0; |
| int timeout = I2C_TIMEOUT; |
| |
| if (alen < 0) { |
| puts("I2C write: addr len < 0\n"); |
| return 1; |
| } |
| |
| if (len < 0) { |
| puts("I2C write: data len < 0\n"); |
| return 1; |
| } |
| |
| if (buffer == NULL) { |
| puts("I2C write: NULL pointer passed\n"); |
| return 1; |
| } |
| |
| if (alen > 2) { |
| printf("I2C write: addr len %d not supported\n", alen); |
| return 1; |
| } |
| |
| if (addr + len > (1 << 16)) { |
| printf("I2C write: address 0x%x + 0x%x out of range\n", |
| addr, len); |
| return 1; |
| } |
| |
| #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW |
| /* |
| * EEPROM chips that implement "address overflow" are ones |
| * like Catalyst 24WC04/08/16 which has 9/10/11 bits of |
| * address and the extra bits end up in the "chip address" |
| * bit slots. This makes a 24WC08 (1Kbyte) chip look like |
| * four 256 byte chips. |
| * |
| * Note that we consider the length of the address field to |
| * still be one byte because the extra address bits are |
| * hidden in the chip address. |
| */ |
| if (alen > 0) |
| chip |= ((addr >> (alen * 8)) & |
| CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); |
| #endif |
| |
| /* Wait until bus not busy */ |
| if (wait_for_bb(i2c_base, waitdelay)) |
| return 1; |
| |
| /* Start address phase - will write regoffset + len bytes data */ |
| writew(alen + len, &i2c_base->cnt); |
| /* Set slave address */ |
| writew(chip, &i2c_base->sa); |
| /* Stop bit needed here */ |
| writew(I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX | |
| I2C_CON_STP, &i2c_base->con); |
| |
| while (alen) { |
| /* Must write reg offset (one or two bytes) */ |
| status = wait_for_event(i2c_base, waitdelay); |
| /* Try to identify bus that is not padconf'd for I2C */ |
| if (status == I2C_STAT_XRDY) { |
| i2c_error = 2; |
| printf("i2c_write: pads on bus probably not configured (status=0x%x)\n", |
| status); |
| goto wr_exit; |
| } |
| if (status == 0 || (status & I2C_STAT_NACK)) { |
| i2c_error = 1; |
| printf("i2c_write: error waiting for addr ACK (status=0x%x)\n", |
| status); |
| goto wr_exit; |
| } |
| if (status & I2C_STAT_XRDY) { |
| alen--; |
| writeb((addr >> (8 * alen)) & 0xff, &i2c_base->data); |
| writew(I2C_STAT_XRDY, &i2c_base->stat); |
| } else { |
| i2c_error = 1; |
| printf("i2c_write: bus not ready for addr Tx (status=0x%x)\n", |
| status); |
| goto wr_exit; |
| } |
| } |
| /* Address phase is over, now write data */ |
| for (i = 0; i < len; i++) { |
| status = wait_for_event(i2c_base, waitdelay); |
| if (status == 0 || (status & I2C_STAT_NACK)) { |
| i2c_error = 1; |
| printf("i2c_write: error waiting for data ACK (status=0x%x)\n", |
| status); |
| goto wr_exit; |
| } |
| if (status & I2C_STAT_XRDY) { |
| writeb(buffer[i], &i2c_base->data); |
| writew(I2C_STAT_XRDY, &i2c_base->stat); |
| } else { |
| i2c_error = 1; |
| printf("i2c_write: bus not ready for data Tx (i=%d)\n", |
| i); |
| goto wr_exit; |
| } |
| } |
| /* |
| * poll ARDY bit for making sure that last byte really has been |
| * transferred on the bus. |
| */ |
| do { |
| status = wait_for_event(i2c_base, waitdelay); |
| } while (!(status & I2C_STAT_ARDY) && timeout--); |
| if (timeout <= 0) |
| printf("i2c_write: timed out writig last byte!\n"); |
| |
| wr_exit: |
| flush_fifo(i2c_base); |
| writew(0xFFFF, &i2c_base->stat); |
| return i2c_error; |
