blob: 63d51102f3f0383a4f3c38706512f82041773845 [file] [log] [blame]
/*
* Copyright (C) 2016 Freescale Semiconductor, Inc.
* Copyright 2017-2019 NXP
* SPDX-License-Identifier: GPL-2.0+
*
*/
#include <common.h>
#include <stdlib.h>
#ifdef CONFIG_FSL_CAAM_KB
#include <fsl_caam.h>
#endif
#include <fuse.h>
#include <mmc.h>
#include <hash.h>
#include <mapmem.h>
#include <fsl_avb.h>
#include "trusty/avb.h"
#ifdef CONFIG_IMX_TRUSTY_OS
#include <trusty/libtipc.h>
#endif
#include "fsl_avbkey.h"
#include "utils.h"
#include "debug.h"
#include <memalign.h>
#include "trusty/hwcrypto.h"
#include "fsl_atx_attributes.h"
#define INITFLAG_FUSE_OFFSET 0
#define INITFLAG_FUSE_MASK 0x00000001
#define INITFLAG_FUSE 0x00000001
#define RPMB_BLKSZ 256
#define RPMBKEY_LENGTH 32
#define RPMBKEY_BLOB_LEN ((RPMBKEY_LENGTH) + (CAAM_PAD))
extern int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value);
#ifdef AVB_RPMB
static int mmc_dev_no = -1;
struct mmc *get_mmc(void) {
extern int mmc_get_env_devno(void);
struct mmc *mmc;
if (mmc_dev_no < 0 && (mmc_dev_no = mmc_get_env_dev()) < 0)
return NULL;
mmc = find_mmc_device(mmc_dev_no);
if (!mmc || mmc_init(mmc))
return NULL;
return mmc;
}
void fill_secure_keyslot_package(struct keyslot_package *kp) {
memcpy((void*)CAAM_ARB_BASE_ADDR, kp, sizeof(struct keyslot_package));
/* invalidate the cache to make sure no critical information left in it */
memset(kp, 0, sizeof(struct keyslot_package));
invalidate_dcache_range(((ulong)kp) & 0xffffffc0,(((((ulong)kp) +
sizeof(struct keyslot_package)) & 0xffffff00) +
0x100));
}
int read_keyslot_package(struct keyslot_package* kp) {
char original_part;
int blksz;
unsigned char* fill = NULL;
int ret = 0;
/* load tee from boot1 of eMMC. */
int mmcc = mmc_get_env_dev();
struct blk_desc *dev_desc = NULL;
struct mmc *mmc;
#ifdef CONFIG_IMX8_TRUSTY_XEN
mmcc = 0;
#endif
mmc = find_mmc_device(mmcc);
if (!mmc) {
printf("boota: cannot find '%d' mmc device\n", mmcc);
return -1;
}
#ifndef CONFIG_BLK
original_part = mmc->block_dev.hwpart;
dev_desc = blk_get_dev("mmc", mmcc);
#else
dev_desc = mmc_get_blk_desc(mmc);
#endif
if (NULL == dev_desc) {
printf("** Block device MMC %d not supported\n", mmcc);
return -1;
}
#ifdef CONFIG_BLK
original_part = dev_desc->hwpart;
#endif
blksz = dev_desc->blksz;
fill = (unsigned char *)memalign(ALIGN_BYTES, blksz);
/* below was i.MX mmc operation code */
if (mmc_init(mmc)) {
printf("mmc%d init failed\n", mmcc);
ret = -1;
goto fail;;
}
if (mmc_switch_part(mmc, KEYSLOT_HWPARTITION_ID) != 0) {
ret = -1;
goto fail;
}
#ifndef CONFIG_BLK
mmc->block_dev.hwpart = KEYSLOT_HWPARTITION_ID;
#else
dev_desc->hwpart = KEYSLOT_HWPARTITION_ID;
#endif
if (blk_dread(dev_desc, KEYSLOT_BLKS,
1, fill) != 1) {
printf("Failed to read rpmbkeyblob.");
ret = -1;
goto fail;
} else {
memcpy(kp, fill, sizeof(struct keyslot_package));
}
fail:
/* Free allocated memory. */
if (fill != NULL)
free(fill);
/* Return to original partition */
#ifndef CONFIG_BLK
if (mmc->block_dev.hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
return -1;
mmc->block_dev.hwpart = original_part;
}
#else
if (dev_desc->hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
return -1;
dev_desc->hwpart = original_part;
}
#endif
return ret;
}
bool rpmbkey_is_set(void)
{
int mmcc;
bool ret;
uint8_t *buf;
struct mmc *mmc;
char original_part;
struct blk_desc *desc = NULL;
/* Get current mmc device. */
mmcc = mmc_get_env_dev();
mmc = find_mmc_device(mmcc);
if (!mmc) {
printf("error - cannot find '%d' mmc device\n", mmcc);
return false;
}
desc = mmc_get_blk_desc(mmc);
original_part = desc->hwpart;
/* Switch to the RPMB partition */
if (desc->hwpart != MMC_PART_RPMB) {
if (mmc_switch_part(mmc, MMC_PART_RPMB) != 0) {
printf("ERROR - can't switch to rpmb partition \n");
return false;
}
desc->hwpart = MMC_PART_RPMB;
}
/* Try to read the first one block, return count '1' means the rpmb
* key has been set, otherwise means the key hasn't been set.
