| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale i.MX28 Boot PMIC init |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| */ |
| |
| #include <common.h> |
| #include <config.h> |
| #include <asm/io.h> |
| #include <asm/arch/imx-regs.h> |
| |
| #include "mxs_init.h" |
| |
| #ifdef CONFIG_SYS_MXS_VDD5V_ONLY |
| #define DCDC4P2_DROPOUT_CONFIG POWER_DCDC4P2_DROPOUT_CTRL_100MV | \ |
| POWER_DCDC4P2_DROPOUT_CTRL_SRC_4P2 |
| #else |
| #define DCDC4P2_DROPOUT_CONFIG POWER_DCDC4P2_DROPOUT_CTRL_100MV | \ |
| POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL |
| #endif |
| /** |
| * mxs_power_clock2xtal() - Switch CPU core clock source to 24MHz XTAL |
| * |
| * This function switches the CPU core clock from PLL to 24MHz XTAL |
| * oscilator. This is necessary if the PLL is being reconfigured to |
| * prevent crash of the CPU core. |
| */ |
| static void mxs_power_clock2xtal(void) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| debug("SPL: Switching CPU clock to 24MHz XTAL\n"); |
| |
| /* Set XTAL as CPU reference clock */ |
| writel(CLKCTRL_CLKSEQ_BYPASS_CPU, |
| &clkctrl_regs->hw_clkctrl_clkseq_set); |
| } |
| |
| /** |
| * mxs_power_clock2pll() - Switch CPU core clock source to PLL |
| * |
| * This function switches the CPU core clock from 24MHz XTAL oscilator |
| * to PLL. This can only be called once the PLL has re-locked and once |
| * the PLL is stable after reconfiguration. |
| */ |
| static void mxs_power_clock2pll(void) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| debug("SPL: Switching CPU core clock source to PLL\n"); |
| |
| /* |
| * TODO: Are we really? It looks like we turn on PLL0, but we then |
| * set the CLKCTRL_CLKSEQ_BYPASS_CPU bit of the (which was already |
| * set by mxs_power_clock2xtal()). Clearing this bit here seems to |
| * introduce some instability (causing the CPU core to hang). Maybe |
| * we aren't giving PLL0 enough time to stabilise? |
| */ |
| setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0, |
| CLKCTRL_PLL0CTRL0_POWER); |
| early_delay(100); |
| |
| /* |
| * TODO: Should the PLL0 FORCE_LOCK bit be set here followed be a |
| * wait on the PLL0 LOCK bit? |
| */ |
| setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq, |
| CLKCTRL_CLKSEQ_BYPASS_CPU); |
| } |
| |
| /** |
| * mxs_power_set_auto_restart() - Set the auto-restart bit |
| * |
| * This function ungates the RTC block and sets the AUTO_RESTART |
| * bit to work around a design bug on MX28EVK Rev. A . |
| */ |
| |
| static void mxs_power_set_auto_restart(void) |
| { |
| struct mxs_rtc_regs *rtc_regs = |
| (struct mxs_rtc_regs *)MXS_RTC_BASE; |
| |
| debug("SPL: Setting auto-restart bit\n"); |
| |
| writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr); |
| while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST) |
| ; |
| |
| writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr); |
| while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE) |
| ; |
| |
| /* Do nothing if flag already set */ |
| if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART) |
| return; |
| |
| while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK) |
| ; |
| |
| setbits_le32(&rtc_regs->hw_rtc_persistent0, |
| RTC_PERSISTENT0_AUTO_RESTART); |
| writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set); |
| writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr); |
| while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK) |
| ; |
| while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK) |
| ; |
| } |
| |
| /** |
| * mxs_power_set_linreg() - Set linear regulators 25mV below DC-DC converter |
| * |
| * This function configures the VDDIO, VDDA and VDDD linear regulators output |
| * to be 25mV below the VDDIO, VDDA and VDDD output from the DC-DC switching |
| * converter. This is the recommended setting for the case where we use both |
| * linear regulators and DC-DC converter to power the VDDIO rail. |
| */ |
| static void mxs_power_set_linreg(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| /* Set linear regulator 25mV below switching converter */ |
| debug("SPL: Setting VDDD 25mV below DC-DC converters\n"); |
| clrsetbits_le32(&power_regs->hw_power_vdddctrl, |
| POWER_VDDDCTRL_LINREG_OFFSET_MASK, |
| POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW); |
| |
| debug("SPL: Setting VDDA 25mV below DC-DC converters\n"); |
| clrsetbits_le32(&power_regs->hw_power_vddactrl, |
| POWER_VDDACTRL_LINREG_OFFSET_MASK, |
| POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW); |
| |
| debug("SPL: Setting VDDIO 25mV below DC-DC converters\n"); |
| clrsetbits_le32(&power_regs->hw_power_vddioctrl, |
| POWER_VDDIOCTRL_LINREG_OFFSET_MASK, |
| POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW); |
| } |
| |
| /** |
| * mxs_get_batt_volt() - Measure battery input voltage |
| * |
| * This function retrieves the battery input voltage and returns it. |
| */ |
| static int mxs_get_batt_volt(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t volt = readl(&power_regs->hw_power_battmonitor); |
