| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2018 NXP |
| */ |
| |
| #include <common.h> |
| #include <clk.h> |
| #include <cpu.h> |
| #include <dm.h> |
| #include <dm/device-internal.h> |
| #include <dm/lists.h> |
| #include <dm/uclass.h> |
| #include <errno.h> |
| #include <thermal.h> |
| #include <asm/arch/sci/sci.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/arch-imx/cpu.h> |
| #include <asm/armv8/cpu.h> |
| #include <asm/armv8/mmu.h> |
| #include <asm/mach-imx/boot_mode.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define BT_PASSOVER_TAG 0x504F |
| struct pass_over_info_t *get_pass_over_info(void) |
| { |
| struct pass_over_info_t *p = |
| (struct pass_over_info_t *)PASS_OVER_INFO_ADDR; |
| |
| if (p->barker != BT_PASSOVER_TAG || |
| p->len != sizeof(struct pass_over_info_t)) |
| return NULL; |
| |
| return p; |
| } |
| |
| int arch_cpu_init(void) |
| { |
| #ifdef CONFIG_SPL_BUILD |
| struct pass_over_info_t *pass_over; |
| |
| if (is_soc_rev(CHIP_REV_A)) { |
| pass_over = get_pass_over_info(); |
| if (pass_over && pass_over->g_ap_mu == 0) { |
| /* |
| * When ap_mu is 0, means the U-Boot booted |
| * from first container |
| */ |
| sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS); |
| } |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| int arch_cpu_init_dm(void) |
| { |
| struct udevice *devp; |
| int node, ret; |
| |
| node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu"); |
| ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu", |
| offset_to_ofnode(node), &devp); |
| |
| if (ret) { |
| printf("could not find scu %d\n", ret); |
| return ret; |
| } |
| |
| ret = device_probe(devp); |
| if (ret) { |
| printf("scu probe failed %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int print_bootinfo(void) |
| { |
| enum boot_device bt_dev = get_boot_device(); |
| |
| puts("Boot: "); |
| switch (bt_dev) { |
| case SD1_BOOT: |
| puts("SD0\n"); |
| break; |
| case SD2_BOOT: |
| puts("SD1\n"); |
| break; |
| case SD3_BOOT: |
| puts("SD2\n"); |
| break; |
| case MMC1_BOOT: |
| puts("MMC0\n"); |
| break; |
| case MMC2_BOOT: |
| puts("MMC1\n"); |
| break; |
| case MMC3_BOOT: |
| puts("MMC2\n"); |
| break; |
| case FLEXSPI_BOOT: |
| puts("FLEXSPI\n"); |
| break; |
| case SATA_BOOT: |
| puts("SATA\n"); |
| break; |
| case NAND_BOOT: |
| puts("NAND\n"); |
| break; |
| case USB_BOOT: |
| puts("USB\n"); |
| break; |
| default: |
| printf("Unknown device %u\n", bt_dev); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| enum boot_device get_boot_device(void) |
| { |
| enum boot_device boot_dev = SD1_BOOT; |
| |
| sc_rsrc_t dev_rsrc; |
| |
| sc_misc_get_boot_dev(-1, &dev_rsrc); |
| |
| switch (dev_rsrc) { |
| case SC_R_SDHC_0: |
| boot_dev = MMC1_BOOT; |
| break; |
| case SC_R_SDHC_1: |
| boot_dev = SD2_BOOT; |
| break; |
| case SC_R_SDHC_2: |
| boot_dev = SD3_BOOT; |
| break; |
| case SC_R_NAND: |
| boot_dev = NAND_BOOT; |
| break; |
| case SC_R_FSPI_0: |
| boot_dev = FLEXSPI_BOOT; |
| break; |
| case SC_R_SATA_0: |
| boot_dev = SATA_BOOT; |
| break; |
| case SC_R_USB_0: |
| case SC_R_USB_1: |
| case SC_R_USB_2: |
| boot_dev = USB_BOOT; |
| break; |
| default: |
| break; |
| } |
| |
| return boot_dev; |
| } |
| |
| #ifdef CONFIG_ENV_IS_IN_MMC |
| __weak int board_mmc_get_env_dev(int devno) |
| { |
| return CONFIG_SYS_MMC_ENV_DEV; |
| } |
| |
| int mmc_get_env_dev(void) |
| { |
| sc_rsrc_t dev_rsrc; |
| int devno; |
| |
| sc_misc_get_boot_dev(-1, &dev_rsrc); |
| |
| switch (dev_rsrc) { |
| case SC_R_SDHC_0: |
| devno = 0; |
| break; |
| case SC_R_SDHC_1: |
| devno = 1; |
| break; |
| case SC_R_SDHC_2: |
| devno = 2; |
| break; |
| default: |
| /* If not boot from sd/mmc, use default value */ |
| return CONFIG_SYS_MMC_ENV_DEV; |
| } |
| |
| return board_mmc_get_env_dev(devno); |
| } |
| #endif |
| |
| #define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */ |
| |
| static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start, |
| sc_faddr_t *addr_end) |
| { |