*/
buf = (uint8_t *)memalign(ALIGN_BYTES, desc->blksz);
if (mmc_rpmb_read(mmc, buf, 0, 1, NULL) != 1)
ret = false;
else
ret = true;
/* return to original partition. */
if (desc->hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
ret = false;
desc->hwpart = original_part;
}
/* remember to free the buffer */
if (buf != NULL)
free(buf);
return ret;
}
#ifdef CONFIG_FSL_CAAM_KB
int rpmb_read(struct mmc *mmc, uint8_t *buffer, size_t num_bytes, int64_t offset) {
unsigned char *bdata = NULL;
unsigned char *out_buf = (unsigned char *)buffer;
unsigned long s, cnt;
unsigned long blksz;
size_t num_read = 0;
unsigned short part_start, part_length, part_end, bs, be;
margin_pos_t margin;
char original_part;
uint8_t *blob = NULL;
struct blk_desc *desc = mmc_get_blk_desc(mmc);
ALLOC_CACHE_ALIGN_BUFFER(uint8_t, extract_key, RPMBKEY_LENGTH);
struct keyslot_package kp;
int ret;
blksz = RPMB_BLKSZ;
part_length = mmc->capacity_rpmb >> 8;
part_start = 0;
part_end = part_start + part_length - 1;
DEBUGAVB("[rpmb]: offset=%ld, num_bytes=%zu\n", (long)offset, num_bytes);
if(get_margin_pos(part_start, part_end, blksz,
&margin, offset, num_bytes, false))
return -1;
bs = (unsigned short)margin.blk_start;
be = (unsigned short)margin.blk_end;
s = margin.start;
/* Switch to the RPMB partition */
original_part = desc->hwpart;
if (desc->hwpart != MMC_PART_RPMB) {
if (mmc_switch_part(mmc, MMC_PART_RPMB) != 0)
return -1;
desc->hwpart = MMC_PART_RPMB;
}
/* get rpmb key */
blob = (uint8_t *)memalign(ARCH_DMA_MINALIGN, RPMBKEY_BLOB_LEN);
if (read_keyslot_package(&kp)) {
ERR("read rpmb key error\n");
ret = -1;
goto fail;
}
/* copy rpmb key to blob */
memcpy(blob, kp.rpmb_keyblob, RPMBKEY_BLOB_LEN);
caam_open();
if (caam_decap_blob((ulong)extract_key, (ulong)blob,
RPMBKEY_LENGTH)) {
ERR("decap rpmb key error\n");
ret = -1;
goto fail;
}
/* alloc a blksz mem */
bdata = (unsigned char *)memalign(ALIGN_BYTES, blksz);
if (bdata == NULL) {
ret = -1;
goto fail;
}
/* one block a time */
while (bs <= be) {
memset(bdata, 0, blksz);
if (mmc_rpmb_read(mmc, bdata, bs, 1, extract_key) != 1) {
ret = -1;
goto fail;
}
cnt = blksz - s;
if (num_read + cnt > num_bytes)
cnt = num_bytes - num_read;
VDEBUG("cur: bs=%d, start=%ld, cnt=%ld bdata=0x%p\n",
bs, s, cnt, bdata);
memcpy(out_buf, bdata + s, cnt);
bs++;
num_read += cnt;
out_buf += cnt;
s = 0;
}
ret = 0;
fail:
/* Return to original partition */
if (desc->hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
ret = -1;
else
desc->hwpart = original_part;
}
if (blob != NULL)
free(blob);
if (bdata != NULL)
free(bdata);
return ret;
}
int rpmb_write(struct mmc *mmc, uint8_t *buffer, size_t num_bytes, int64_t offset) {
unsigned char *bdata = NULL;
unsigned char *in_buf = (unsigned char *)buffer;
unsigned long s, cnt;
unsigned long blksz;
size_t num_write = 0;
unsigned short part_start, part_length, part_end, bs;
margin_pos_t margin;
char original_part;
uint8_t *blob = NULL;
struct blk_desc *desc = mmc_get_blk_desc(mmc);
ALLOC_CACHE_ALIGN_BUFFER(uint8_t, extract_key, RPMBKEY_LENGTH);
struct keyslot_package kp;
int ret;
blksz = RPMB_BLKSZ;
part_length = mmc->capacity_rpmb >> 8;
part_start = 0;
part_end = part_start + part_length - 1;
DEBUGAVB("[rpmb]: offset=%ld, num_bytes=%zu\n", (long)offset, num_bytes);
if(get_margin_pos(part_start, part_end, blksz,
&margin, offset, num_bytes, false)) {
ERR("get_margin_pos err\n");
return -1;
}
bs = (unsigned short)margin.blk_start;
s = margin.start;
/* Switch to the RPMB partition */
original_part = desc->hwpart;
if (desc->hwpart != MMC_PART_RPMB) {
if (mmc_switch_part(mmc, MMC_PART_RPMB) != 0)
return -1;