| volt &= POWER_BATTMONITOR_BATT_VAL_MASK; |
| volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET; |
| volt *= 8; |
| |
| debug("SPL: Battery Voltage = %dmV\n", volt); |
| return volt; |
| } |
| |
| /** |
| * mxs_is_batt_ready() - Test if the battery provides enough voltage to boot |
| * |
| * This function checks if the battery input voltage is higher than 3.6V and |
| * therefore allows the system to successfully boot using this power source. |
| */ |
| static int mxs_is_batt_ready(void) |
| { |
| return (mxs_get_batt_volt() >= 3600); |
| } |
| |
| /** |
| * mxs_is_batt_good() - Test if battery is operational at all |
| * |
| * This function starts recharging the battery and tests if the input current |
| * provided by the 5V input recharging the battery is also sufficient to power |
| * the DC-DC converter. |
| */ |
| static int mxs_is_batt_good(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t volt = mxs_get_batt_volt(); |
| |
| if ((volt >= 2400) && (volt <= 4300)) { |
| debug("SPL: Battery is good\n"); |
| return 1; |
| } |
| |
| clrsetbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, |
| 0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); |
| writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, |
| &power_regs->hw_power_5vctrl_clr); |
| |
| clrsetbits_le32(&power_regs->hw_power_charge, |
| POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK, |
| POWER_CHARGE_STOP_ILIMIT_10MA | 0x3); |
| |
| writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr); |
| writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, |
| &power_regs->hw_power_5vctrl_clr); |
| |
| early_delay(500000); |
| |
| volt = mxs_get_batt_volt(); |
| |
| if (volt >= 3500) { |
| debug("SPL: Battery Voltage too high\n"); |
| return 0; |
| } |
| |
| if (volt >= 2400) { |
| debug("SPL: Battery is good\n"); |
| return 1; |
| } |
| |
| writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK, |
| &power_regs->hw_power_charge_clr); |
| writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set); |
| |
| debug("SPL: Battery Voltage too low\n"); |
| return 0; |
| } |
| |
| /** |
| * mxs_power_setup_5v_detect() - Start the 5V input detection comparator |
| * |
| * This function enables the 5V detection comparator and sets the 5V valid |
| * threshold to 4.4V . We use 4.4V threshold here to make sure that even |
| * under high load, the voltage drop on the 5V input won't be so critical |
| * to cause undervolt on the 4P2 linear regulator supplying the DC-DC |
| * converter and thus making the system crash. |
| */ |
| static void mxs_power_setup_5v_detect(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| /* Start 5V detection */ |
| debug("SPL: Starting 5V input detection comparator\n"); |
| clrsetbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_VBUSVALID_TRSH_MASK, |
| POWER_5VCTRL_VBUSVALID_TRSH_4V4 | |
| POWER_5VCTRL_PWRUP_VBUS_CMPS); |
| } |
| |
| /** |
| * mxs_power_switch_dcdc_clocksource() - Switch PLL clock for DC-DC converters |
| * @freqsel: One of the POWER_MISC_FREQSEL_xxx defines to select the clock |
| * |
| * This function configures and then enables an alternative PLL clock source |
| * for the DC-DC converters. |
| */ |
| void mxs_power_switch_dcdc_clocksource(uint32_t freqsel) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| /* Select clocksource for DC-DC converters */ |
| clrsetbits_le32(&power_regs->hw_power_misc, |
| POWER_MISC_FREQSEL_MASK, |
| freqsel); |
| setbits_le32(&power_regs->hw_power_misc, |
| POWER_MISC_SEL_PLLCLK); |
| } |
| |
| /** |
| * mxs_power_setup_dcdc_clocksource() - Setup PLL clock source for DC-DC converters |
| * |
| * Normally, there is no need to switch DC-DC clocksource. This is the reason, |
| * why this function is a stub and does nothing. However, boards can implement |
| * this function when required and call mxs_power_switch_dcdc_clocksource() to |
| * switch to an alternative clock source. |
| */ |
| __weak void mxs_power_setup_dcdc_clocksource(void) |
| { |
| debug("SPL: Using default DC-DC clocksource\n"); |
| } |
| |
| /** |
| * mxs_src_power_init() - Preconfigure the power block |
| * |
| * This function configures reasonable values for the DC-DC control loop |
| * and battery monitor. |
| */ |
| static void mxs_src_power_init(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Pre-Configuring power block\n"); |
| |
| /* Improve efficieny and reduce transient ripple */ |
| writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST | |
| POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set); |
| |
| clrsetbits_le32(&power_regs->hw_power_dclimits, |
| POWER_DCLIMITS_POSLIMIT_BUCK_MASK, |
| 0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET); |
| |
| setbits_le32(&power_regs->hw_power_battmonitor, |
| POWER_BATTMONITOR_EN_BATADJ); |
| |
| /* Increase the RCSCALE level for quick DCDC response to dynamic load */ |
| clrsetbits_le32(&power_regs->hw_power_loopctrl, |
