blob: b7ea379d695b2f052847eaf395b375369e9f441a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) Freescale Semiconductor, Inc. 2006.
* Author: Jason Jin<Jason.jin@freescale.com>
* Zhang Wei<wei.zhang@freescale.com>
*
* with the reference on libata and ahci drvier in kernel
*
* This driver provides a SCSI interface to SATA.
*/
#include <common.h>
#include <command.h>
#include <dm.h>
#include <pci.h>
#include <asm/processor.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <malloc.h>
#include <memalign.h>
#include <pci.h>
#include <scsi.h>
#include <libata.h>
#include <linux/ctype.h>
#include <ahci.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#ifdef CONFIG_SCSI_AHCI_PLAT
#ifdef CONFIG_FSL_HSIO
#define HW_PP2C 0xAC
#define HW_PP3C 0xB0
#define HW_PP4C 0xB4
#define HW_PP5C 0xB8
#define HW_PAXIC 0xC0
#endif
#endif
static int ata_io_flush(struct ahci_uc_priv *uc_priv, u8 port);
#ifndef CONFIG_DM_SCSI
struct ahci_uc_priv *probe_ent = NULL;
#endif
#define writel_with_flush(a,b) do { writel(a,b); readl(b); } while (0)
/*
* Some controllers limit number of blocks they can read/write at once.
* Contemporary SSD devices work much faster if the read/write size is aligned
* to a power of 2. Let's set default to 128 and allowing to be overwritten if
* needed.
*/
#ifndef MAX_SATA_BLOCKS_READ_WRITE
#define MAX_SATA_BLOCKS_READ_WRITE 0x80
#endif
/* Maximum timeouts for each event */
#define WAIT_MS_SPINUP 20000
#define WAIT_MS_DATAIO 10000
#define WAIT_MS_FLUSH 5000
#define WAIT_MS_LINKUP 200
__weak void __iomem *ahci_port_base(void __iomem *base, u32 port)
{
return base + 0x100 + (port * 0x80);
}
static void ahci_setup_port(struct ahci_ioports *port, void __iomem *base,
unsigned int port_idx)
{
base = ahci_port_base(base, port_idx);
port->cmd_addr = base;
port->scr_addr = base + PORT_SCR;
}
#define msleep(a) udelay(a * 1000)
static void ahci_dcache_flush_range(unsigned long begin, unsigned long len)
{
const unsigned long start = begin;
const unsigned long end = start + len;
debug("%s: flush dcache: [%#lx, %#lx)\n", __func__, start, end);
flush_dcache_range(start, end);
}
/*
* SATA controller DMAs to physical RAM. Ensure data from the
* controller is invalidated from dcache; next access comes from
* physical RAM.
*/
static void ahci_dcache_invalidate_range(unsigned long begin, unsigned long len)
{
const unsigned long start = begin;
const unsigned long end = start + len;
debug("%s: invalidate dcache: [%#lx, %#lx)\n", __func__, start, end);
invalidate_dcache_range(start, end);
}
/*
* Ensure data for SATA controller is flushed out of dcache and
* written to physical memory.
*/
static void ahci_dcache_flush_sata_cmd(struct ahci_ioports *pp)
{
ahci_dcache_flush_range((unsigned long)pp->cmd_slot,
AHCI_PORT_PRIV_DMA_SZ);
}
static int waiting_for_cmd_completed(void __iomem *offset,
int timeout_msec,
u32 sign)
{
int i;
u32 status;
for (i = 0; ((status = readl(offset)) & sign) && i < timeout_msec; i++)
msleep(1);
return (i < timeout_msec) ? 0 : -1;
}
int __weak ahci_link_up(struct ahci_uc_priv *uc_priv, u8 port)
{
u32 tmp;
int j = 0;
void __iomem *port_mmio = uc_priv->port[port].port_mmio;
/*
* Bring up SATA link.
* SATA link bringup time is usually less than 1 ms; only very
* rarely has it taken between 1-2 ms. Never seen it above 2 ms.
*/
while (j < WAIT_MS_LINKUP) {
tmp = readl(port_mmio + PORT_SCR_STAT);
tmp &= PORT_SCR_STAT_DET_MASK;
if (tmp == PORT_SCR_STAT_DET_PHYRDY)
return 0;
udelay(1000);
j++;
}
return 1;
}
#ifdef CONFIG_SUNXI_AHCI
/* The sunxi AHCI controller requires this undocumented setup */
static void sunxi_dma_init(void __iomem *port_mmio)
{
clrsetbits_le32(port_mmio + PORT_P0DMACR, 0x0000ff00, 0x00004400);
}
#endif
int ahci_reset(void __iomem *base)
{
int i = 1000;
u32 __iomem *host_ctl_reg = base + HOST_CTL;
u32 tmp = readl(host_ctl_reg); /* global controller reset */
if ((tmp & HOST_RESET) == 0)
writel_with_flush(tmp | HOST_RESET, host_ctl_reg);
/*
* reset must complete within 1 second, or
* the hardware should be considered fried.