desc->hwpart = MMC_PART_RPMB;
}
/* get rpmb key */
blob = (uint8_t *)memalign(ARCH_DMA_MINALIGN, RPMBKEY_BLOB_LEN);
if (read_keyslot_package(&kp)) {
ERR("read rpmb key error\n");
ret = -1;
goto fail;
}
/* copy rpmb key to blob */
memcpy(blob, kp.rpmb_keyblob, RPMBKEY_BLOB_LEN);
caam_open();
if (caam_decap_blob((ulong)extract_key, (ulong)blob,
RPMBKEY_LENGTH)) {
ERR("decap rpmb key error\n");
ret = -1;
goto fail;
}
/* alloc a blksz mem */
bdata = (unsigned char *)memalign(ALIGN_BYTES, blksz);
if (bdata == NULL) {
ret = -1;
goto fail;
}
while (num_write < num_bytes) {
memset(bdata, 0, blksz);
cnt = blksz - s;
if (num_write + cnt > num_bytes)
cnt = num_bytes - num_write;
if (!s || cnt != blksz) { /* read blk first */
if (mmc_rpmb_read(mmc, bdata, bs, 1, extract_key) != 1) {
ERR("mmc_rpmb_read err, mmc= 0x%08x\n", (uint32_t)(ulong)mmc);
ret = -1;
goto fail;
}
}
memcpy(bdata + s, in_buf, cnt); /* change data */
VDEBUG("cur: bs=%d, start=%ld, cnt=%ld\n", bs, s, cnt);
if (mmc_rpmb_write(mmc, bdata, bs, 1, extract_key) != 1) {
ret = -1;
goto fail;
}
bs++;
num_write += cnt;
in_buf += cnt;
if (s != 0)
s = 0;
}
ret = 0;
fail:
/* Return to original partition */
if (desc->hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
ret = -1;
else
desc->hwpart = original_part;
}
if (blob != NULL)
free(blob);
if (bdata != NULL)
free(bdata);
return ret;
}
int rpmb_init(void) {
#if !defined(CONFIG_SPL_BUILD) || !defined(CONFIG_DUAL_BOOTLOADER)
int i;
#endif
kblb_hdr_t hdr;
kblb_tag_t *tag;
struct mmc *mmc_dev;
uint32_t offset;
uint32_t rbidx_len;
uint8_t *rbidx;
/* check init status first */
if ((mmc_dev = get_mmc()) == NULL) {
ERR("ERROR - get mmc device\n");
return -1;
}
/* The bootloader rollback index is stored in the last 8k bytes of
* RPMB which is different from the rollback index for vbmeta and
* ATX key versions.
*/
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_DUAL_BOOTLOADER)
if (rpmb_read(mmc_dev, (uint8_t *)&hdr, sizeof(hdr),
BOOTLOADER_RBIDX_OFFSET) != 0) {
#else
if (rpmb_read(mmc_dev, (uint8_t *)&hdr, sizeof(hdr), 0) != 0) {
#endif
ERR("read RPMB error\n");
return -1;
}
if (!memcmp(hdr.magic, AVB_KBLB_MAGIC, AVB_KBLB_MAGIC_LEN))
return 0;
else
printf("initialize rollback index...\n");
/* init rollback index */
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_DUAL_BOOTLOADER)
offset = BOOTLOADER_RBIDX_START;
rbidx_len = BOOTLOADER_RBIDX_LEN;
rbidx = malloc(rbidx_len);
if (rbidx == NULL) {
ERR("failed to allocate memory!\n");
return -1;
}
memset(rbidx, 0, rbidx_len);
*(uint64_t *)rbidx = BOOTLOADER_RBIDX_INITVAL;
tag = &hdr.bootloader_rbk_tags;
tag->offset = offset;
tag->len = rbidx_len;
if (rpmb_write(mmc_dev, rbidx, tag->len, tag->offset) != 0) {
ERR("write RBKIDX RPMB error\n");
free(rbidx);
return -1;
}
if (rbidx != NULL)
free(rbidx);
#else /* CONFIG_SPL_BUILD && CONFIG_DUAL_BOOTLOADER */
offset = AVB_RBIDX_START;
rbidx_len = AVB_RBIDX_LEN;
rbidx = malloc(rbidx_len);
if (rbidx == NULL)
return -1;
memset(rbidx, 0, rbidx_len);
*(uint64_t *)rbidx = AVB_RBIDX_INITVAL;
for (i = 0; i < AVB_MAX_NUMBER_OF_ROLLBACK_INDEX_LOCATIONS; i++) {
tag = &hdr.rbk_tags[i];
tag->flag = AVB_RBIDX_FLAG;
tag->offset = offset;
tag->len = rbidx_len;
if (rpmb_write(mmc_dev, rbidx, tag->len, tag->offset) != 0) {
ERR("write RBKIDX RPMB error\n");
free(rbidx);
return -1;
}
offset += AVB_RBIDX_ALIGN;
}
if (rbidx != NULL)
free(rbidx);
#ifdef CONFIG_AVB_ATX
/* init rollback index for Android Things key versions */
offset = ATX_RBIDX_START;
rbidx_len = ATX_RBIDX_LEN;
rbidx = malloc(rbidx_len);
if (rbidx == NULL)
return -1;
memset(rbidx, 0, rbidx_len);