| POWER_LOOPCTRL_EN_RCSCALE_MASK, |
| POWER_LOOPCTRL_RCSCALE_THRESH | |
| POWER_LOOPCTRL_EN_RCSCALE_8X); |
| |
| clrsetbits_le32(&power_regs->hw_power_minpwr, |
| POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS); |
| |
| /* 5V to battery handoff ... FIXME */ |
| setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); |
| early_delay(30); |
| clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); |
| } |
| |
| /** |
| * mxs_power_init_4p2_params() - Configure the parameters of the 4P2 regulator |
| * |
| * This function configures the necessary parameters for the 4P2 linear |
| * regulator to supply the DC-DC converter from 5V input. |
| */ |
| static void mxs_power_init_4p2_params(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Configuring common 4P2 regulator params\n"); |
| |
| /* Setup 4P2 parameters */ |
| clrsetbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK, |
| POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET)); |
| |
| clrsetbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_HEADROOM_ADJ_MASK, |
| 0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET); |
| |
| clrsetbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_DROPOUT_CTRL_MASK, |
| DCDC4P2_DROPOUT_CONFIG); |
| |
| clrsetbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, |
| 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); |
| } |
| |
| /** |
| * mxs_enable_4p2_dcdc_input() - Enable or disable the DCDC input from 4P2 |
| * @xfer: Select if the input shall be enabled or disabled |
| * |
| * This function enables or disables the 4P2 input into the DC-DC converter. |
| */ |
| static void mxs_enable_4p2_dcdc_input(int xfer) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo; |
| uint32_t prev_5v_brnout, prev_5v_droop; |
| |
| debug("SPL: %s 4P2 DC-DC Input\n", xfer ? "Enabling" : "Disabling"); |
| |
| if (xfer && (readl(&power_regs->hw_power_5vctrl) & |
| POWER_5VCTRL_ENABLE_DCDC)) { |
| return; |
| } |
| |
| prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) & |
| POWER_5VCTRL_PWDN_5VBRNOUT; |
| prev_5v_droop = readl(&power_regs->hw_power_ctrl) & |
| POWER_CTRL_ENIRQ_VDD5V_DROOP; |
| |
| clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT); |
| writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, |
| &power_regs->hw_power_reset); |
| |
| clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP); |
| |
| /* |
| * Recording orignal values that will be modified temporarlily |
| * to handle a chip bug. See chip errata for CQ ENGR00115837 |
| */ |
| tmp = readl(&power_regs->hw_power_5vctrl); |
| vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK; |
| vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT; |
| |
| pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO; |
| |
| /* |
| * Disable mechanisms that get erroneously tripped by when setting |
| * the DCDC4P2 EN_DCDC |
| */ |
| clrbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_VBUSVALID_5VDETECT | |
| POWER_5VCTRL_VBUSVALID_TRSH_MASK); |
| |
| writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set); |
| |
| if (xfer) { |
| setbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_DCDC_XFER); |
| early_delay(20); |
| clrbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_DCDC_XFER); |
| |
| setbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_ENABLE_DCDC); |
| } else { |
| setbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_ENABLE_DCDC); |
| } |
| |
| early_delay(25); |
| |
| clrsetbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh); |
| |
| if (vbus_5vdetect) |
| writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set); |
| |
| if (!pwd_bo) |
| clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO); |
| |
| while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) |
| writel(POWER_CTRL_VBUS_VALID_IRQ, |
| &power_regs->hw_power_ctrl_clr); |
| |
| if (prev_5v_brnout) { |
| writel(POWER_5VCTRL_PWDN_5VBRNOUT, |
| &power_regs->hw_power_5vctrl_set); |
| writel(POWER_RESET_UNLOCK_KEY, |
| &power_regs->hw_power_reset); |
| } else { |
| writel(POWER_5VCTRL_PWDN_5VBRNOUT, |
| &power_regs->hw_power_5vctrl_clr); |
| writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, |
| &power_regs->hw_power_reset); |
| } |
| |
| while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ) |
| writel(POWER_CTRL_VDD5V_DROOP_IRQ, |
| &power_regs->hw_power_ctrl_clr); |
| |
| if (prev_5v_droop) |
| clrbits_le32(&power_regs->hw_power_ctrl, |
| POWER_CTRL_ENIRQ_VDD5V_DROOP); |
| else |
| setbits_le32(&power_regs->hw_power_ctrl, |
| POWER_CTRL_ENIRQ_VDD5V_DROOP); |
| } |
| |
| /** |
| * mxs_power_init_4p2_regulator() - Start the 4P2 regulator |
| * |
| * This function enables the 4P2 regulator and switches the DC-DC converter |
| * to use the 4P2 input. |
| */ |
| static void mxs_power_init_4p2_regulator(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t tmp, tmp2; |
| |
| debug("SPL: Enabling 4P2 regulator\n"); |
| |
| setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2); |