*/
do {
udelay(1000);
tmp = readl(host_ctl_reg);
i--;
} while ((i > 0) && (tmp & HOST_RESET));
if (i == 0) {
printf("controller reset failed (0x%x)\n", tmp);
return -1;
}
return 0;
}
static int ahci_host_init(struct ahci_uc_priv *uc_priv)
{
#if !defined(CONFIG_SCSI_AHCI_PLAT) && !defined(CONFIG_DM_SCSI)
# ifdef CONFIG_DM_PCI
struct udevice *dev = uc_priv->dev;
struct pci_child_platdata *pplat = dev_get_parent_platdata(dev);
# else
pci_dev_t pdev = uc_priv->dev;
unsigned short vendor;
# endif
u16 tmp16;
#endif
void __iomem *mmio = uc_priv->mmio_base;
u32 tmp, cap_save, cmd;
int i, j, ret;
void __iomem *port_mmio;
u32 port_map;
debug("ahci_host_init: start\n");
#ifdef CONFIG_SCSI_AHCI_PLAT
#ifdef CONFIG_FSL_HSIO
writel((1 << 28) | (1 << 24) | readl(mmio + HW_PAXIC), mmio + HW_PAXIC);
writel(0x2718461C, mmio + HW_PP2C);
writel(0x0D081907, mmio + HW_PP3C);
writel(0x06000815, mmio + HW_PP4C);
writel(0x800C96A4, mmio + HW_PP5C);
#endif
#endif
cap_save = readl(mmio + HOST_CAP);
cap_save &= ((1 << 28) | (1 << 17));
cap_save |= (1 << 27); /* Staggered Spin-up. Not needed. */
ret = ahci_reset(uc_priv->mmio_base);
if (ret)
return ret;
writel_with_flush(HOST_AHCI_EN, mmio + HOST_CTL);
writel(cap_save, mmio + HOST_CAP);
writel_with_flush(0xf, mmio + HOST_PORTS_IMPL);
#if !defined(CONFIG_SCSI_AHCI_PLAT) && !defined(CONFIG_DM_SCSI)
# ifdef CONFIG_DM_PCI
if (pplat->vendor == PCI_VENDOR_ID_INTEL) {
u16 tmp16;
dm_pci_read_config16(dev, 0x92, &tmp16);
dm_pci_write_config16(dev, 0x92, tmp16 | 0xf);
}
# else
pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor);
if (vendor == PCI_VENDOR_ID_INTEL) {
u16 tmp16;
pci_read_config_word(pdev, 0x92, &tmp16);
tmp16 |= 0xf;
pci_write_config_word(pdev, 0x92, tmp16);
}
# endif
#endif
uc_priv->cap = readl(mmio + HOST_CAP);
uc_priv->port_map = readl(mmio + HOST_PORTS_IMPL);
port_map = uc_priv->port_map;
uc_priv->n_ports = (uc_priv->cap & 0x1f) + 1;
debug("cap 0x%x port_map 0x%x n_ports %d\n",
uc_priv->cap, uc_priv->port_map, uc_priv->n_ports);
#if !defined(CONFIG_DM_SCSI)
if (uc_priv->n_ports > CONFIG_SYS_SCSI_MAX_SCSI_ID)
uc_priv->n_ports = CONFIG_SYS_SCSI_MAX_SCSI_ID;
#endif
for (i = 0; i < uc_priv->n_ports; i++) {
if (!(port_map & (1 << i)))
continue;
uc_priv->port[i].port_mmio = ahci_port_base(mmio, i);
port_mmio = (u8 *)uc_priv->port[i].port_mmio;
ahci_setup_port(&uc_priv->port[i], mmio, i);
/* make sure port is not active */
tmp = readl(port_mmio + PORT_CMD);
if (tmp & (PORT_CMD_LIST_ON | PORT_CMD_FIS_ON |
PORT_CMD_FIS_RX | PORT_CMD_START)) {
debug("Port %d is active. Deactivating.\n", i);
tmp &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON |
PORT_CMD_FIS_RX | PORT_CMD_START);
writel_with_flush(tmp, port_mmio + PORT_CMD);
/* spec says 500 msecs for each bit, so
* this is slightly incorrect.
*/
msleep(500);
}
#ifdef CONFIG_SUNXI_AHCI
sunxi_dma_init(port_mmio);
#endif
/* Add the spinup command to whatever mode bits may
* already be on in the command register.