*(uint64_t *)rbidx = ATX_RBIDX_INITVAL;
for (i = 0; i < AVB_MAX_NUMBER_OF_ROLLBACK_INDEX_LOCATIONS; i++) {
tag = &hdr.atx_rbk_tags[i];
tag->flag = ATX_RBIDX_FLAG;
tag->offset = offset;
tag->len = rbidx_len;
if (rpmb_write(mmc_dev, rbidx, tag->len, tag->offset) != 0) {
ERR("write ATX_RBKIDX RPMB error\n");
free(rbidx);
return -1;
}
offset += ATX_RBIDX_ALIGN;
}
if (rbidx != NULL)
free(rbidx);
#endif
#endif /* CONFIG_SPL_BUILD && CONFIG_DUAL_BOOTLOADER */
/* init hdr */
memcpy(hdr.magic, AVB_KBLB_MAGIC, AVB_KBLB_MAGIC_LEN);
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_DUAL_BOOTLOADER)
if (rpmb_write(mmc_dev, (uint8_t *)&hdr, sizeof(hdr),
BOOTLOADER_RBIDX_OFFSET) != 0) {
#else
if (rpmb_write(mmc_dev, (uint8_t *)&hdr, sizeof(hdr), 0) != 0) {
#endif
ERR("write RPMB hdr error\n");
return -1;
}
return 0;
}
int gen_rpmb_key(struct keyslot_package *kp) {
char original_part;
unsigned char* fill = NULL;
int blksz;
ALLOC_CACHE_ALIGN_BUFFER(uint8_t, plain_key, RPMBKEY_LENGTH);
kp->rpmb_keyblob_len = RPMBKEY_LEN;
strcpy(kp->magic, KEYPACK_MAGIC);
int ret = -1;
/* load tee from boot1 of eMMC. */
int mmcc = mmc_get_env_dev();
struct blk_desc *dev_desc = NULL;
struct mmc *mmc;
mmc = find_mmc_device(mmcc);
if (!mmc) {
printf("boota: cannot find '%d' mmc device\n", mmcc);
return -1;
}
#ifndef CONFIG_BLK
original_part = mmc->block_dev.hwpart;
dev_desc = blk_get_dev("mmc", mmcc);
#else
dev_desc = mmc_get_blk_desc(mmc);
original_part = dev_desc->hwpart;
#endif
if (NULL == dev_desc) {
printf("** Block device MMC %d not supported\n", mmcc);
goto fail;
}
blksz = dev_desc->blksz;
fill = (unsigned char *)memalign(ALIGN_BYTES, blksz);
/* below was i.MX mmc operation code */
if (mmc_init(mmc)) {
printf("mmc%d init failed\n", mmcc);
goto fail;
}
/* Switch to the RPMB partition */
/* use caam hwrng to generate */
caam_open();
#ifdef TRUSTY_RPMB_RANDOM_KEY
/*
* Since boot1 is a bit easy to be erase during development
* so that before production stage use full 0 rpmb key
*/
if (caam_hwrng(plain_key, RPMBKEY_LENGTH)) {
ERR("ERROR - caam rng\n");
goto fail;
}
#else
memset(plain_key, 0, RPMBKEY_LENGTH);
#endif
/* generate keyblob and program to boot1 partition */
if (caam_gen_blob((ulong)plain_key, (ulong)(kp->rpmb_keyblob),
RPMBKEY_LENGTH)) {
ERR("gen rpmb key blb error\n");
goto fail;
}
memcpy(fill, kp, sizeof(struct keyslot_package));
if (mmc_switch_part(mmc, KEYSLOT_HWPARTITION_ID) != 0) {
ret = -1;
goto fail;
}
if (blk_dwrite(dev_desc, KEYSLOT_BLKS,
1, (void *)fill) != 1) {
printf("Failed to write rpmbkeyblob.");
goto fail;
}
/* program key to mmc */
#ifndef CONFIG_BLK
if (mmc->block_dev.hwpart != MMC_PART_RPMB) {
if (mmc_switch_part(mmc, MMC_PART_RPMB) != 0) {
ret = -1;
goto fail;
} else
mmc->block_dev.hwpart = MMC_PART_RPMB;
}
#else
if (dev_desc->hwpart != MMC_PART_RPMB) {
if (mmc_switch_part(mmc, MMC_PART_RPMB) != 0) {
ret = -1;
goto fail;
} else
dev_desc->hwpart = MMC_PART_RPMB;
}
#endif
if (mmc_rpmb_set_key(mmc, plain_key)) {
ERR("Key already programmed ?\n");
goto fail;
}
ret = 0;
fail:
/* Return to original partition */
#ifndef CONFIG_BLK
if (mmc->block_dev.hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
ret = -1;
else
mmc->block_dev.hwpart = original_part;
}
#else
if (dev_desc->hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
ret = -1;
else
dev_desc->hwpart = original_part;
}
#endif
if (fill != NULL)
free(fill);
return ret;
}
int init_avbkey(void) {
struct keyslot_package kp;
read_keyslot_package(&kp);
if (strcmp(kp.magic, KEYPACK_MAGIC)) {
printf("keyslot package magic error. Will generate new one\n");
gen_rpmb_key(&kp);
}