| |
| writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set); |
| |
| writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, |
| &power_regs->hw_power_5vctrl_clr); |
| clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK); |
| |
| /* Power up the 4p2 rail and logic/control */ |
| writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, |
| &power_regs->hw_power_5vctrl_clr); |
| |
| /* |
| * Start charging up the 4p2 capacitor. We ramp of this charge |
| * gradually to avoid large inrush current from the 5V cable which can |
| * cause transients/problems |
| */ |
| debug("SPL: Charging 4P2 capacitor\n"); |
| mxs_enable_4p2_dcdc_input(0); |
| |
| if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) { |
| /* |
| * If we arrived here, we were unable to recover from mx23 chip |
| * errata 5837. 4P2 is disabled and sufficient battery power is |
| * not present. Exiting to not enable DCDC power during 5V |
| * connected state. |
| */ |
| clrbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_ENABLE_DCDC); |
| writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, |
| &power_regs->hw_power_5vctrl_set); |
| |
| debug("SPL: Unable to recover from mx23 errata 5837\n"); |
| hang(); |
| } |
| |
| /* |
| * Here we set the 4p2 brownout level to something very close to 4.2V. |
| * We then check the brownout status. If the brownout status is false, |
| * the voltage is already close to the target voltage of 4.2V so we |
| * can go ahead and set the 4P2 current limit to our max target limit. |
| * If the brownout status is true, we need to ramp us the current limit |
| * so that we don't cause large inrush current issues. We step up the |
| * current limit until the brownout status is false or until we've |
| * reached our maximum defined 4p2 current limit. |
| */ |
| debug("SPL: Setting 4P2 brownout level\n"); |
| clrsetbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_BO_MASK, |
| 22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */ |
| |
| if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) { |
| setbits_le32(&power_regs->hw_power_5vctrl, |
| 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); |
| } else { |
| tmp = (readl(&power_regs->hw_power_5vctrl) & |
| POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >> |
| POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET; |
| while (tmp < 0x3f) { |
| if (!(readl(&power_regs->hw_power_sts) & |
| POWER_STS_DCDC_4P2_BO)) { |
| tmp = readl(&power_regs->hw_power_5vctrl); |
| tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK; |
| early_delay(100); |
| writel(tmp, &power_regs->hw_power_5vctrl); |
| break; |
| } else { |
| tmp++; |
| tmp2 = readl(&power_regs->hw_power_5vctrl); |
| tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK; |
| tmp2 |= tmp << |
| POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET; |
| writel(tmp2, &power_regs->hw_power_5vctrl); |
| early_delay(100); |
| } |
| } |
| } |
| |
| clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK); |
| writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); |
| } |
| |
| /** |
| * mxs_power_init_dcdc_4p2_source() - Switch DC-DC converter to 4P2 source |
| * |
| * This function configures the DC-DC converter to be supplied from the 4P2 |
| * linear regulator. |
| */ |
| static void mxs_power_init_dcdc_4p2_source(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Switching DC-DC converters to 4P2\n"); |
| |
| if (!(readl(&power_regs->hw_power_dcdc4p2) & |
| POWER_DCDC4P2_ENABLE_DCDC)) { |
| debug("SPL: Already switched - aborting\n"); |
| hang(); |
| } |
| |
| mxs_enable_4p2_dcdc_input(1); |
| |
| if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) { |
| clrbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_ENABLE_DCDC); |
| writel(POWER_5VCTRL_ENABLE_DCDC, |
| &power_regs->hw_power_5vctrl_clr); |
| writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, |
| &power_regs->hw_power_5vctrl_set); |
| } |
| } |
| |
| /** |
| * mxs_power_enable_4p2() - Power up the 4P2 regulator |
| * |
| * This function drives the process of powering up the 4P2 linear regulator |
| * and switching the DC-DC converter input over to the 4P2 linear regulator. |
| */ |
| static void mxs_power_enable_4p2(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t vdddctrl, vddactrl, vddioctrl; |
| uint32_t tmp; |
| |
| debug("SPL: Powering up 4P2 regulator\n"); |
| |
| vdddctrl = readl(&power_regs->hw_power_vdddctrl); |
| vddactrl = readl(&power_regs->hw_power_vddactrl); |
| vddioctrl = readl(&power_regs->hw_power_vddioctrl); |
| |
| setbits_le32(&power_regs->hw_power_vdddctrl, |
| POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG | |
| POWER_VDDDCTRL_PWDN_BRNOUT); |
| |
| setbits_le32(&power_regs->hw_power_vddactrl, |
| POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG | |
| POWER_VDDACTRL_PWDN_BRNOUT); |
| |
| setbits_le32(&power_regs->hw_power_vddioctrl, |
| POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT); |
| |