*/
cmd = readl(port_mmio + PORT_CMD);
cmd |= PORT_CMD_SPIN_UP;
writel_with_flush(cmd, port_mmio + PORT_CMD);
/* Bring up SATA link. */
ret = ahci_link_up(uc_priv, i);
if (ret) {
printf("SATA link %d timeout.\n", i);
#ifdef CONFIG_SCSI_AHCI_PLAT
#ifdef CONFIG_FSL_HSIO
return -ENODEV;
#endif
#endif
continue;
} else {
debug("SATA link ok.\n");
}
/* Clear error status */
tmp = readl(port_mmio + PORT_SCR_ERR);
if (tmp)
writel(tmp, port_mmio + PORT_SCR_ERR);
debug("Spinning up device on SATA port %d... ", i);
j = 0;
while (j < WAIT_MS_SPINUP) {
tmp = readl(port_mmio + PORT_TFDATA);
if (!(tmp & (ATA_BUSY | ATA_DRQ)))
break;
udelay(1000);
tmp = readl(port_mmio + PORT_SCR_STAT);
tmp &= PORT_SCR_STAT_DET_MASK;
if (tmp == PORT_SCR_STAT_DET_PHYRDY)
break;
j++;
}
tmp = readl(port_mmio + PORT_SCR_STAT) & PORT_SCR_STAT_DET_MASK;
if (tmp == PORT_SCR_STAT_DET_COMINIT) {
debug("SATA link %d down (COMINIT received), retrying...\n", i);
i--;
continue;
}
printf("Target spinup took %d ms.\n", j);
if (j == WAIT_MS_SPINUP)
debug("timeout.\n");
else
debug("ok.\n");
tmp = readl(port_mmio + PORT_SCR_ERR);
debug("PORT_SCR_ERR 0x%x\n", tmp);
writel(tmp, port_mmio + PORT_SCR_ERR);
/* ack any pending irq events for this port */
tmp = readl(port_mmio + PORT_IRQ_STAT);
debug("PORT_IRQ_STAT 0x%x\n", tmp);
if (tmp)
writel(tmp, port_mmio + PORT_IRQ_STAT);
writel(1 << i, mmio + HOST_IRQ_STAT);
/* register linkup ports */
tmp = readl(port_mmio + PORT_SCR_STAT);
debug("SATA port %d status: 0x%x\n", i, tmp);
if ((tmp & PORT_SCR_STAT_DET_MASK) == PORT_SCR_STAT_DET_PHYRDY)
uc_priv->link_port_map |= (0x01 << i);
}
tmp = readl(mmio + HOST_CTL);
debug("HOST_CTL 0x%x\n", tmp);
writel(tmp | HOST_IRQ_EN, mmio + HOST_CTL);
tmp = readl(mmio + HOST_CTL);
debug("HOST_CTL 0x%x\n", tmp);
#if !defined(CONFIG_DM_SCSI)
#ifndef CONFIG_SCSI_AHCI_PLAT
# ifdef CONFIG_DM_PCI
dm_pci_read_config16(dev, PCI_COMMAND, &tmp16);
tmp |= PCI_COMMAND_MASTER;
dm_pci_write_config16(dev, PCI_COMMAND, tmp16);
# else
pci_read_config_word(pdev, PCI_COMMAND, &tmp16);
tmp |= PCI_COMMAND_MASTER;
pci_write_config_word(pdev, PCI_COMMAND, tmp16);
# endif
#endif
#endif
return 0;
}
static void ahci_print_info(struct ahci_uc_priv *uc_priv)
{
#if !defined(CONFIG_SCSI_AHCI_PLAT) && !defined(CONFIG_DM_SCSI)
# if defined(CONFIG_DM_PCI)
struct udevice *dev = uc_priv->dev;
# else
pci_dev_t pdev = uc_priv->dev;
# endif
u16 cc;
#endif
void __iomem *mmio = uc_priv->mmio_base;
u32 vers, cap, cap2, impl, speed;
const char *speed_s;
const char *scc_s;
vers = readl(mmio + HOST_VERSION);
cap = uc_priv->cap;
cap2 = readl(mmio + HOST_CAP2);
impl = uc_priv->port_map;
speed = (cap >> 20) & 0xf;
if (speed == 1)
speed_s = "1.5";
else if (speed == 2)
speed_s = "3";
else if (speed == 3)
speed_s = "6";
else
speed_s = "?";
#if defined(CONFIG_SCSI_AHCI_PLAT) || defined(CONFIG_DM_SCSI)
scc_s = "SATA";
#else
# ifdef CONFIG_DM_PCI
dm_pci_read_config16(dev, 0x0a, &cc);
# else
pci_read_config_word(pdev, 0x0a, &cc);
# endif
if (cc == 0x0101)
scc_s = "IDE";
else if (cc == 0x0106)
scc_s = "SATA";
else if (cc == 0x0104)
scc_s = "RAID";
else
scc_s = "unknown";
#endif
printf("AHCI %02x%02x.%02x%02x "
"%u slots %u ports %s Gbps 0x%x impl %s mode\n",
(vers >> 24) & 0xff,
(vers >> 16) & 0xff,
(vers >> 8) & 0xff,
vers & 0xff,
((cap >> 8) & 0x1f) + 1, (cap & 0x1f) + 1, speed_s, impl, scc_s);