#ifndef CONFIG_IMX_TRUSTY_OS
if (rpmb_init())
return RESULT_ERROR;
#endif
#if defined(CONFIG_AVB_ATX) && !defined(CONFIG_IMX_TRUSTY_OS)
if (init_permanent_attributes_fuse())
return RESULT_ERROR;
#endif
fill_secure_keyslot_package(&kp);
return RESULT_OK;
}
#ifndef CONFIG_IMX_TRUSTY_OS
int rbkidx_erase(void) {
int i;
kblb_hdr_t hdr;
kblb_tag_t *tag;
struct mmc *mmc_dev;
if ((mmc_dev = get_mmc()) == NULL) {
ERR("err get mmc device\n");
return -1;
}
/* read the kblb header */
if (rpmb_read(mmc_dev, (uint8_t *)&hdr, sizeof(hdr), 0) != 0) {
ERR("read RPMB error\n");
return -1;
}
if (memcmp(hdr.magic, AVB_KBLB_MAGIC, AVB_KBLB_MAGIC_LEN) != 0) {
ERR("magic not match\n");
return -1;
}
/* reset rollback index */
uint32_t offset = AVB_RBIDX_START;
uint32_t rbidx_len = AVB_RBIDX_LEN;
uint8_t *rbidx = malloc(rbidx_len);
if (rbidx == NULL)
return -1;
memset(rbidx, 0, rbidx_len);
*(uint64_t *)rbidx = AVB_RBIDX_INITVAL;
for (i = 0; i < AVB_MAX_NUMBER_OF_ROLLBACK_INDEX_LOCATIONS; i++) {
tag = &hdr.rbk_tags[i];
tag->flag = AVB_RBIDX_FLAG;
tag->offset = offset;
tag->len = rbidx_len;
/* write */
if (rpmb_write(mmc_dev, rbidx, tag->len, tag->offset) != 0) {
ERR("write RBKIDX RPMB error\n");
free(rbidx);
return -1;
}
offset += AVB_RBIDX_ALIGN;
}
free(rbidx);
/* write back hdr */
if (rpmb_write(mmc_dev, (uint8_t *)&hdr, sizeof(hdr), 0) != 0) {
ERR("write RPMB hdr error\n");
return -1;
}
return 0;
}
#endif /* CONFIG_IMX_TRUSTY_OS */
#endif /* CONFIG_FSL_CAAM_KB */
#else /* AVB_RPMB */
int rbkidx_erase(void) {
return 0;
}
#endif /* AVB_RPMB */
#ifdef CONFIG_SPL_BUILD
#if defined (CONFIG_IMX8_TRUSTY_XEN) || \
(defined(CONFIG_IMX_TRUSTY_OS) && !defined(CONFIG_AVB_ATX))
int check_rpmb_blob(struct mmc *mmc)
{
int ret = 0;
char original_part;
struct keyslot_package kp;
read_keyslot_package(&kp);
if (strcmp(kp.magic, KEYPACK_MAGIC)) {
if (rpmbkey_is_set()) {
printf("\nFATAL - RPMB key was destroyed!\n");
hang();
} else {
printf("keyslot package magic error, do nothing here!\n");
return 0;
}
}
/* If keyslot package valid, copy it to secure memory */
fill_secure_keyslot_package(&kp);
/* switch to boot1 partition. */
original_part = mmc->block_dev.hwpart;
if (mmc_switch_part(mmc, KEYSLOT_HWPARTITION_ID) != 0) {
printf("ERROR - can't switch to boot1 partition! \n");
ret = -1;
goto fail;
} else
mmc->block_dev.hwpart = KEYSLOT_HWPARTITION_ID;
/* write power-on write protection for boot1 partition. */
if (mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BOOT_WP, BOOT1_PWR_WP)) {
printf("ERROR - unable to set power-on write protection!\n");
ret = -1;
goto fail;
}
fail:
/* return to original partition. */
if (mmc->block_dev.hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
return -1;
mmc->block_dev.hwpart = original_part;
}
return ret;
}
#endif /* CONFIG_IMX_TRUSTY_OS && !defined(CONFIG_AVB_ATX) */
#else /* CONFIG_SPL_BUILD */
#ifdef CONFIG_AVB_ATX
static int fsl_fuse_ops(uint32_t *buffer, uint32_t length, uint32_t offset,
const uint8_t read) {
unsigned short bs, ws, bksz, cnt;
unsigned short num_done = 0;
margin_pos_t margin;
int i;
/* read from fuse */
bksz = CONFIG_AVB_FUSE_BANK_SIZEW;
if(get_margin_pos(CONFIG_AVB_FUSE_BANK_START, CONFIG_AVB_FUSE_BANK_END, bksz,
&margin, offset, length, false))
return -1;
bs = (unsigned short)margin.blk_start;
ws = (unsigned short)margin.start;
while (num_done < length) {
cnt = bksz - ws;
if (num_done + cnt > length)
cnt = length - num_done;
for (i = 0; i < cnt; i++) {
VDEBUG("cur: bank=%d, word=%d\n",bs, ws);
if (read) {
if (fuse_sense(bs, ws, buffer)) {
ERR("read fuse bank %d, word %d error\n", bs, ws);
return -1;
}
} else {
