| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2016-2018, NVIDIA CORPORATION. |
| */ |
| |
| #include <common.h> |
| #include <fdt_support.h> |
| #include <fdtdec.h> |
| #include <linux/sizes.h> |
| #include <asm/arch/tegra.h> |
| #include <asm/armv8/mmu.h> |
| |
| /* |
| * Size of a region that's large enough to hold the relocated U-Boot and all |
| * other allocations made around it (stack, heap, page tables, etc.) |
| * In practice, running "bdinfo" at the shell prompt, the stack reaches about |
| * 5MB from the address selected for ram_top as of the time of writing, |
| * so a 16MB region should be plenty. |
| */ |
| #define MIN_USABLE_RAM_SIZE SZ_16M |
| /* |
| * The amount of space we expect to require for stack usage. Used to validate |
| * that all reservations fit into the region selected for the relocation target |
| */ |
| #define MIN_USABLE_STACK_SIZE SZ_1M |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| extern unsigned long nvtboot_boot_x0; |
| extern struct mm_region tegra_mem_map[]; |
| |
| /* |
| * These variables are written to before relocation, and hence cannot be |
| * in.bss, since .bss overlaps the DTB that's appended to the U-Boot binary. |
| * The section attribute forces this into .data and avoids this issue. This |
| * also has the nice side-effect of the content being valid after relocation. |
| */ |
| |
| /* The number of valid entries in ram_banks[] */ |
| static int ram_bank_count __attribute__((section(".data"))); |
| |
| /* |
| * The usable top-of-RAM for U-Boot. This is both: |
| * a) Below 4GB to avoid issues with peripherals that use 32-bit addressing. |
| * b) At the end of a region that has enough space to hold the relocated U-Boot |
| * and all other allocations made around it (stack, heap, page tables, etc.) |
| */ |
| static u64 ram_top __attribute__((section(".data"))); |
| /* The base address of the region of RAM that ends at ram_top */ |
| static u64 region_base __attribute__((section(".data"))); |
| |
| int dram_init(void) |
| { |
| unsigned int na, ns; |
| const void *nvtboot_blob = (void *)nvtboot_boot_x0; |
| int node, len, i; |
| const u32 *prop; |
| |
| na = fdtdec_get_uint(nvtboot_blob, 0, "#address-cells", 2); |
| ns = fdtdec_get_uint(nvtboot_blob, 0, "#size-cells", 2); |
| |
| node = fdt_path_offset(nvtboot_blob, "/memory"); |
| if (node < 0) { |
| pr_err("Can't find /memory node in nvtboot DTB"); |
| hang(); |
| } |
| prop = fdt_getprop(nvtboot_blob, node, "reg", &len); |
| if (!prop) { |
| pr_err("Can't find /memory/reg property in nvtboot DTB"); |
| hang(); |
| } |
| |
| /* Calculate the true # of base/size pairs to read */ |
| len /= 4; /* Convert bytes to number of cells */ |
| len /= (na + ns); /* Convert cells to number of banks */ |
| if (len > CONFIG_NR_DRAM_BANKS) |
| len = CONFIG_NR_DRAM_BANKS; |
| |
| /* Parse the /memory node, and save useful entries */ |
| gd->ram_size = 0; |
| ram_bank_count = 0; |
| for (i = 0; i < len; i++) { |
| u64 bank_start, bank_end, bank_size, usable_bank_size; |
| |
| /* Extract raw memory region data from DTB */ |
| bank_start = fdt_read_number(prop, na); |
| prop += na; |
| bank_size = fdt_read_number(prop, ns); |
| prop += ns; |
| gd->ram_size += bank_size; |
| bank_end = bank_start + bank_size; |
| debug("Bank %d: %llx..%llx (+%llx)\n", i, |
| bank_start, bank_end, bank_size); |
| |
| /* |
| * Align the bank to MMU section size. This is not strictly |
| * necessary, since the translation table construction code |
| * handles page granularity without issue. However, aligning |
| * the MMU entries reduces the size and number of levels in the |
| * page table, so is worth it. |
| */ |
| bank_start = ROUND(bank_start, SZ_2M); |
| bank_end = bank_end & ~(SZ_2M - 1); |
| bank_size = bank_end - bank_start; |
| debug(" aligned: %llx..%llx (+%llx)\n", |
| bank_start, bank_end, bank_size); |
| if (bank_end <= bank_start) |
| continue; |
| |
| /* Record data used to create MMU translation tables */ |
| ram_bank_count++; |
| /* Index below is deliberately 1-based to skip MMIO entry */ |
| tegra_mem_map[ram_bank_count].virt = bank_start; |
| tegra_mem_map[ram_bank_count].phys = bank_start; |
| tegra_mem_map[ram_bank_count].size = bank_size; |
| tegra_mem_map[ram_bank_count].attrs = |
| PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE; |
| |
| /* Determine best bank to relocate U-Boot into */ |
| if (bank_end > SZ_4G) |
| bank_end = SZ_4G; |
| debug(" end %llx (usable)\n", bank_end); |
| usable_bank_size = bank_end - bank_start; |
| debug(" size %llx (usable)\n", usable_bank_size); |
| if ((usable_bank_size >= MIN_USABLE_RAM_SIZE) && |
| (bank_end > ram_top)) { |
| ram_top = bank_end; |
| region_base = bank_start; |
| debug("ram top now %llx\n", ram_top); |
| } |
| } |
| |
| /* Ensure memory map contains the desired sentinel entry */ |
| tegra_mem_map[ram_bank_count + 1].virt = 0; |
| tegra_mem_map[ram_bank_count + 1].phys = 0; |
| tegra_mem_map[ram_bank_count + 1].size = 0; |
| tegra_mem_map[ram_bank_count + 1].attrs = 0; |
| |
| /* Error out if a relocation target couldn't be found */ |
| if (!ram_top) { |
| pr_err("Can't find a usable RAM top"); |
| hang(); |
| } |
| |
| return 0; |
| } |
| |
| int dram_init_banksize(void) |
| { |
| int i; |
| |
| if ((gd->start_addr_sp - region_base) < MIN_USABLE_STACK_SIZE) { |
| pr_err("Reservations exceed chosen region size"); |
| hang(); |
| } |
| |
| for (i = 0; i < ram_bank_count; i++) { |
| gd->bd->bi_dram[i].start = tegra_mem_map[1 + i].virt; |
| gd->bd->bi_dram[i].size = tegra_mem_map[1 + i].size; |
| } |
| |
| #ifdef CONFIG_PCI |
| gd->pci_ram_top = ram_top; |
| #endif |
| |
| return 0; |
| } |
| |
| ulong board_get_usable_ram_top(ulong total_size) |
| { |
| return ram_top; |
| } |