printf("flags: "
"%s%s%s%s%s%s%s"
"%s%s%s%s%s%s%s"
"%s%s%s%s%s%s\n",
cap & (1 << 31) ? "64bit " : "",
cap & (1 << 30) ? "ncq " : "",
cap & (1 << 28) ? "ilck " : "",
cap & (1 << 27) ? "stag " : "",
cap & (1 << 26) ? "pm " : "",
cap & (1 << 25) ? "led " : "",
cap & (1 << 24) ? "clo " : "",
cap & (1 << 19) ? "nz " : "",
cap & (1 << 18) ? "only " : "",
cap & (1 << 17) ? "pmp " : "",
cap & (1 << 16) ? "fbss " : "",
cap & (1 << 15) ? "pio " : "",
cap & (1 << 14) ? "slum " : "",
cap & (1 << 13) ? "part " : "",
cap & (1 << 7) ? "ccc " : "",
cap & (1 << 6) ? "ems " : "",
cap & (1 << 5) ? "sxs " : "",
cap2 & (1 << 2) ? "apst " : "",
cap2 & (1 << 1) ? "nvmp " : "",
cap2 & (1 << 0) ? "boh " : "");
}
#if defined(CONFIG_DM_SCSI) || !defined(CONFIG_SCSI_AHCI_PLAT)
# if defined(CONFIG_DM_PCI) || defined(CONFIG_DM_SCSI)
static int ahci_init_one(struct ahci_uc_priv *uc_priv, struct udevice *dev)
# else
static int ahci_init_one(struct ahci_uc_priv *uc_priv, pci_dev_t dev)
# endif
{
#if !defined(CONFIG_DM_SCSI)
u16 vendor;
#endif
int rc;
uc_priv->dev = dev;
uc_priv->host_flags = ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
| ATA_FLAG_MMIO
| ATA_FLAG_PIO_DMA
| ATA_FLAG_NO_ATAPI;
uc_priv->pio_mask = 0x1f;
uc_priv->udma_mask = 0x7f; /*Fixme,assume to support UDMA6 */
#if !defined(CONFIG_DM_SCSI)
#ifdef CONFIG_DM_PCI
uc_priv->mmio_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_5,
PCI_REGION_MEM);
/* Take from kernel:
* JMicron-specific fixup:
* make sure we're in AHCI mode
*/
dm_pci_read_config16(dev, PCI_VENDOR_ID, &vendor);
if (vendor == 0x197b)
dm_pci_write_config8(dev, 0x41, 0xa1);
#else
uc_priv->mmio_base = pci_map_bar(dev, PCI_BASE_ADDRESS_5,
PCI_REGION_MEM);
/* Take from kernel:
* JMicron-specific fixup:
* make sure we're in AHCI mode
*/
pci_read_config_word(dev, PCI_VENDOR_ID, &vendor);
if (vendor == 0x197b)
pci_write_config_byte(dev, 0x41, 0xa1);
#endif
#else
struct scsi_platdata *plat = dev_get_uclass_platdata(dev);
uc_priv->mmio_base = (void *)plat->base;
#endif
debug("ahci mmio_base=0x%p\n", uc_priv->mmio_base);
/* initialize adapter */
rc = ahci_host_init(uc_priv);
if (rc)
goto err_out;
ahci_print_info(uc_priv);
return 0;
err_out:
return rc;
}
#endif
#define MAX_DATA_BYTE_COUNT (4*1024*1024)
static int ahci_fill_sg(struct ahci_uc_priv *uc_priv, u8 port,
unsigned char *buf, int buf_len)
{
struct ahci_ioports *pp = &(uc_priv->port[port]);
struct ahci_sg *ahci_sg = pp->cmd_tbl_sg;
u32 sg_count;
int i;
sg_count = ((buf_len - 1) / MAX_DATA_BYTE_COUNT) + 1;
if (sg_count > AHCI_MAX_SG) {
printf("Error:Too much sg!\n");
return -1;
}
for (i = 0; i < sg_count; i++) {
ahci_sg->addr =
cpu_to_le32((unsigned long) buf + i * MAX_DATA_BYTE_COUNT);
ahci_sg->addr_hi = 0;
ahci_sg->flags_size = cpu_to_le32(0x3fffff &
(buf_len < MAX_DATA_BYTE_COUNT
? (buf_len - 1)
: (MAX_DATA_BYTE_COUNT - 1)));
ahci_sg++;
buf_len -= MAX_DATA_BYTE_COUNT;
}
return sg_count;
}
static void ahci_fill_cmd_slot(struct ahci_ioports *pp, u32 opts)
{
pp->cmd_slot->opts = cpu_to_le32(opts);
pp->cmd_slot->status = 0;
pp->cmd_slot->tbl_addr = cpu_to_le32((u32)pp->cmd_tbl & 0xffffffff);
#ifdef CONFIG_PHYS_64BIT
pp->cmd_slot->tbl_addr_hi =
cpu_to_le32((u32)(((pp->cmd_tbl) >> 16) >> 16));
#endif
}
static int wait_spinup(void __iomem *port_mmio)
{
ulong start;
u32 tf_data;