#ifdef CONFIG_AVB_FUSE
if (fuse_prog(bs, ws, *buffer)) {
#else
if (fuse_override(bs, ws, *buffer)) {
#endif
ERR("write fuse bank %d, word %d error\n", bs, ws);
return -1;
}
}
ws++;
buffer++;
}
bs++;
num_done += cnt;
ws = 0;
}
return 0;
}
int fsl_fuse_read(uint32_t *buffer, uint32_t length, uint32_t offset) {
return fsl_fuse_ops(
buffer,
length,
offset,
1
);
}
int fsl_fuse_write(const uint32_t *buffer, uint32_t length, uint32_t offset) {
return fsl_fuse_ops(
(uint32_t *)buffer,
length,
offset,
0
);
}
static int sha256(unsigned char* data, int len, unsigned char* output) {
struct hash_algo *algo;
void *buf;
if (hash_lookup_algo("sha256", &algo)) {
printf("error in lookup sha256 algo!\n");
return RESULT_ERROR;
}
buf = map_sysmem((ulong)data, len);
algo->hash_func_ws(buf, len, output, algo->chunk_size);
unmap_sysmem(buf);
return algo->digest_size;
}
int permanent_attributes_sha256_hash(unsigned char* output) {
AvbAtxPermanentAttributes attributes;
#ifdef CONFIG_IMX_TRUSTY_OS
if(!trusty_read_permanent_attributes((uint8_t *)(&attributes),
sizeof(AvbAtxPermanentAttributes))) {
goto calc_sha256;
} else {
ERR("No perm-attr fused. Will use hard code one.\n");
}
#endif
/* get permanent attributes */
attributes.version = fsl_version;
memcpy(attributes.product_root_public_key, fsl_product_root_public_key,
sizeof(fsl_product_root_public_key));
memcpy(attributes.product_id, fsl_atx_product_id,
sizeof(fsl_atx_product_id));
#ifdef CONFIG_IMX_TRUSTY_OS
calc_sha256:
#endif
/* calculate sha256(permanent attributes) hash */
if (sha256((unsigned char *)&attributes, sizeof(AvbAtxPermanentAttributes),
output) == RESULT_ERROR) {
printf("ERROR - calculate permanent attributes hash error");
return RESULT_ERROR;
}
return RESULT_OK;
}
static int init_permanent_attributes_fuse(void) {
#ifdef CONFIG_ARM64
return RESULT_OK;
#else
uint8_t sha256_hash[AVB_SHA256_DIGEST_SIZE];
uint32_t buffer[ATX_FUSE_BANK_NUM];
int num = 0;
/* read first 112 bits of sha256(permanent attributes) from fuse */
if (fsl_fuse_read(buffer, ATX_FUSE_BANK_NUM, PERMANENT_ATTRIBUTE_HASH_OFFSET)) {
printf("ERROR - read permanent attributes hash from fuse error\n");
return RESULT_ERROR;
}
/* only take the lower 2 bytes of the last bank */
buffer[ATX_FUSE_BANK_NUM - 1] &= ATX_FUSE_BANK_MASK;
/* return RESULT_OK if fuse has been initialized before */
for (num = 0; num < ATX_FUSE_BANK_NUM; num++) {
if (buffer[num])
return RESULT_OK;
}
/* calculate sha256(permanent attributes) */
if (permanent_attributes_sha256_hash(sha256_hash) != RESULT_OK) {
printf("ERROR - calculating permanent attributes SHA256 error!\n");
return RESULT_ERROR;
}
/* write first 112 bits of sha256(permanent attributes) into fuse */
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, sha256_hash, ATX_HASH_LENGTH);
if (fsl_fuse_write(buffer, ATX_FUSE_BANK_NUM, PERMANENT_ATTRIBUTE_HASH_OFFSET)) {
printf("ERROR - write permanent attributes hash to fuse error\n");
return RESULT_ERROR;
}
return RESULT_OK;
#endif /* CONFIG_ARM64 */
}
int avb_atx_fuse_perm_attr(uint8_t *staged_buffer, uint32_t size) {
if (staged_buffer == NULL) {
ERR("Error. Get null staged_buffer\n");
return -1;
}
if (size != sizeof(AvbAtxPermanentAttributes)) {
ERR("Error. expect perm_attr length %u, but get %u.\n",
(uint32_t)sizeof(AvbAtxPermanentAttributes), size);
return -1;
}
#ifdef CONFIG_IMX_TRUSTY_OS
if (trusty_write_permanent_attributes(staged_buffer, size)) {
ERR("Error. Failed to write permanent attributes into secure storage\n");
return -1;
}
else
return init_permanent_attributes_fuse();
#else
/*
* TODO:
* Need to handle this when no Trusty OS support.