| mxs_power_init_4p2_params(); |
| mxs_power_init_4p2_regulator(); |
| |
| /* Shutdown battery (none present) */ |
| if (!mxs_is_batt_ready()) { |
| clrbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_BO_MASK); |
| writel(POWER_CTRL_DCDC4P2_BO_IRQ, |
| &power_regs->hw_power_ctrl_clr); |
| writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, |
| &power_regs->hw_power_ctrl_clr); |
| } |
| |
| mxs_power_init_dcdc_4p2_source(); |
| |
| writel(vdddctrl, &power_regs->hw_power_vdddctrl); |
| early_delay(20); |
| writel(vddactrl, &power_regs->hw_power_vddactrl); |
| early_delay(20); |
| writel(vddioctrl, &power_regs->hw_power_vddioctrl); |
| |
| /* |
| * Check if FET is enabled on either powerout and if so, |
| * disable load. |
| */ |
| tmp = 0; |
| tmp |= !(readl(&power_regs->hw_power_vdddctrl) & |
| POWER_VDDDCTRL_DISABLE_FET); |
| tmp |= !(readl(&power_regs->hw_power_vddactrl) & |
| POWER_VDDACTRL_DISABLE_FET); |
| tmp |= !(readl(&power_regs->hw_power_vddioctrl) & |
| POWER_VDDIOCTRL_DISABLE_FET); |
| if (tmp) |
| writel(POWER_CHARGE_ENABLE_LOAD, |
| &power_regs->hw_power_charge_clr); |
| |
| debug("SPL: 4P2 regulator powered-up\n"); |
| } |
| |
| /** |
| * mxs_boot_valid_5v() - Boot from 5V supply |
| * |
| * This function configures the power block to boot from valid 5V input. |
| * This is called only if the 5V is reliable and can properly supply the |
| * CPU. This function proceeds to configure the 4P2 converter to be supplied |
| * from the 5V input. |
| */ |
| static void mxs_boot_valid_5v(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Booting from 5V supply\n"); |
| |
| /* |
| * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V |
| * disconnect event. FIXME |
| */ |
| writel(POWER_5VCTRL_VBUSVALID_5VDETECT, |
| &power_regs->hw_power_5vctrl_set); |
| |
| /* Configure polarity to check for 5V disconnection. */ |
| writel(POWER_CTRL_POLARITY_VBUSVALID | |
| POWER_CTRL_POLARITY_VDD5V_GT_VDDIO, |
| &power_regs->hw_power_ctrl_clr); |
| |
| writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ, |
| &power_regs->hw_power_ctrl_clr); |
| |
| mxs_power_enable_4p2(); |
| } |
| |
| /** |
| * mxs_powerdown() - Shut down the system |
| * |
| * This function powers down the CPU completely. |
| */ |
| static void mxs_powerdown(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("Powering Down\n"); |
| |
| writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset); |
| writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, |
| &power_regs->hw_power_reset); |
| } |
| |
| /** |
| * mxs_batt_boot() - Configure the power block to boot from battery input |
| * |
| * This function configures the power block to boot from the battery voltage |
| * supply. |
| */ |
| static void mxs_batt_boot(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Configuring power block to boot from battery\n"); |
| |
| clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT); |
| clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC); |
| |
| clrbits_le32(&power_regs->hw_power_dcdc4p2, |
| POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2); |
| writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr); |
| |
| /* 5V to battery handoff. */ |
| setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); |
| early_delay(30); |
| clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); |
| |
| writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr); |
| |
| clrsetbits_le32(&power_regs->hw_power_minpwr, |
| POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS); |
| |
| mxs_power_set_linreg(); |
| |
| clrbits_le32(&power_regs->hw_power_vdddctrl, |
| POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG); |
| |
| clrbits_le32(&power_regs->hw_power_vddactrl, |
| POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG); |
| |
| clrbits_le32(&power_regs->hw_power_vddioctrl, |
| POWER_VDDIOCTRL_DISABLE_FET); |
| |
| setbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_PWD_CHARGE_4P2_MASK); |
| |
| setbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_ENABLE_DCDC); |
| |
| clrsetbits_le32(&power_regs->hw_power_5vctrl, |
| POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, |
| 0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); |
| |
| mxs_power_enable_4p2(); |
| } |
| |
| /** |
| * mxs_handle_5v_conflict() - Test if the 5V input is reliable |
| * |
| * This function tests if the 5V input can reliably supply the system. If it |
| * can, then proceed to configuring the system to boot from 5V source, otherwise |
| * try booting from battery supply. If we can not boot from battery supply |
| * either, shut down the system. |
| */ |
| static void mxs_handle_5v_conflict(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t tmp; |
| |
| debug("SPL: Resolving 5V conflict\n"); |
| |
| setbits_le32(&power_regs->hw_power_vddioctrl, |
| POWER_VDDIOCTRL_BO_OFFSET_MASK); |
| |
| for (;;) { |
| tmp = readl(&power_regs->hw_power_sts); |
| |
| if (tmp & POWER_STS_VDDIO_BO) { |
| /* |
| * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes |
| * unreliable |
| */ |
| debug("SPL: VDDIO has a brownout\n"); |
| mxs_powerdown(); |
| break; |
| } |
| |
| if (tmp & POWER_STS_VDD5V_GT_VDDIO) { |
| debug("SPL: POWER_STS_VDD5V_GT_VDDIO is set\n"); |
| mxs_boot_valid_5v(); |
| break; |
| } else { |
| debug("SPL: POWER_STS_VDD5V_GT_VDDIO is not set\n"); |
| mxs_powerdown(); |
| break; |
| } |
| |
| /* |
| * TODO: I can't see this being reached. We'll either |
| * powerdown or boot from a stable 5V supply. |
| */ |
| if (tmp & POWER_STS_PSWITCH_MASK) { |
| debug("SPL: POWER_STS_PSWITCH_MASK is set\n"); |
| mxs_batt_boot(); |
| break; |
| } |
| } |
| } |
| |
| /** |
| * mxs_5v_boot() - Configure the power block to boot from 5V input |
| * |
| * This function handles configuration of the power block when supplied by |
| * a 5V input. |
| */ |
| static void mxs_5v_boot(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Configuring power block to boot from 5V input\n"); |
| |
| /* |
| * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID, |
| * but their implementation always returns 1 so we omit it here. |
| */ |
| if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { |
| debug("SPL: 5V VDD good\n"); |
| mxs_boot_valid_5v(); |
| return; |
| } |
| |
| early_delay(1000); |
| if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { |
| debug("SPL: 5V VDD good (after delay)\n"); |
| mxs_boot_valid_5v(); |
| return; |
| } |
| |
| debug("SPL: 5V VDD not good\n"); |
| mxs_handle_5v_conflict(); |
| } |
| |
| /** |
| * mxs_init_batt_bo() - Configure battery brownout threshold |
| * |
| * This function configures the battery input brownout threshold. The value |
| * at which the battery brownout happens is configured to 3.0V in the code. |
| */ |
| static void mxs_init_batt_bo(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Initialising battery brown-out level to 3.0V\n"); |
| |
| /* Brownout at 3V */ |
| clrsetbits_le32(&power_regs->hw_power_battmonitor, |
| POWER_BATTMONITOR_BRWNOUT_LVL_MASK, |
| 15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET); |
| |
| writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr); |
| writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr); |
| } |
| |
| /** |
| * mxs_switch_vddd_to_dcdc_source() - Switch VDDD rail to DC-DC converter |
| * |
| * This function turns off the VDDD linear regulator and therefore makes |
| * the VDDD rail be supplied only by the DC-DC converter. |
| */ |
| static void mxs_switch_vddd_to_dcdc_source(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Switching VDDD to DC-DC converters\n"); |
| |
| clrsetbits_le32(&power_regs->hw_power_vdddctrl, |
| POWER_VDDDCTRL_LINREG_OFFSET_MASK, |
| POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW); |
| |
| clrbits_le32(&power_regs->hw_power_vdddctrl, |
| POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG | |
| POWER_VDDDCTRL_DISABLE_STEPPING); |
| } |
| |
| /** |
| * mxs_power_configure_power_source() - Configure power block source |
| * |
| * This function is the core of the power configuration logic. The function |
| * selects the power block input source and configures the whole power block |
| * accordingly. After the configuration is complete and the system is stable |
| * again, the function switches the CPU clock source back to PLL. Finally, |
| * the function switches the voltage rails to DC-DC converter. |
| */ |
| static void mxs_power_configure_power_source(void) |
| { |
| int batt_ready, batt_good; |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| struct mxs_lradc_regs *lradc_regs = |
| (struct mxs_lradc_regs *)MXS_LRADC_BASE; |
| |
| debug("SPL: Configuring power source\n"); |
| |
| mxs_power_setup_dcdc_clocksource(); |
| mxs_src_power_init(); |
| |
| if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { |
| batt_ready = mxs_is_batt_ready(); |
| if (batt_ready) { |
| /* 5V source detected, good battery detected. */ |
| mxs_batt_boot(); |
| } else { |
| batt_good = mxs_is_batt_good(); |
| if (!batt_good) { |
| /* 5V source detected, bad battery detected. */ |
| writel(LRADC_CONVERSION_AUTOMATIC, |
| &lradc_regs->hw_lradc_conversion_clr); |
| clrbits_le32(&power_regs->hw_power_battmonitor, |
| POWER_BATTMONITOR_BATT_VAL_MASK); |
| } |
| mxs_5v_boot(); |
| } |
| } else { |
| /* 5V not detected, booting from battery. */ |
| mxs_batt_boot(); |
| } |
| |
| /* |
| * TODO: Do not switch CPU clock to PLL if we are VDD5V is sourced |
| * from USB VBUS |
| */ |
| mxs_power_clock2pll(); |
| |
| mxs_init_batt_bo(); |
| |
| mxs_switch_vddd_to_dcdc_source(); |
| |
| #ifdef CONFIG_MX23 |
| /* Fire up the VDDMEM LinReg now that we're all set. */ |
| debug("SPL: Enabling mx23 VDDMEM linear regulator\n"); |
| writel(POWER_VDDMEMCTRL_ENABLE_LINREG | POWER_VDDMEMCTRL_ENABLE_ILIMIT, |
| &power_regs->hw_power_vddmemctrl); |
| #endif |
| } |
| |
| /** |
| * mxs_enable_output_rail_protection() - Enable power rail protection |
| * |
