| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * (C) Copyright 2000-2002 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| */ |
| |
| #ifndef _ASM_IO_H |
| #define _ASM_IO_H |
| |
| #include <linux/compiler.h> |
| |
| /* |
| * This file contains the definitions for the x86 IO instructions |
| * inb/inw/inl/outb/outw/outl and the "string versions" of the same |
| * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" |
| * versions of the single-IO instructions (inb_p/inw_p/..). |
| * |
| * This file is not meant to be obfuscating: it's just complicated |
| * to (a) handle it all in a way that makes gcc able to optimize it |
| * as well as possible and (b) trying to avoid writing the same thing |
| * over and over again with slight variations and possibly making a |
| * mistake somewhere. |
| */ |
| |
| /* |
| * Thanks to James van Artsdalen for a better timing-fix than |
| * the two short jumps: using outb's to a nonexistent port seems |
| * to guarantee better timings even on fast machines. |
| * |
| * On the other hand, I'd like to be sure of a non-existent port: |
| * I feel a bit unsafe about using 0x80 (should be safe, though) |
| * |
| * Linus |
| */ |
| |
| /* |
| * Bit simplified and optimized by Jan Hubicka |
| * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. |
| * |
| * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, |
| * isa_read[wl] and isa_write[wl] fixed |
| * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> |
| */ |
| |
| #define IO_SPACE_LIMIT 0xffff |
| |
| #include <asm/types.h> |
| |
| |
| #ifdef __KERNEL__ |
| |
| |
| /* |
| * readX/writeX() are used to access memory mapped devices. On some |
| * architectures the memory mapped IO stuff needs to be accessed |
| * differently. On the x86 architecture, we just read/write the |
| * memory location directly. |
| */ |
| |
| #define readb(addr) (*(volatile u8 *)(uintptr_t)(addr)) |
| #define readw(addr) (*(volatile u16 *)(uintptr_t)(addr)) |
| #define readl(addr) (*(volatile u32 *)(uintptr_t)(addr)) |
| #define readq(addr) (*(volatile u64 *)(uintptr_t)(addr)) |
| #define __raw_readb readb |
| #define __raw_readw readw |
| #define __raw_readl readl |
| #define __raw_readq readq |
| |
| #define writeb(b, addr) (*(volatile u8 *)(addr) = (b)) |
| #define writew(b, addr) (*(volatile u16 *)(addr) = (b)) |
| #define writel(b, addr) (*(volatile u32 *)(addr) = (b)) |
| #define writeq(b, addr) (*(volatile u64 *)(addr) = (b)) |
| #define __raw_writeb writeb |
| #define __raw_writew writew |
| #define __raw_writel writel |
| #define __raw_writeq writeq |
| |
| #define memset_io(a,b,c) memset((a),(b),(c)) |
| #define memcpy_fromio(a,b,c) memcpy((a),(b),(c)) |
| #define memcpy_toio(a,b,c) memcpy((a),(b),(c)) |
| |
| #define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a) |
| #define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a)) |
| |
| #define out_le64(a, v) out_arch(q, le64, a, v) |
| #define out_le32(a, v) out_arch(l, le32, a, v) |
| #define out_le16(a, v) out_arch(w, le16, a, v) |
| |
| #define in_le64(a) in_arch(q, le64, a) |
| #define in_le32(a) in_arch(l, le32, a) |
| #define in_le16(a) in_arch(w, le16, a) |
| |
| #define out_be32(a, v) out_arch(l, be32, a, v) |
| #define out_be16(a, v) out_arch(w, be16, a, v) |
| |
| #define in_be32(a) in_arch(l, be32, a) |
| #define in_be16(a) in_arch(w, be16, a) |
| |
| #define out_8(a, v) __raw_writeb(v, a) |
| #define in_8(a) __raw_readb(a) |
| |
| #define clrbits(type, addr, clear) \ |
| out_##type((addr), in_##type(addr) & ~(clear)) |
| |
| #define setbits(type, addr, set) \ |
| out_##type((addr), in_##type(addr) | (set)) |
| |
| #define clrsetbits(type, addr, clear, set) \ |
| out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) |
| |
| #define clrbits_be32(addr, clear) clrbits(be32, addr, clear) |
| #define setbits_be32(addr, set) setbits(be32, addr, set) |
| #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) |
| |
| #define clrbits_le32(addr, clear) clrbits(le32, addr, clear) |
| #define setbits_le32(addr, set) setbits(le32, addr, set) |
| #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) |
| |
| #define clrbits_be16(addr, clear) clrbits(be16, addr, clear) |
| #define setbits_be16(addr, set) setbits(be16, addr, set) |
| #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) |
| |
| #define clrbits_le16(addr, clear) clrbits(le16, addr, clear) |
| #define setbits_le16(addr, set) setbits(le16, addr, set) |
| #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) |
| |
| #define clrbits_8(addr, clear) clrbits(8, addr, clear) |
| #define setbits_8(addr, set) setbits(8, addr, set) |
| #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) |
| |
| #endif /* __KERNEL__ */ |
| |
| #ifdef SLOW_IO_BY_JUMPING |
| #define __SLOW_DOWN_IO "\njmp 1f\n1:\tjmp 1f\n1:" |
| #else |
| #define __SLOW_DOWN_IO "\noutb %%al,$0xed" |
| #endif |
| |
| #ifdef REALLY_SLOW_IO |
| #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO |
| #else |
| #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO |
| #endif |
| |
| |
| /* |
| * Talk about misusing macros.. |
| */ |
| #define __OUT1(s,x) \ |