| } |
| |
| #ifndef CONFIG_DM_I2C |
| /* |
| * The legacy I2C functions. These need to get removed once |
| * all users of this driver are converted to DM. |
| */ |
| static struct i2c *omap24_get_base(struct i2c_adapter *adap) |
| { |
| switch (adap->hwadapnr) { |
| case 0: |
| return (struct i2c *)I2C_BASE1; |
| break; |
| case 1: |
| return (struct i2c *)I2C_BASE2; |
| break; |
| #if (I2C_BUS_MAX > 2) |
| case 2: |
| return (struct i2c *)I2C_BASE3; |
| break; |
| #if (I2C_BUS_MAX > 3) |
| case 3: |
| return (struct i2c *)I2C_BASE4; |
| break; |
| #if (I2C_BUS_MAX > 4) |
| case 4: |
| return (struct i2c *)I2C_BASE5; |
| break; |
| #endif |
| #endif |
| #endif |
| default: |
| printf("wrong hwadapnr: %d\n", adap->hwadapnr); |
| break; |
| } |
| return NULL; |
| } |
| |
| |
| static int omap24_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr, |
| int alen, uchar *buffer, int len) |
| { |
| struct i2c *i2c_base = omap24_get_base(adap); |
| |
| return __omap24_i2c_read(i2c_base, adap->waitdelay, chip, addr, |
| alen, buffer, len); |
| } |
| |
| |
| static int omap24_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr, |
| int alen, uchar *buffer, int len) |
| { |
| struct i2c *i2c_base = omap24_get_base(adap); |
| |
| return __omap24_i2c_write(i2c_base, adap->waitdelay, chip, addr, |
| alen, buffer, len); |
| } |
| |
| static uint omap24_i2c_setspeed(struct i2c_adapter *adap, uint speed) |
| { |
| struct i2c *i2c_base = omap24_get_base(adap); |
| int ret; |
| |
| ret = __omap24_i2c_setspeed(i2c_base, speed, &adap->waitdelay); |
| if (ret) { |
| error("%s: set i2c speed failed\n", __func__); |
| return ret; |
| } |
| |
| adap->speed = speed; |
| |
| return 0; |
| } |
| |
| static void omap24_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd) |
| { |
| struct i2c *i2c_base = omap24_get_base(adap); |
| |
| return __omap24_i2c_init(i2c_base, speed, slaveadd, &adap->waitdelay); |
| } |
| |
| static int omap24_i2c_probe(struct i2c_adapter *adap, uchar chip) |
| { |
| struct i2c *i2c_base = omap24_get_base(adap); |
| |
| return __omap24_i2c_probe(i2c_base, adap->waitdelay, chip); |
| } |
| |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED1) |
| #define CONFIG_SYS_OMAP24_I2C_SPEED1 CONFIG_SYS_OMAP24_I2C_SPEED |
| #endif |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE1) |
| #define CONFIG_SYS_OMAP24_I2C_SLAVE1 CONFIG_SYS_OMAP24_I2C_SLAVE |
| #endif |
| |
| U_BOOT_I2C_ADAP_COMPLETE(omap24_0, omap24_i2c_init, omap24_i2c_probe, |
| omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed, |
| CONFIG_SYS_OMAP24_I2C_SPEED, |
| CONFIG_SYS_OMAP24_I2C_SLAVE, |
| 0) |
| U_BOOT_I2C_ADAP_COMPLETE(omap24_1, omap24_i2c_init, omap24_i2c_probe, |
| omap24_i2c_read, omap24_i2c_write, omap24_i2c_setspeed, |
| CONFIG_SYS_OMAP24_I2C_SPEED1, |
| CONFIG_SYS_OMAP24_I2C_SLAVE1, |
| 1) |
| #if (I2C_BUS_MAX > 2) |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED2) |
| #define CONFIG_SYS_OMAP24_I2C_SPEED2 CONFIG_SYS_OMAP24_I2C_SPEED |
| #endif |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE2) |
| #define CONFIG_SYS_OMAP24_I2C_SLAVE2 CONFIG_SYS_OMAP24_I2C_SLAVE |
| #endif |
| |
| U_BOOT_I2C_ADAP_COMPLETE(omap24_2, omap24_i2c_init, omap24_i2c_probe, |
| omap24_i2c_read, omap24_i2c_write, NULL, |
| CONFIG_SYS_OMAP24_I2C_SPEED2, |
| CONFIG_SYS_OMAP24_I2C_SLAVE2, |
| 2) |