| * This function enables overload protection on the power rails. This is |
| * triggered if the power rails' voltage drops rapidly due to overload and |
| * in such case, the supply to the powerrail is cut-off, protecting the |
| * CPU from damage. Note that under such condition, the system will likely |
| * crash or misbehave. |
| */ |
| static void mxs_enable_output_rail_protection(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Enabling output rail protection\n"); |
| |
| writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ | |
| POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr); |
| |
| setbits_le32(&power_regs->hw_power_vdddctrl, |
| POWER_VDDDCTRL_PWDN_BRNOUT); |
| |
| setbits_le32(&power_regs->hw_power_vddactrl, |
| POWER_VDDACTRL_PWDN_BRNOUT); |
| |
| setbits_le32(&power_regs->hw_power_vddioctrl, |
| POWER_VDDIOCTRL_PWDN_BRNOUT); |
| } |
| |
| /** |
| * mxs_get_vddio_power_source_off() - Get VDDIO rail power source |
| * |
| * This function tests if the VDDIO rail is supplied by linear regulator |
| * or by the DC-DC converter. Returns 1 if powered by linear regulator, |
| * returns 0 if powered by the DC-DC converter. |
| */ |
| static int mxs_get_vddio_power_source_off(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t tmp; |
| |
| if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { |
| tmp = readl(&power_regs->hw_power_vddioctrl); |
| if (tmp & POWER_VDDIOCTRL_DISABLE_FET) { |
| if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) == |
| POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) { |
| return 1; |
| } |
| } |
| |
| if (!(readl(&power_regs->hw_power_5vctrl) & |
| POWER_5VCTRL_ENABLE_DCDC)) { |
| if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) == |
| POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) { |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| |
| } |
| |
| /** |
| * mxs_get_vddd_power_source_off() - Get VDDD rail power source |
| * |
| * This function tests if the VDDD rail is supplied by linear regulator |
| * or by the DC-DC converter. Returns 1 if powered by linear regulator, |
| * returns 0 if powered by the DC-DC converter. |
| */ |
| static int mxs_get_vddd_power_source_off(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t tmp; |
| |
| tmp = readl(&power_regs->hw_power_vdddctrl); |
| if (tmp & POWER_VDDDCTRL_DISABLE_FET) { |
| if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) == |
| POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) { |
| return 1; |
| } |
| } |
| |
| if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { |
| if (!(readl(&power_regs->hw_power_5vctrl) & |
| POWER_5VCTRL_ENABLE_DCDC)) { |
| return 1; |
| } |
| } |
| |
| if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) { |
| if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) == |
| POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| struct mxs_vddx_cfg { |
| uint32_t *reg; |
| uint8_t step_mV; |
| uint16_t lowest_mV; |
| int (*powered_by_linreg)(void); |
| uint32_t trg_mask; |
| uint32_t bo_irq; |
| uint32_t bo_enirq; |
| uint32_t bo_offset_mask; |
| uint32_t bo_offset_offset; |
| }; |
| |
| static const struct mxs_vddx_cfg mxs_vddio_cfg = { |
| .reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)-> |
| hw_power_vddioctrl), |
| #if defined(CONFIG_MX23) |
| .step_mV = 25, |
| #else |
| .step_mV = 50, |
| #endif |
| .lowest_mV = 2800, |
| .powered_by_linreg = mxs_get_vddio_power_source_off, |
| .trg_mask = POWER_VDDIOCTRL_TRG_MASK, |
| .bo_irq = POWER_CTRL_VDDIO_BO_IRQ, |
| .bo_enirq = POWER_CTRL_ENIRQ_VDDIO_BO, |
| .bo_offset_mask = POWER_VDDIOCTRL_BO_OFFSET_MASK, |
| .bo_offset_offset = POWER_VDDIOCTRL_BO_OFFSET_OFFSET, |
| }; |
| |
| static const struct mxs_vddx_cfg mxs_vddd_cfg = { |
| .reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)-> |
| hw_power_vdddctrl), |
| .step_mV = 25, |
| .lowest_mV = 800, |
| .powered_by_linreg = mxs_get_vddd_power_source_off, |
| .trg_mask = POWER_VDDDCTRL_TRG_MASK, |
| .bo_irq = POWER_CTRL_VDDD_BO_IRQ, |
| .bo_enirq = POWER_CTRL_ENIRQ_VDDD_BO, |
| .bo_offset_mask = POWER_VDDDCTRL_BO_OFFSET_MASK, |
| .bo_offset_offset = POWER_VDDDCTRL_BO_OFFSET_OFFSET, |
| }; |
| |
| #ifdef CONFIG_MX23 |
| static const struct mxs_vddx_cfg mxs_vddmem_cfg = { |
| .reg = &(((struct mxs_power_regs *)MXS_POWER_BASE)-> |
| hw_power_vddmemctrl), |
| .step_mV = 50, |
| .lowest_mV = 1700, |
| .powered_by_linreg = NULL, |
| .trg_mask = POWER_VDDMEMCTRL_TRG_MASK, |
| .bo_irq = 0, |
| .bo_enirq = 0, |
| .bo_offset_mask = 0, |
| .bo_offset_offset = 0, |
| }; |
| #endif |
| |
| /** |
| * mxs_power_set_vddx() - Configure voltage on DC-DC converter rail |
| * @cfg: Configuration data of the DC-DC converter rail |
| * @new_target: New target voltage of the DC-DC converter rail |
| * @new_brownout: New brownout trigger voltage |
| * |
| * This function configures the output voltage on the DC-DC converter rail. |
| * The rail is selected by the @cfg argument. The new voltage target is |