| static inline void _out##s(unsigned x value, unsigned short port) { |
| |
| #define __OUT2(s,s1,s2) \ |
| __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1" |
| |
| |
| #define __OUT(s,s1,x) \ |
| __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \ |
| __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} |
| |
| #define __IN1(s) \ |
| static inline RETURN_TYPE _in##s(unsigned short port) { RETURN_TYPE _v; |
| |
| #define __IN2(s,s1,s2) \ |
| __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0" |
| |
| #define __IN(s,s1,i...) \ |
| __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \ |
| __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i ); return _v; } |
| |
| #define __INS(s) \ |
| static inline void ins##s(unsigned short port, void * addr, unsigned long count) \ |
| { __asm__ __volatile__ ("rep ; ins" #s \ |
| : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } |
| |
| #define __OUTS(s) \ |
| static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \ |
| { __asm__ __volatile__ ("rep ; outs" #s \ |
| : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } |
| |
| #define RETURN_TYPE unsigned char |
| __IN(b,"") |
| #undef RETURN_TYPE |
| #define RETURN_TYPE unsigned short |
| __IN(w,"") |
| #undef RETURN_TYPE |
| #define RETURN_TYPE unsigned int |
| __IN(l,"") |
| #undef RETURN_TYPE |
| |
| #define inb(port) _inb((uintptr_t)(port)) |
| #define inw(port) _inw((uintptr_t)(port)) |
| #define inl(port) _inl((uintptr_t)(port)) |
| |
| __OUT(b,"b",char) |
| __OUT(w,"w",short) |
| __OUT(l,,int) |
| |
| #define outb(val, port) _outb(val, (uintptr_t)(port)) |
| #define outw(val, port) _outw(val, (uintptr_t)(port)) |
| #define outl(val, port) _outl(val, (uintptr_t)(port)) |
| |
| __INS(b) |
| __INS(w) |
| __INS(l) |
| |
| __OUTS(b) |
| __OUTS(w) |
| __OUTS(l) |
| |
| /* IO space accessors */ |
| #define clrio(type, addr, clear) \ |
| out##type(in##type(addr) & ~(clear), (addr)) |
| |
| #define setio(type, addr, set) \ |
| out##type(in##type(addr) | (set), (addr)) |
| |
| #define clrsetio(type, addr, clear, set) \ |
| out##type((in##type(addr) & ~(clear)) | (set), (addr)) |
| |
| #define clrio_32(addr, clear) clrio(l, addr, clear) |
| #define clrio_16(addr, clear) clrio(w, addr, clear) |
| #define clrio_8(addr, clear) clrio(b, addr, clear) |
| |
| #define setio_32(addr, set) setio(l, addr, set) |
| #define setio_16(addr, set) setio(w, addr, set) |
| #define setio_8(addr, set) setio(b, addr, set) |
| |
| #define clrsetio_32(addr, clear, set) clrsetio(l, addr, clear, set) |
| #define clrsetio_16(addr, clear, set) clrsetio(w, addr, clear, set) |
| #define clrsetio_8(addr, clear, set) clrsetio(b, addr, clear, set) |
| |
| static inline void sync(void) |
| { |
| } |
| |
| /* |
| * TODO: The kernel offers some more advanced versions of barriers, it might |
| * have some advantages to use them instead of the simple one here. |
| */ |
| #define dmb() __asm__ __volatile__ ("" : : : "memory") |
| #define __iormb() dmb() |
| #define __iowmb() dmb() |
| |
| /* |
| * Read/write from/to an (offsettable) iomem cookie. It might be a PIO |
| * access or a MMIO access, these functions don't care. The info is |
| * encoded in the hardware mapping set up by the mapping functions |
| * (or the cookie itself, depending on implementation and hw). |
| * |
| * The generic routines don't assume any hardware mappings, and just |
| * encode the PIO/MMIO as part of the cookie. They coldly assume that |
| * the MMIO IO mappings are not in the low address range. |
| * |
| * Architectures for which this is not true can't use this generic |
| * implementation and should do their own copy. |
| */ |
| |
| /* |
| * We assume that all the low physical PIO addresses (0-0xffff) always |
| * PIO. That means we can do some sanity checks on the low bits, and |
| * don't need to just take things for granted. |
| */ |
| #define PIO_RESERVED 0x10000UL |
| |
| /* |
| * Ugly macros are a way of life. |
| */ |
| #define IO_COND(addr, is_pio, is_mmio) do { \ |
| unsigned long port = (unsigned long __force)addr; \ |
| if (port >= PIO_RESERVED) { \ |
| is_mmio; \ |
| } else { \ |
| is_pio; \ |
| } \ |
| } while (0) |
| |
| static inline u8 ioread8(const volatile void __iomem *addr) |
| { |
| IO_COND(addr, return inb(port), return readb(addr)); |
| return 0xff; |
| } |
| |
| static inline u16 ioread16(const volatile void __iomem *addr) |
| { |
| IO_COND(addr, return inw(port), return readw(addr)); |
| return 0xffff; |
| } |
| |
| static inline u32 ioread32(const volatile void __iomem *addr) |
| { |
| IO_COND(addr, return inl(port), return readl(addr)); |
| return 0xffffffff; |
| } |
| |
| static inline void iowrite8(u8 value, volatile void __iomem *addr) |
| { |
| IO_COND(addr, outb(value, port), writeb(value, addr)); |
| } |
| |
| static inline void iowrite16(u16 value, volatile void __iomem *addr) |
| { |
| IO_COND(addr, outw(value, port), writew(value, addr)); |
| } |
| |
| static inline void iowrite32(u32 value, volatile void __iomem *addr) |
| { |
| IO_COND(addr, outl(value, port), writel(value, addr)); |
| } |
| |
| #include <asm-generic/io.h> |
| |
| #endif /* _ASM_IO_H */ |