* But now every Android Things will have Trusty OS support.
*/
ERR("No Trusty OS enabled in bootloader.\n");
return 0;
#endif
}
int avb_atx_get_unlock_challenge(struct AvbAtxOps* atx_ops,
uint8_t *upload_buffer, uint32_t *upload_size)
{
struct AvbAtxUnlockChallenge *buf = NULL;
int ret, size;
size = sizeof(struct AvbAtxUnlockChallenge);
buf = (struct AvbAtxUnlockChallenge *)malloc(size);
if (buf == NULL) {
ERR("unable to alloc memory!\n");
return -1;
}
if (avb_atx_generate_unlock_challenge(atx_ops, buf) !=
AVB_IO_RESULT_OK) {
ERR("generate unlock challenge fail!\n");
ret = -1;
goto fail;
}
/* Current avbtool only accept 16 bytes random numbers as unlock
* challenge, need to return the whole 'AvbAtxUnlockChallenge'
* when avbtool is ready.
*/
memcpy(upload_buffer, buf->challenge, AVB_ATX_UNLOCK_CHALLENGE_SIZE);
*upload_size = AVB_ATX_UNLOCK_CHALLENGE_SIZE;
ret = 0;
fail:
if (buf != NULL)
free(buf);
return ret;
}
int avb_atx_verify_unlock_credential(struct AvbAtxOps* atx_ops,
uint8_t *staged_buffer)
{
bool out_is_trusted;
AvbIOResult ret;
const AvbAtxUnlockCredential* buf = NULL;
buf = (const AvbAtxUnlockCredential*)staged_buffer;
ret = avb_atx_validate_unlock_credential(atx_ops, buf, &out_is_trusted);
if ((ret != AVB_IO_RESULT_OK) || (out_is_trusted != true)) {
ERR("validate unlock credential fail!\n");
return -1;
} else
return 0;
}
bool perm_attr_are_fused(void)
{
#ifdef CONFIG_IMX_TRUSTY_OS
AvbAtxPermanentAttributes attributes;
if(!trusty_read_permanent_attributes((uint8_t *)(&attributes),
sizeof(AvbAtxPermanentAttributes))) {
return true;
} else {
ERR("No perm-attr fused, please fuse your perm-attr first!.\n");
return false;
}
#else
/* We hard code the perm-attr if trusty is not enabled. */
return true;
#endif
}
bool at_unlock_vboot_is_disabled(void)
{
uint32_t unlock_vboot_status;
if (fsl_fuse_read(&unlock_vboot_status, 1,
UNLOCK_VBOOT_STATUS_OFFSET_IN_WORD)) {
printf("Read at unlock vboot status error!\n");
return false;
}
if (unlock_vboot_status & (1 << UNLOCK_VBOOT_STATUS_OFFSET_IN_BIT))
return true;
else
return false;
}
int at_disable_vboot_unlock(void)
{
uint32_t unlock_vboot_status = 0;
/* Read the status first */
if (fsl_fuse_read(&unlock_vboot_status, 1,
UNLOCK_VBOOT_STATUS_OFFSET_IN_WORD)) {
ERR("Read unlock vboot status error!\n");
return -1;
}
/* Set the disable unlock vboot bit */
unlock_vboot_status |= (1 << UNLOCK_VBOOT_STATUS_OFFSET_IN_BIT);
/* Write disable unlock vboot bit to fuse */
if (fsl_fuse_write(&unlock_vboot_status, 1,
UNLOCK_VBOOT_STATUS_OFFSET_IN_WORD)) {
ERR("Write unlock vboot status fail!\n");
return -1;
}
return 0;
}
#endif /* CONFIG_AVB_ATX */
#if defined(CONFIG_IMX_TRUSTY_OS) && !defined(CONFIG_AVB_ATX)
int do_rpmb_key_set(uint8_t *key, uint32_t key_size)
{
int ret = 0;
int mmcc;
struct mmc *mmc;
char original_part;
struct keyslot_package kp;
struct blk_desc *desc = NULL;
ALLOC_CACHE_ALIGN_BUFFER(uint8_t, rpmb_key, RPMBKEY_LENGTH);
ALLOC_CACHE_ALIGN_BUFFER(uint8_t, blob,
RPMBKEY_LENGTH + CAAM_PAD);