| sc_faddr_t start, end; |
| int ret; |
| bool owned; |
| |
| owned = sc_rm_is_memreg_owned(-1, mr); |
| if (owned) { |
| ret = sc_rm_get_memreg_info(-1, mr, &start, &end); |
| if (ret) { |
| printf("Memreg get info failed, %d\n", ret); |
| return -EINVAL; |
| } |
| debug("0x%llx -- 0x%llx\n", start, end); |
| *addr_start = start; |
| *addr_end = end; |
| |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| phys_size_t get_effective_memsize(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end, end1; |
| int err; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| |
| for (mr = 0; mr < 64; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| start = roundup(start, MEMSTART_ALIGNMENT); |
| /* Too small memory region, not use it */ |
| if (start > end) |
| continue; |
| |
| /* Find the memory region runs the U-Boot */ |
| if (start >= PHYS_SDRAM_1 && start <= end1 && |
| (start <= CONFIG_SYS_TEXT_BASE && |
| end >= CONFIG_SYS_TEXT_BASE)) { |
| if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 + |
| PHYS_SDRAM_1_SIZE)) |
| return (end - PHYS_SDRAM_1 + 1); |
| else |
| return PHYS_SDRAM_1_SIZE; |
| } |
| } |
| } |
| |
| return PHYS_SDRAM_1_SIZE; |
| } |
| |
| int dram_init(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end, end1, end2; |
| int err; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; |
| for (mr = 0; mr < 64; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| start = roundup(start, MEMSTART_ALIGNMENT); |
| /* Too small memory region, not use it */ |
| if (start > end) |
| continue; |
| |
| if (start >= PHYS_SDRAM_1 && start <= end1) { |
| if ((end + 1) <= end1) |
| gd->ram_size += end - start + 1; |
| else |
| gd->ram_size += end1 - start; |
| } else if (start >= PHYS_SDRAM_2 && start <= end2) { |
| if ((end + 1) <= end2) |
| gd->ram_size += end - start + 1; |
| else |
| gd->ram_size += end2 - start; |
| } |
| } |
| } |
| |
| /* If error, set to the default value */ |
| if (!gd->ram_size) { |
| gd->ram_size = PHYS_SDRAM_1_SIZE; |
| gd->ram_size += PHYS_SDRAM_2_SIZE; |
| } |
| return 0; |
| } |
| |
| static void dram_bank_sort(int current_bank) |
| { |
| phys_addr_t start; |
| phys_size_t size; |
| |
| while (current_bank > 0) { |
| if (gd->bd->bi_dram[current_bank - 1].start > |
| gd->bd->bi_dram[current_bank].start) { |
| start = gd->bd->bi_dram[current_bank - 1].start; |
| size = gd->bd->bi_dram[current_bank - 1].size; |
| |
| gd->bd->bi_dram[current_bank - 1].start = |
| gd->bd->bi_dram[current_bank].start; |
| gd->bd->bi_dram[current_bank - 1].size = |
| gd->bd->bi_dram[current_bank].size; |
| |
| gd->bd->bi_dram[current_bank].start = start; |
| gd->bd->bi_dram[current_bank].size = size; |
| } |
| current_bank--; |
| } |
| } |
| |
| int dram_init_banksize(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end, end1, end2; |
| int i = 0; |
| int err; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; |
| |
| for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| start = roundup(start, MEMSTART_ALIGNMENT); |
| if (start > end) /* Small memory region, no use it */ |
| continue; |
| |
| if (start >= PHYS_SDRAM_1 && start <= end1) { |
| gd->bd->bi_dram[i].start = start; |
| |
| if ((end + 1) <= end1) |
| gd->bd->bi_dram[i].size = |
| end - start + 1; |
| else |
| gd->bd->bi_dram[i].size = end1 - start; |
| |
| dram_bank_sort(i); |
| i++; |
| } else if (start >= PHYS_SDRAM_2 && start <= end2) { |
| gd->bd->bi_dram[i].start = start; |
| |
| if ((end + 1) <= end2) |
| gd->bd->bi_dram[i].size = |
| end - start + 1; |
| else |
| gd->bd->bi_dram[i].size = end2 - start; |
| |
| dram_bank_sort(i); |
| i++; |
| } |
| } |
| } |
| |
| /* If error, set to the default value */ |
| if (!i) { |
| gd->bd->bi_dram[0].start = PHYS_SDRAM_1; |
| gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; |
| gd->bd->bi_dram[1].start = PHYS_SDRAM_2; |
| gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| static u64 get_block_attrs(sc_faddr_t addr_start) |
| { |