start = get_timer(0);
do {
tf_data = readl(port_mmio + PORT_TFDATA);
if (!(tf_data & ATA_BUSY))
return 0;
} while (get_timer(start) < WAIT_MS_SPINUP);
return -ETIMEDOUT;
}
static int ahci_port_start(struct ahci_uc_priv *uc_priv, u8 port)
{
struct ahci_ioports *pp = &(uc_priv->port[port]);
void __iomem *port_mmio = pp->port_mmio;
u32 port_status;
void __iomem *mem;
debug("Enter start port: %d\n", port);
port_status = readl(port_mmio + PORT_SCR_STAT);
debug("Port %d status: %x\n", port, port_status);
if ((port_status & 0xf) != 0x03) {
printf("No Link on this port!\n");
return -1;
}
mem = malloc(AHCI_PORT_PRIV_DMA_SZ + 2048);
if (!mem) {
free(pp);
printf("%s: No mem for table!\n", __func__);
return -ENOMEM;
}
/* Aligned to 2048-bytes */
mem = memalign(2048, AHCI_PORT_PRIV_DMA_SZ);
memset(mem, 0, AHCI_PORT_PRIV_DMA_SZ);
/*
* First item in chunk of DMA memory: 32-slot command table,
* 32 bytes each in size
*/
pp->cmd_slot =
(struct ahci_cmd_hdr *)(uintptr_t)virt_to_phys((void *)mem);
debug("cmd_slot = %p\n", pp->cmd_slot);
mem += (AHCI_CMD_SLOT_SZ + 224);
/*
* Second item: Received-FIS area
*/
pp->rx_fis = virt_to_phys((void *)mem);
mem += AHCI_RX_FIS_SZ;
/*
* Third item: data area for storing a single command
* and its scatter-gather table
*/
pp->cmd_tbl = virt_to_phys((void *)mem);
debug("cmd_tbl_dma = %lx\n", pp->cmd_tbl);
mem += AHCI_CMD_TBL_HDR;
pp->cmd_tbl_sg =
(struct ahci_sg *)(uintptr_t)virt_to_phys((void *)mem);
writel_with_flush((unsigned long)pp->cmd_slot,
port_mmio + PORT_LST_ADDR);
writel_with_flush(pp->rx_fis, port_mmio + PORT_FIS_ADDR);
#ifdef CONFIG_SUNXI_AHCI
sunxi_dma_init(port_mmio);
#endif
writel_with_flush(PORT_CMD_ICC_ACTIVE | PORT_CMD_FIS_RX |
PORT_CMD_POWER_ON | PORT_CMD_SPIN_UP |
PORT_CMD_START, port_mmio + PORT_CMD);
debug("Exit start port %d\n", port);
/*
* Make sure interface is not busy based on error and status
* information from task file data register before proceeding
*/
return wait_spinup(port_mmio);
}
static int ahci_device_data_io(struct ahci_uc_priv *uc_priv, u8 port, u8 *fis,
int fis_len, u8 *buf, int buf_len, u8 is_write)
{
struct ahci_ioports *pp = &(uc_priv->port[port]);
void __iomem *port_mmio = pp->port_mmio;
u32 opts;
u32 port_status;
int sg_count;
debug("Enter %s: for port %d\n", __func__, port);
if (port > uc_priv->n_ports) {
printf("Invalid port number %d\n", port);
return -1;
}
port_status = readl(port_mmio + PORT_SCR_STAT);
if ((port_status & 0xf) != 0x03) {
debug("No Link on port %d!\n", port);
return -1;
}
memcpy((unsigned char *)pp->cmd_tbl, fis, fis_len);
sg_count = ahci_fill_sg(uc_priv, port, buf, buf_len);
opts = (fis_len >> 2) | (sg_count << 16) | (is_write << 6);
ahci_fill_cmd_slot(pp, opts);
ahci_dcache_flush_sata_cmd(pp);
ahci_dcache_flush_range((unsigned long)buf, (unsigned long)buf_len);
writel_with_flush(1, port_mmio + PORT_CMD_ISSUE);
if (waiting_for_cmd_completed(port_mmio + PORT_CMD_ISSUE,
WAIT_MS_DATAIO, 0x1)) {
printf("timeout exit!\n");
return -1;
}
ahci_dcache_invalidate_range((unsigned long)buf,
(unsigned long)buf_len);
debug("%s: %d byte transferred.\n", __func__, pp->cmd_slot->status);
return 0;
}
static char *ata_id_strcpy(u16 *target, u16 *src, int len)
{
int i;
for (i = 0; i < len / 2; i++)
target[i] = swab16(src[i]);
return (char *)target;
}
/*
* SCSI INQUIRY command operation.