/* copy rpmb key to cache aligned buffer. */
memset(rpmb_key, 0, RPMBKEY_LENGTH);
memcpy(rpmb_key, key, RPMBKEY_LENGTH);
/* Get current mmc device. */
mmcc = mmc_get_env_dev();
mmc = find_mmc_device(mmcc);
if (!mmc) {
printf("error - cannot find '%d' mmc device\n", mmcc);
return -1;
}
desc = mmc_get_blk_desc(mmc);
original_part = desc->hwpart;
/* Switch to the RPMB partition */
if (desc->hwpart != MMC_PART_RPMB) {
if (mmc_switch_part(mmc, MMC_PART_RPMB) != 0) {
printf("ERROR - can't switch to rpmb partition \n");
return -1;
}
desc->hwpart = MMC_PART_RPMB;
}
if (mmc_rpmb_set_key(mmc, rpmb_key)) {
printf("ERROR - Key already programmed ?\n");
ret = -1;
goto fail;
} else
printf("RPMB key programed successfully!\n");
/* Generate keyblob with CAAM. */
kp.rpmb_keyblob_len = RPMBKEY_LENGTH + CAAM_PAD;
strcpy(kp.magic, KEYPACK_MAGIC);
if (hwcrypto_gen_blob((uint32_t)(ulong)rpmb_key, RPMBKEY_LENGTH,
(uint32_t)(ulong)blob) != 0) {
printf("ERROR - generate rpmb key blob error!\n");
ret = -1;
goto fail;
} else
printf("RPMB key blob generated!\n");
memcpy(kp.rpmb_keyblob, blob, kp.rpmb_keyblob_len);
/* Store the rpmb key blob to last block of boot1 partition. */
if (mmc_switch_part(mmc, KEYSLOT_HWPARTITION_ID) != 0) {
printf("ERROR - can't switch to boot1 partition! \n");
ret = -1;
goto fail;
} else
desc->hwpart = KEYSLOT_HWPARTITION_ID;
if (blk_dwrite(desc, KEYSLOT_BLKS, 1, (void *)&kp) != 1) {
printf("ERROR - failed to write rpmbkeyblob!");
ret = -1;
goto fail;
}
/* Set power-on write protection to boot1 partition. */
if (mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BOOT_WP, BOOT1_PWR_WP)) {
printf("ERROR - unable to set power-on write protection!\n");
ret = -1;
goto fail;
}
/* Erase the key buffer. */
memset(rpmb_key, 0, RPMBKEY_LENGTH);
memset(key, 0, RPMBKEY_LENGTH);
fail:
/* Return to original partition */
if (desc->hwpart != original_part) {
if (mmc_switch_part(mmc, original_part) != 0)
return -1;
desc->hwpart = original_part;
}
return ret;
}
int fastboot_set_rpmb_key(uint8_t *staged_buf, uint32_t key_size)
{
if (memcmp(staged_buf, RPMB_KEY_MAGIC, strlen(RPMB_KEY_MAGIC))) {
printf("ERROR - rpmb magic doesn't match!\n");
return -1;
}
return do_rpmb_key_set(staged_buf + strlen(RPMB_KEY_MAGIC),
RPMBKEY_LENGTH);
}
int fastboot_set_rpmb_random_key(void)
{
ALLOC_CACHE_ALIGN_BUFFER(uint8_t, rpmb_key, RPMBKEY_LENGTH);
if (hwcrypto_gen_rng((ulong)rpmb_key, RPMBKEY_LENGTH)) {
printf("error - can't generate random key!\n");
return -1;
}
return do_rpmb_key_set(rpmb_key, RPMBKEY_LENGTH);
}
int avb_set_public_key(uint8_t *staged_buffer, uint32_t size) {
if ((staged_buffer == NULL) || (size <= 0)) {
ERR("Error. Get null staged_buffer\n");
return -1;
}
if (trusty_write_vbmeta_public_key(staged_buffer, size)) {
ERR("Error. Failed to write vbmeta public key into secure storage\n");
return -1;
} else
printf("Set vbmeta public key successfully!\n");
return 0;
}
#endif /* CONFIG_IMX_TRUSTY_OS && !defind(CONFIG_AVB_ATX) */
#endif /* CONFIG_SPL_BUILD */