| #if (I2C_BUS_MAX > 3) |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED3) |
| #define CONFIG_SYS_OMAP24_I2C_SPEED3 CONFIG_SYS_OMAP24_I2C_SPEED |
| #endif |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE3) |
| #define CONFIG_SYS_OMAP24_I2C_SLAVE3 CONFIG_SYS_OMAP24_I2C_SLAVE |
| #endif |
| |
| U_BOOT_I2C_ADAP_COMPLETE(omap24_3, omap24_i2c_init, omap24_i2c_probe, |
| omap24_i2c_read, omap24_i2c_write, NULL, |
| CONFIG_SYS_OMAP24_I2C_SPEED3, |
| CONFIG_SYS_OMAP24_I2C_SLAVE3, |
| 3) |
| #if (I2C_BUS_MAX > 4) |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SPEED4) |
| #define CONFIG_SYS_OMAP24_I2C_SPEED4 CONFIG_SYS_OMAP24_I2C_SPEED |
| #endif |
| #if !defined(CONFIG_SYS_OMAP24_I2C_SLAVE4) |
| #define CONFIG_SYS_OMAP24_I2C_SLAVE4 CONFIG_SYS_OMAP24_I2C_SLAVE |
| #endif |
| |
| U_BOOT_I2C_ADAP_COMPLETE(omap24_4, omap24_i2c_init, omap24_i2c_probe, |
| omap24_i2c_read, omap24_i2c_write, NULL, |
| CONFIG_SYS_OMAP24_I2C_SPEED4, |
| CONFIG_SYS_OMAP24_I2C_SLAVE4, |
| 4) |
| #endif |
| #endif |
| #endif |
| |
| #else /* CONFIG_DM_I2C */ |
| |
| static int omap_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs) |
| { |
| struct omap_i2c *priv = dev_get_priv(bus); |
| int ret; |
| |
| debug("i2c_xfer: %d messages\n", nmsgs); |
| for (; nmsgs > 0; nmsgs--, msg++) { |
| debug("i2c_xfer: chip=0x%x, len=0x%x\n", msg->addr, msg->len); |
| if (msg->flags & I2C_M_RD) { |
| ret = __omap24_i2c_read(priv->regs, priv->waitdelay, |
| msg->addr, 0, 0, msg->buf, |
| msg->len); |
| } else { |
| ret = __omap24_i2c_write(priv->regs, priv->waitdelay, |
| msg->addr, 0, 0, msg->buf, |
| msg->len); |
| } |
| if (ret) { |
| debug("i2c_write: error sending\n"); |
| return -EREMOTEIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int omap_i2c_set_bus_speed(struct udevice *bus, unsigned int speed) |
| { |
| struct omap_i2c *priv = dev_get_priv(bus); |
| |
| priv->speed = speed; |
| |
| return __omap24_i2c_setspeed(priv->regs, speed, &priv->waitdelay); |
| } |
| |
| static int omap_i2c_probe_chip(struct udevice *bus, uint chip_addr, |
| uint chip_flags) |
| { |
| struct omap_i2c *priv = dev_get_priv(bus); |
| |
| return __omap24_i2c_probe(priv->regs, priv->waitdelay, chip_addr); |
| } |
| |
| static int omap_i2c_probe(struct udevice *bus) |
| { |
| struct omap_i2c *priv = dev_get_priv(bus); |
| |
| __omap24_i2c_init(priv->regs, priv->speed, 0, &priv->waitdelay); |
| |
| return 0; |
| } |
| |
| static int omap_i2c_ofdata_to_platdata(struct udevice *bus) |
| { |
| struct omap_i2c *priv = dev_get_priv(bus); |
| |
| priv->regs = map_physmem(dev_get_addr(bus), sizeof(void *), |
| MAP_NOCACHE); |
| priv->speed = CONFIG_SYS_OMAP24_I2C_SPEED; |
| |
| return 0; |
| } |
| |
| static const struct dm_i2c_ops omap_i2c_ops = { |
| .xfer = omap_i2c_xfer, |
| .probe_chip = omap_i2c_probe_chip, |
| .set_bus_speed = omap_i2c_set_bus_speed, |
| }; |
| |
| static const struct udevice_id omap_i2c_ids[] = { |
| { .compatible = "ti,omap4-i2c" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(i2c_omap) = { |
| .name = "i2c_omap", |
| .id = UCLASS_I2C, |
| .of_match = omap_i2c_ids, |
| .ofdata_to_platdata = omap_i2c_ofdata_to_platdata, |
| .probe = omap_i2c_probe, |
| .priv_auto_alloc_size = sizeof(struct omap_i2c), |
| .ops = &omap_i2c_ops, |
| .flags = DM_FLAG_PRE_RELOC, |
| }; |
| |
| #endif /* CONFIG_DM_I2C */ |