*/
static int ata_scsiop_inquiry(struct ahci_uc_priv *uc_priv,
struct scsi_cmd *pccb)
{
static const u8 hdr[] = {
0,
0,
0x5, /* claim SPC-3 version compatibility */
2,
95 - 4,
};
u8 fis[20];
u16 *idbuf;
ALLOC_CACHE_ALIGN_BUFFER(u16, tmpid, ATA_ID_WORDS);
u8 port;
/* Clean ccb data buffer */
memset(pccb->pdata, 0, pccb->datalen);
memcpy(pccb->pdata, hdr, sizeof(hdr));
if (pccb->datalen <= 35)
return 0;
memset(fis, 0, sizeof(fis));
/* Construct the FIS */
fis[0] = 0x27; /* Host to device FIS. */
fis[1] = 1 << 7; /* Command FIS. */
fis[2] = ATA_CMD_ID_ATA; /* Command byte. */
/* Read id from sata */
port = pccb->target;
if (ahci_device_data_io(uc_priv, port, (u8 *)&fis, sizeof(fis),
(u8 *)tmpid, ATA_ID_WORDS * 2, 0)) {
debug("scsi_ahci: SCSI inquiry command failure.\n");
return -EIO;
}
if (!uc_priv->ataid[port]) {
uc_priv->ataid[port] = malloc(ATA_ID_WORDS * 2);
if (!uc_priv->ataid[port]) {
printf("%s: No memory for ataid[port]\n", __func__);
return -ENOMEM;
}
}
idbuf = uc_priv->ataid[port];
memcpy(idbuf, tmpid, ATA_ID_WORDS * 2);
ata_swap_buf_le16(idbuf, ATA_ID_WORDS);
memcpy(&pccb->pdata[8], "ATA ", 8);
ata_id_strcpy((u16 *)&pccb->pdata[16], &idbuf[ATA_ID_PROD], 16);
ata_id_strcpy((u16 *)&pccb->pdata[32], &idbuf[ATA_ID_FW_REV], 4);
#ifdef DEBUG
ata_dump_id(idbuf);
#endif
return 0;
}
/*
* SCSI READ10/WRITE10 command operation.
*/
static int ata_scsiop_read_write(struct ahci_uc_priv *uc_priv,
struct scsi_cmd *pccb, u8 is_write)
{
lbaint_t lba = 0;
u16 blocks = 0;
u8 fis[20];
u8 *user_buffer = pccb->pdata;
u32 user_buffer_size = pccb->datalen;
/* Retrieve the base LBA number from the ccb structure. */
if (pccb->cmd[0] == SCSI_READ16) {
memcpy(&lba, pccb->cmd + 2, 8);
lba = be64_to_cpu(lba);
} else {
u32 temp;
memcpy(&temp, pccb->cmd + 2, 4);
lba = be32_to_cpu(temp);
}
/*
* Retrieve the base LBA number and the block count from
* the ccb structure.
*
* For 10-byte and 16-byte SCSI R/W commands, transfer
* length 0 means transfer 0 block of data.
* However, for ATA R/W commands, sector count 0 means
* 256 or 65536 sectors, not 0 sectors as in SCSI.
*
* WARNING: one or two older ATA drives treat 0 as 0...
*/
if (pccb->cmd[0] == SCSI_READ16)
blocks = (((u16)pccb->cmd[13]) << 8) | ((u16) pccb->cmd[14]);
else
blocks = (((u16)pccb->cmd[7]) << 8) | ((u16) pccb->cmd[8]);
debug("scsi_ahci: %s %u blocks starting from lba 0x" LBAFU "\n",
is_write ? "write" : "read", blocks, lba);
/* Preset the FIS */
memset(fis, 0, sizeof(fis));
fis[0] = 0x27; /* Host to device FIS. */
fis[1] = 1 << 7; /* Command FIS. */
/* Command byte (read/write). */
fis[2] = is_write ? ATA_CMD_WRITE_EXT : ATA_CMD_READ_EXT;
while (blocks) {
u16 now_blocks; /* number of blocks per iteration */
u32 transfer_size; /* number of bytes per iteration */
now_blocks = min((u16)MAX_SATA_BLOCKS_READ_WRITE, blocks);
transfer_size = ATA_SECT_SIZE * now_blocks;
if (transfer_size > user_buffer_size) {
printf("scsi_ahci: Error: buffer too small.\n");
return -EIO;
}
/*
* LBA48 SATA command but only use 32bit address range within
* that (unless we've enabled 64bit LBA support). The next
* smaller command range (28bit) is too small.
*/
fis[4] = (lba >> 0) & 0xff;
fis[5] = (lba >> 8) & 0xff;
fis[6] = (lba >> 16) & 0xff;
fis[7] = 1 << 6; /* device reg: set LBA mode */
fis[8] = ((lba >> 24) & 0xff);
#ifdef CONFIG_SYS_64BIT_LBA
if (pccb->cmd[0] == SCSI_READ16) {
fis[9] = ((lba >> 32) & 0xff);
fis[10] = ((lba >> 40) & 0xff);
}
#endif
fis[3] = 0xe0; /* features */
/* Block (sector) count */
fis[12] = (now_blocks >> 0) & 0xff;
fis[13] = (now_blocks >> 8) & 0xff;
/* Read/Write from ahci */
if (ahci_device_data_io(uc_priv, pccb->target, (u8 *)&fis,
sizeof(fis), user_buffer, transfer_size,
is_write)) {
debug("scsi_ahci: SCSI %s10 command failure.\n",
is_write ? "WRITE" : "READ");
return -EIO;
}
/* If this transaction is a write, do a following flush.
* Writes in u-boot are so rare, and the logic to know when is
* the last write and do a flush only there is sufficiently
* difficult. Just do a flush after every write. This incurs,
* usually, one extra flush when the rare writes do happen.
*/
if (is_write) {
if (-EIO == ata_io_flush(uc_priv, pccb->target))
return -EIO;
}
user_buffer += transfer_size;
user_buffer_size -= transfer_size;
blocks -= now_blocks;
lba += now_blocks;
}
return 0;
}
/*
* SCSI READ CAPACITY10 command operation.