| * selected by the @new_target and the voltage is specified in mV. The |
| * new brownout value is selected by the @new_brownout argument and the |
| * value is also in mV. |
| */ |
| static void mxs_power_set_vddx(const struct mxs_vddx_cfg *cfg, |
| uint32_t new_target, uint32_t new_brownout) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| uint32_t cur_target, diff, bo_int = 0; |
| uint32_t powered_by_linreg = 0; |
| int adjust_up, tmp; |
| |
| new_brownout = DIV_ROUND_CLOSEST(new_target - new_brownout, |
| cfg->step_mV); |
| |
| cur_target = readl(cfg->reg); |
| cur_target &= cfg->trg_mask; |
| cur_target *= cfg->step_mV; |
| cur_target += cfg->lowest_mV; |
| |
| adjust_up = new_target > cur_target; |
| if (cfg->powered_by_linreg) |
| powered_by_linreg = cfg->powered_by_linreg(); |
| |
| if (adjust_up && cfg->bo_irq) { |
| if (powered_by_linreg) { |
| bo_int = readl(cfg->reg); |
| clrbits_le32(cfg->reg, cfg->bo_enirq); |
| } |
| setbits_le32(cfg->reg, cfg->bo_offset_mask); |
| } |
| |
| do { |
| if (abs(new_target - cur_target) > 100) { |
| if (adjust_up) |
| diff = cur_target + 100; |
| else |
| diff = cur_target - 100; |
| } else { |
| diff = new_target; |
| } |
| |
| diff -= cfg->lowest_mV; |
| diff /= cfg->step_mV; |
| |
| clrsetbits_le32(cfg->reg, cfg->trg_mask, diff); |
| |
| if (powered_by_linreg || |
| (readl(&power_regs->hw_power_sts) & |
| POWER_STS_VDD5V_GT_VDDIO)) |
| early_delay(500); |
| else { |
| for (;;) { |
| tmp = readl(&power_regs->hw_power_sts); |
| if (tmp & POWER_STS_DC_OK) |
| break; |
| } |
| } |
| |
| cur_target = readl(cfg->reg); |
| cur_target &= cfg->trg_mask; |
| cur_target *= cfg->step_mV; |
| cur_target += cfg->lowest_mV; |
| } while (new_target > cur_target); |
| |
| if (cfg->bo_irq) { |
| if (adjust_up && powered_by_linreg) { |
| writel(cfg->bo_irq, &power_regs->hw_power_ctrl_clr); |
| if (bo_int & cfg->bo_enirq) |
| setbits_le32(cfg->reg, cfg->bo_enirq); |
| } |
| |
| clrsetbits_le32(cfg->reg, cfg->bo_offset_mask, |
| new_brownout << cfg->bo_offset_offset); |
| } |
| } |
| |
| /** |
| * mxs_setup_batt_detect() - Start the battery voltage measurement logic |
| * |
| * This function starts and configures the LRADC block. This allows the |
| * power initialization code to measure battery voltage and based on this |
| * knowledge, decide whether to boot at all, boot from battery or boot |
| * from 5V input. |
| */ |
| static void mxs_setup_batt_detect(void) |
| { |
| debug("SPL: Starting battery voltage measurement logic\n"); |
| |
| mxs_lradc_init(); |
| mxs_lradc_enable_batt_measurement(); |
| early_delay(10); |
| } |
| |
| /** |
| * mxs_ungate_power() - Ungate the POWER block |
| * |
| * This function ungates clock to the power block. In case the power block |
| * was still gated at this point, it will not be possible to configure the |
| * block and therefore the power initialization would fail. This function |
| * is only needed on i.MX233, on i.MX28 the power block is always ungated. |
| */ |
| static void mxs_ungate_power(void) |
| { |
| #ifdef CONFIG_MX23 |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| writel(POWER_CTRL_CLKGATE, &power_regs->hw_power_ctrl_clr); |
| #endif |
| } |
| |
| /** |
| * mxs_power_init() - The power block init main function |
| * |
| * This function calls all the power block initialization functions in |
| * proper sequence to start the power block. |
| */ |
| void mxs_power_init(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Initialising Power Block\n"); |
| |
| mxs_ungate_power(); |
| |
| mxs_power_clock2xtal(); |
| mxs_power_set_auto_restart(); |
| mxs_power_set_linreg(); |
| mxs_power_setup_5v_detect(); |
| |
| mxs_setup_batt_detect(); |
| |
| mxs_power_configure_power_source(); |
| mxs_enable_output_rail_protection(); |
| |
| debug("SPL: Setting VDDIO to 3V3 (brownout @ 3v15)\n"); |
| mxs_power_set_vddx(&mxs_vddio_cfg, 3300, 3150); |
| |
| debug("SPL: Setting VDDD to 1V5 (brownout @ 1v315)\n"); |
| mxs_power_set_vddx(&mxs_vddd_cfg, 1500, 1315); |
| #ifdef CONFIG_MX23 |
| debug("SPL: Setting mx23 VDDMEM to 2V5 (brownout @ 1v7)\n"); |
| mxs_power_set_vddx(&mxs_vddmem_cfg, 2500, 1700); |
| #endif |
| writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ | |
| POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ | |
| POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ | |
| POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); |
| |
| writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set); |
| |
| early_delay(1000); |
| } |
| |
| #ifdef CONFIG_SPL_MXS_PSWITCH_WAIT |
| /** |
| * mxs_power_wait_pswitch() - Wait for power switch to be pressed |
| * |
| * This function waits until the power-switch was pressed to start booting |
| * the board. |
| */ |
| void mxs_power_wait_pswitch(void) |
| { |
| struct mxs_power_regs *power_regs = |
| (struct mxs_power_regs *)MXS_POWER_BASE; |
| |
| debug("SPL: Waiting for power switch input\n"); |
| while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK)) |
| ; |
| } |
| #endif |