| u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | |
| PTE_BLOCK_PXN | PTE_BLOCK_UXN; |
| |
| if ((addr_start >= PHYS_SDRAM_1 && |
| addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) || |
| (addr_start >= PHYS_SDRAM_2 && |
| addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE))) |
| return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE); |
| |
| return attr; |
| } |
| |
| static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end) |
| { |
| sc_faddr_t end1, end2; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; |
| |
| if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) { |
| if ((addr_end + 1) > end1) |
| return end1 - addr_start; |
| } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) { |
| if ((addr_end + 1) > end2) |
| return end2 - addr_start; |
| } |
| |
| return (addr_end - addr_start + 1); |
| } |
| |
| #define MAX_PTE_ENTRIES 512 |
| #define MAX_MEM_MAP_REGIONS 16 |
| |
| static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS]; |
| struct mm_region *mem_map = imx8_mem_map; |
| |
| void enable_caches(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end; |
| int err, i; |
| |
| /* Create map for registers access from 0x1c000000 to 0x80000000*/ |
| imx8_mem_map[0].virt = 0x1c000000UL; |
| imx8_mem_map[0].phys = 0x1c000000UL; |
| imx8_mem_map[0].size = 0x64000000UL; |
| imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | |
| PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN; |
| |
| i = 1; |
| for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| imx8_mem_map[i].virt = start; |
| imx8_mem_map[i].phys = start; |
| imx8_mem_map[i].size = get_block_size(start, end); |
| imx8_mem_map[i].attrs = get_block_attrs(start); |
| i++; |
| } |
| } |
| |
| if (i < MAX_MEM_MAP_REGIONS) { |
| imx8_mem_map[i].size = 0; |
| imx8_mem_map[i].attrs = 0; |
| } else { |
| puts("Error, need more MEM MAP REGIONS reserved\n"); |
| icache_enable(); |
| return; |
| } |
| |
| for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) { |
| debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n", |
| i, imx8_mem_map[i].virt, imx8_mem_map[i].phys, |
| imx8_mem_map[i].size, imx8_mem_map[i].attrs); |
| } |
| |
| icache_enable(); |
| dcache_enable(); |
| } |
| |
| #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) |
| u64 get_page_table_size(void) |
| { |
| u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); |
| u64 size = 0; |
| |
| /* |
| * For each memory region, the max table size: |
| * 2 level 3 tables + 2 level 2 tables + 1 level 1 table |
| */ |
| size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt; |
| |
| /* |
| * We need to duplicate our page table once to have an emergency pt to |
| * resort to when splitting page tables later on |
| */ |
| size *= 2; |
| |
| /* |
| * We may need to split page tables later on if dcache settings change, |
| * so reserve up to 4 (random pick) page tables for that. |
| */ |
| size += one_pt * 4; |
| |
| return size; |
| } |
| #endif |
| |
| #define FUSE_MAC0_WORD0 708 |
| #define FUSE_MAC0_WORD1 709 |
| #define FUSE_MAC1_WORD0 710 |
| #define FUSE_MAC1_WORD1 711 |
| |
| void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) |
| { |
| u32 word[2], val[2] = {}; |
| int i, ret; |
| |
| if (dev_id == 0) { |
| word[0] = FUSE_MAC0_WORD0; |
| word[1] = FUSE_MAC0_WORD1; |
| } else { |
| word[0] = FUSE_MAC1_WORD0; |
| word[1] = FUSE_MAC1_WORD1; |
| } |
| |
| for (i = 0; i < 2; i++) { |
| ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]); |
| if (ret < 0) |
| goto err; |
| } |
| |
| mac[0] = val[0]; |
| mac[1] = val[0] >> 8; |
| mac[2] = val[0] >> 16; |
| mac[3] = val[0] >> 24; |
| mac[4] = val[1]; |
| mac[5] = val[1] >> 8; |
| |
| debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n", |
| __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); |
| return; |
| err: |
| printf("%s: fuse %d, err: %d\n", __func__, word[i], ret); |
| } |
| |
| u32 get_cpu_rev(void) |
| { |
| u32 id = 0, rev = 0; |
| int ret; |
| |
| ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id); |
| if (ret) |
| return 0; |
| |
| rev = (id >> 5) & 0xf; |
| id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */ |
| |
| return (id << 12) | rev; |
| } |
| |
| #if CONFIG_IS_ENABLED(CPU) |
| struct cpu_imx_platdata { |
| const char *name; |
| const char *rev; |
| const char *type; |
| u32 cpurev; |
| u32 freq_mhz; |
| }; |
| |
| const char *get_imx8_type(u32 imxtype) |
| { |
| switch (imxtype) { |
| case MXC_CPU_IMX8QXP: |
| case MXC_CPU_IMX8QXP_A0: |
| return "QXP"; |
| case MXC_CPU_IMX8QM: |
| return "QM"; |
| default: |
| return "??"; |
| } |
| } |
| |
| const char *get_imx8_rev(u32 rev) |
| { |
| switch (rev) { |
| case CHIP_REV_A: |
| return "A"; |
| case CHIP_REV_B: |
| return "B"; |
| default: |
| return "?"; |
| } |
| } |
| |
| const char *get_core_name(void) |
| { |
| if (is_cortex_a35()) |
| return "A35"; |
| else if (is_cortex_a53()) |
| return "A53"; |
| else if (is_cortex_a72()) |
| return "A72"; |
| else |
| return "?"; |
| } |
| |
| #if IS_ENABLED(CONFIG_IMX_SCU_THERMAL) |
| static int cpu_imx_get_temp(void) |
| { |
| struct udevice *thermal_dev; |
| int cpu_tmp, ret; |
| |
| ret = uclass_get_device_by_name(UCLASS_THERMAL, "cpu-thermal0", |
| &thermal_dev); |
| |
| if (!ret) { |
| ret = thermal_get_temp(thermal_dev, &cpu_tmp); |
| if (ret) |
| return 0xdeadbeef; |
| } else { |
| return 0xdeadbeef; |
| } |
| |
| return cpu_tmp; |
| } |
| #else |
| static int cpu_imx_get_temp(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| int cpu_imx_get_desc(struct udevice *dev, char *buf, int size) |
| { |
| struct cpu_imx_platdata *plat = dev_get_platdata(dev); |
| int ret; |
| |
| if (size < 100) |
| return -ENOSPC; |
| |
| ret = snprintf(buf, size, "NXP i.MX8%s Rev%s %s at %u MHz", |
| plat->type, plat->rev, plat->name, plat->freq_mhz); |
| |
| if (IS_ENABLED(CONFIG_IMX_SCU_THERMAL)) { |
| buf = buf + ret; |
| size = size - ret; |
| ret = snprintf(buf, size, " at %dC", cpu_imx_get_temp()); |
| } |
| |
| snprintf(buf + ret, size - ret, "\n"); |
| |
| return 0; |
| } |
| |
| static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info) |
| { |
| struct cpu_imx_platdata *plat = dev_get_platdata(dev); |
| |
| info->cpu_freq = plat->freq_mhz * 1000; |
| info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU); |
| return 0; |
| } |
| |
| static int cpu_imx_get_count(struct udevice *dev) |
| { |
| return 4; |
| } |
| |
| static int cpu_imx_get_vendor(struct udevice *dev, char *buf, int size) |
| { |
| snprintf(buf, size, "NXP"); |
| return 0; |
| } |
| |
| static const struct cpu_ops cpu_imx8_ops = { |
| .get_desc = cpu_imx_get_desc, |
| .get_info = cpu_imx_get_info, |
| .get_count = cpu_imx_get_count, |
| .get_vendor = cpu_imx_get_vendor, |
| }; |
| |
| static const struct udevice_id cpu_imx8_ids[] = { |
| { .compatible = "arm,cortex-a35" }, |
| { .compatible = "arm,cortex-a53" }, |
| { } |
| }; |
| |
| static ulong imx8_get_cpu_rate(void) |
| { |
| ulong rate; |
| int ret; |
| int type = is_cortex_a35() ? SC_R_A35 : is_cortex_a53() ? |
| SC_R_A53 : SC_R_A72; |
| |
| ret = sc_pm_get_clock_rate(-1, type, SC_PM_CLK_CPU, |
| (sc_pm_clock_rate_t *)&rate); |
| if (ret) { |
| printf("Could not read CPU frequency: %d\n", ret); |
| return 0; |
| } |
| |
| return rate; |
| } |
| |
| static int imx8_cpu_probe(struct udevice *dev) |
| { |
| struct cpu_imx_platdata *plat = dev_get_platdata(dev); |
| u32 cpurev; |
| |
| cpurev = get_cpu_rev(); |
| plat->cpurev = cpurev; |
| plat->name = get_core_name(); |
| plat->rev = get_imx8_rev(cpurev & 0xFFF); |
| plat->type = get_imx8_type((cpurev & 0xFF000) >> 12); |
| plat->freq_mhz = imx8_get_cpu_rate() / 1000000; |
| return 0; |
| } |
| |
| U_BOOT_DRIVER(cpu_imx8_drv) = { |
| .name = "imx8x_cpu", |
| .id = UCLASS_CPU, |
| .of_match = cpu_imx8_ids, |
| .ops = &cpu_imx8_ops, |
| .probe = imx8_cpu_probe, |
| .platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata), |
| .flags = DM_FLAG_PRE_RELOC, |
| }; |
| #endif |