*/
static int ata_scsiop_read_capacity10(struct ahci_uc_priv *uc_priv,
struct scsi_cmd *pccb)
{
u32 cap;
u64 cap64;
u32 block_size;
if (!uc_priv->ataid[pccb->target]) {
printf("scsi_ahci: SCSI READ CAPACITY10 command failure. "
"\tNo ATA info!\n"
"\tPlease run SCSI command INQUIRY first!\n");
return -EPERM;
}
cap64 = ata_id_n_sectors(uc_priv->ataid[pccb->target]);
if (cap64 > 0x100000000ULL)
cap64 = 0xffffffff;
cap = cpu_to_be32(cap64);
memcpy(pccb->pdata, &cap, sizeof(cap));
block_size = cpu_to_be32((u32)512);
memcpy(&pccb->pdata[4], &block_size, 4);
return 0;
}
/*
* SCSI READ CAPACITY16 command operation.
*/
static int ata_scsiop_read_capacity16(struct ahci_uc_priv *uc_priv,
struct scsi_cmd *pccb)
{
u64 cap;
u64 block_size;
if (!uc_priv->ataid[pccb->target]) {
printf("scsi_ahci: SCSI READ CAPACITY16 command failure. "
"\tNo ATA info!\n"
"\tPlease run SCSI command INQUIRY first!\n");
return -EPERM;
}
cap = ata_id_n_sectors(uc_priv->ataid[pccb->target]);
cap = cpu_to_be64(cap);
memcpy(pccb->pdata, &cap, sizeof(cap));
block_size = cpu_to_be64((u64)512);
memcpy(&pccb->pdata[8], &block_size, 8);
return 0;
}
/*
* SCSI TEST UNIT READY command operation.
*/
static int ata_scsiop_test_unit_ready(struct ahci_uc_priv *uc_priv,
struct scsi_cmd *pccb)
{
return (uc_priv->ataid[pccb->target]) ? 0 : -EPERM;
}
static int ahci_scsi_exec(struct udevice *dev, struct scsi_cmd *pccb)
{
struct ahci_uc_priv *uc_priv;
#ifdef CONFIG_DM_SCSI
uc_priv = dev_get_uclass_priv(dev->parent);
#else
uc_priv = probe_ent;
#endif
int ret;
switch (pccb->cmd[0]) {
case SCSI_READ16:
case SCSI_READ10:
ret = ata_scsiop_read_write(uc_priv, pccb, 0);
break;
case SCSI_WRITE10:
ret = ata_scsiop_read_write(uc_priv, pccb, 1);
break;
case SCSI_RD_CAPAC10:
ret = ata_scsiop_read_capacity10(uc_priv, pccb);
break;
case SCSI_RD_CAPAC16:
ret = ata_scsiop_read_capacity16(uc_priv, pccb);
break;
case SCSI_TST_U_RDY:
ret = ata_scsiop_test_unit_ready(uc_priv, pccb);
break;
case SCSI_INQUIRY:
ret = ata_scsiop_inquiry(uc_priv, pccb);
break;
default:
printf("Unsupport SCSI command 0x%02x\n", pccb->cmd[0]);
return -ENOTSUPP;
}
if (ret) {
debug("SCSI command 0x%02x ret errno %d\n", pccb->cmd[0], ret);
return ret;
}
return 0;
}
static int ahci_start_ports(struct ahci_uc_priv *uc_priv)
{
u32 linkmap;
int i;
linkmap = uc_priv->link_port_map;
for (i = 0; i < uc_priv->n_ports; i++) {
if (((linkmap >> i) & 0x01)) {
if (ahci_port_start(uc_priv, (u8) i)) {
printf("Can not start port %d\n", i);
continue;
}
}
}
return 0;
}
#ifndef CONFIG_DM_SCSI
void scsi_low_level_init(int busdevfunc)
{
struct ahci_uc_priv *uc_priv;
#ifndef CONFIG_SCSI_AHCI_PLAT
probe_ent = calloc(1, sizeof(struct ahci_uc_priv));
if (!probe_ent) {
printf("%s: No memory for uc_priv\n", __func__);
return;
}
uc_priv = probe_ent;
# if defined(CONFIG_DM_PCI)
struct udevice *dev;
int ret;
ret = dm_pci_bus_find_bdf(busdevfunc, &dev);
if (ret)
return;
ahci_init_one(uc_priv, dev);
# else
ahci_init_one(uc_priv, busdevfunc);
# endif
#else
uc_priv = probe_ent;
#endif
ahci_start_ports(uc_priv);
}
#endif
#ifndef CONFIG_SCSI_AHCI_PLAT
# if defined(CONFIG_DM_PCI) || defined(CONFIG_DM_SCSI)
int ahci_init_one_dm(struct udevice *dev)
{
struct ahci_uc_priv *uc_priv = dev_get_uclass_priv(dev);
return ahci_init_one(uc_priv, dev);
}
#endif
#endif
int ahci_start_ports_dm(struct udevice *dev)
{
struct ahci_uc_priv *uc_priv = dev_get_uclass_priv(dev);
return ahci_start_ports(uc_priv);
}
#ifdef CONFIG_SCSI_AHCI_PLAT
static int ahci_init_common(struct ahci_uc_priv *uc_priv, void __iomem *base)
{
int rc;
uc_priv->host_flags = ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
| ATA_FLAG_MMIO
| ATA_FLAG_PIO_DMA
| ATA_FLAG_NO_ATAPI;
uc_priv->pio_mask = 0x1f;
uc_priv->udma_mask = 0x7f; /*Fixme,assume to support UDMA6 */
uc_priv->mmio_base = base;
/* initialize adapter */
rc = ahci_host_init(uc_priv);
if (rc)
goto err_out;
ahci_print_info(uc_priv);
rc = ahci_start_ports(uc_priv);
err_out:
return rc;
}
#ifndef CONFIG_DM_SCSI
int ahci_init(void __iomem *base)
{
struct ahci_uc_priv *uc_priv;
probe_ent = malloc(sizeof(struct ahci_uc_priv));
if (!probe_ent) {
printf("%s: No memory for uc_priv\n", __func__);
return -ENOMEM;
}
uc_priv = probe_ent;
memset(uc_priv, 0, sizeof(struct ahci_uc_priv));
return ahci_init_common(uc_priv, base);
}
#endif
int ahci_init_dm(struct udevice *dev, void __iomem *base)
{
struct ahci_uc_priv *uc_priv = dev_get_uclass_priv(dev);
return ahci_init_common(uc_priv, base);
}
void __weak scsi_init(void)
{
}
#endif /* CONFIG_SCSI_AHCI_PLAT */
/*
* In the general case of generic rotating media it makes sense to have a
* flush capability. It probably even makes sense in the case of SSDs because
* one cannot always know for sure what kind of internal cache/flush mechanism
* is embodied therein. At first it was planned to invoke this after the last
* write to disk and before rebooting. In practice, knowing, a priori, which
* is the last write is difficult. Because writing to the disk in u-boot is
* very rare, this flush command will be invoked after every block write.
*/
static int ata_io_flush(struct ahci_uc_priv *uc_priv, u8 port)
{
u8 fis[20];
struct ahci_ioports *pp = &(uc_priv->port[port]);
void __iomem *port_mmio = pp->port_mmio;
u32 cmd_fis_len = 5; /* five dwords */
/* Preset the FIS */
memset(fis, 0, 20);
fis[0] = 0x27; /* Host to device FIS. */
fis[1] = 1 << 7; /* Command FIS. */
fis[2] = ATA_CMD_FLUSH_EXT;
memcpy((unsigned char *)pp->cmd_tbl, fis, 20);
ahci_fill_cmd_slot(pp, cmd_fis_len);
ahci_dcache_flush_sata_cmd(pp);
writel_with_flush(1, port_mmio + PORT_CMD_ISSUE);
if (waiting_for_cmd_completed(port_mmio + PORT_CMD_ISSUE,
WAIT_MS_FLUSH, 0x1)) {
debug("scsi_ahci: flush command timeout on port %d.\n", port);
return -EIO;
}
return 0;
}
static int ahci_scsi_bus_reset(struct udevice *dev)
{
/* Not implemented */
return 0;
}
#ifdef CONFIG_DM_SCSI
int ahci_bind_scsi(struct udevice *ahci_dev, struct udevice **devp)
{
struct udevice *dev;
int ret;
ret = device_bind_driver(ahci_dev, "ahci_scsi", "ahci_scsi", &dev);
if (ret)
return ret;
*devp = dev;
return 0;
}
int ahci_probe_scsi(struct udevice *ahci_dev, ulong base)
{
struct ahci_uc_priv *uc_priv;
struct scsi_platdata *uc_plat;
struct udevice *dev;
int ret;
device_find_first_child(ahci_dev, &dev);
if (!dev)
return -ENODEV;
uc_plat = dev_get_uclass_platdata(dev);
uc_plat->base = base;
uc_plat->max_lun = 1;
uc_plat->max_id = 2;
uc_priv = dev_get_uclass_priv(ahci_dev);
ret = ahci_init_one(uc_priv, dev);
if (ret)
return ret;
ret = ahci_start_ports(uc_priv);
if (ret)
return ret;
return 0;
}
#ifdef CONFIG_DM_PCI
int ahci_probe_scsi_pci(struct udevice *ahci_dev)
{
ulong base;
base = (ulong)dm_pci_map_bar(ahci_dev, PCI_BASE_ADDRESS_5,
PCI_REGION_MEM);
return ahci_probe_scsi(ahci_dev, base);
}
#endif
struct scsi_ops scsi_ops = {
.exec = ahci_scsi_exec,
.bus_reset = ahci_scsi_bus_reset,
};
U_BOOT_DRIVER(ahci_scsi) = {
.name = "ahci_scsi",
.id = UCLASS_SCSI,
.ops = &scsi_ops,
};
#else
int scsi_exec(struct udevice *dev, struct scsi_cmd *pccb)
{
return ahci_scsi_exec(dev, pccb);
}
__weak int scsi_bus_reset(struct udevice *dev)
{
return ahci_scsi_bus_reset(dev);
return 0;
}
#endif