| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Chromium OS cros_ec driver |
| * |
| * Copyright (c) 2012 The Chromium OS Authors. |
| */ |
| |
| /* |
| * This is the interface to the Chrome OS EC. It provides keyboard functions, |
| * power control and battery management. Quite a few other functions are |
| * provided to enable the EC software to be updated, talk to the EC's I2C bus |
| * and store a small amount of data in a memory which persists while the EC |
| * is not reset. |
| */ |
| |
| #define LOG_CATEGORY UCLASS_CROS_EC |
| |
| #include <common.h> |
| #include <command.h> |
| #include <dm.h> |
| #include <i2c.h> |
| #include <cros_ec.h> |
| #include <fdtdec.h> |
| #include <malloc.h> |
| #include <spi.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <asm-generic/gpio.h> |
| #include <dm/device-internal.h> |
| #include <dm/of_extra.h> |
| #include <dm/uclass-internal.h> |
| |
| #ifdef DEBUG_TRACE |
| #define debug_trace(fmt, b...) debug(fmt, #b) |
| #else |
| #define debug_trace(fmt, b...) |
| #endif |
| |
| enum { |
| /* Timeout waiting for a flash erase command to complete */ |
| CROS_EC_CMD_TIMEOUT_MS = 5000, |
| /* Timeout waiting for a synchronous hash to be recomputed */ |
| CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, |
| }; |
| |
| #define INVALID_HCMD 0xFF |
| |
| /* |
| * Map UHEPI masks to non UHEPI commands in order to support old EC FW |
| * which does not support UHEPI command. |
| */ |
| static const struct { |
| u8 set_cmd; |
| u8 clear_cmd; |
| u8 get_cmd; |
| } event_map[] = { |
| [EC_HOST_EVENT_MAIN] = { |
| INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR, |
| INVALID_HCMD, |
| }, |
| [EC_HOST_EVENT_B] = { |
| INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B, |
| EC_CMD_HOST_EVENT_GET_B, |
| }, |
| [EC_HOST_EVENT_SCI_MASK] = { |
| EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD, |
| EC_CMD_HOST_EVENT_GET_SCI_MASK, |
| }, |
| [EC_HOST_EVENT_SMI_MASK] = { |
| EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD, |
| EC_CMD_HOST_EVENT_GET_SMI_MASK, |
| }, |
| [EC_HOST_EVENT_ALWAYS_REPORT_MASK] = { |
| INVALID_HCMD, INVALID_HCMD, INVALID_HCMD, |
| }, |
| [EC_HOST_EVENT_ACTIVE_WAKE_MASK] = { |
| EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, |
| EC_CMD_HOST_EVENT_GET_WAKE_MASK, |
| }, |
| [EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = { |
| EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, |
| EC_CMD_HOST_EVENT_GET_WAKE_MASK, |
| }, |
| [EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = { |
| EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, |
| EC_CMD_HOST_EVENT_GET_WAKE_MASK, |
| }, |
| [EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = { |
| EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, |
| EC_CMD_HOST_EVENT_GET_WAKE_MASK, |
| }, |
| }; |
| |
| void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) |
| { |
| #ifdef DEBUG |
| int i; |
| |
| printf("%s: ", name); |
| if (cmd != -1) |
| printf("cmd=%#x: ", cmd); |
| for (i = 0; i < len; i++) |
| printf("%02x ", data[i]); |
| printf("\n"); |
| #endif |
| } |
| |
| /* |
| * Calculate a simple 8-bit checksum of a data block |
| * |
| * @param data Data block to checksum |
| * @param size Size of data block in bytes |
| * @return checksum value (0 to 255) |
| */ |
| int cros_ec_calc_checksum(const uint8_t *data, int size) |
| { |
| int csum, i; |
| |
| for (i = csum = 0; i < size; i++) |
| csum += data[i]; |
| return csum & 0xff; |
| } |
| |
| /** |
| * Create a request packet for protocol version 3. |
| * |
| * The packet is stored in the device's internal output buffer. |
| * |
| * @param dev CROS-EC device |
| * @param cmd Command to send (EC_CMD_...) |
| * @param cmd_version Version of command to send (EC_VER_...) |
| * @param dout Output data (may be NULL If dout_len=0) |
| * @param dout_len Size of output data in bytes |
| * @return packet size in bytes, or <0 if error. |
| */ |
| static int create_proto3_request(struct cros_ec_dev *cdev, |
| int cmd, int cmd_version, |
| const void *dout, int dout_len) |
| { |
| struct ec_host_request *rq = (struct ec_host_request *)cdev->dout; |
| int out_bytes = dout_len + sizeof(*rq); |
| |
| /* Fail if output size is too big */ |
| if (out_bytes > (int)sizeof(cdev->dout)) { |
| debug("%s: Cannot send %d bytes\n", __func__, dout_len); |
| return -EC_RES_REQUEST_TRUNCATED; |
| } |
| |
| /* Fill in request packet */ |
| rq->struct_version = EC_HOST_REQUEST_VERSION; |
| rq->checksum = 0; |
| rq->command = cmd; |
| rq->command_version = cmd_version; |
| rq->reserved = 0; |
| rq->data_len = dout_len; |
| |
| /* Copy data after header */ |
| memcpy(rq + 1, dout, dout_len); |
| |
| /* Write checksum field so the entire packet sums to 0 */ |
| rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes)); |
| |
| cros_ec_dump_data("out", cmd, cdev->dout, out_bytes); |
| |
| /* Return size of request packet */ |
| return out_bytes; |
| } |
| |
| /** |
| * Prepare the device to receive a protocol version 3 response. |
| * |
| * @param dev CROS-EC device |
| * @param din_len Maximum size of response in bytes |
| * @return maximum expected number of bytes in response, or <0 if error. |
| */ |
| static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len) |
| { |
| int in_bytes = din_len + sizeof(struct ec_host_response); |
| |
| /* Fail if input size is too big */ |
| if (in_bytes > (int)sizeof(cdev->din)) { |
| debug("%s: Cannot receive %d bytes\n", __func__, din_len); |
| return -EC_RES_RESPONSE_TOO_BIG; |
| } |
| |
| /* Return expected size of response packet */ |
| return in_bytes; |
| } |
| |
| /** |
| * Handle a protocol version 3 response packet. |
| * |
| * The packet must already be stored in the device's internal input buffer. |
| * |
| * @param dev CROS-EC device |
| * @param dinp Returns pointer to response data |
| * @param din_len Maximum size of response in bytes |
| * @return number of bytes of response data, or <0 if error. Note that error |
| * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they |
| * overlap!) |
| */ |
| static int handle_proto3_response(struct cros_ec_dev *dev, |
| uint8_t **dinp, int din_len) |
| { |
| struct ec_host_response *rs = (struct ec_host_response *)dev->din; |
| int in_bytes; |
| int csum; |
| |
| cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); |
| |
| /* Check input data */ |
| if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { |
| debug("%s: EC response version mismatch\n", __func__); |
| return -EC_RES_INVALID_RESPONSE; |
| } |
| |
| if (rs->reserved) { |
| debug("%s: EC response reserved != 0\n", __func__); |
| return -EC_RES_INVALID_RESPONSE; |
| } |
| |
| if (rs->data_len > din_len) { |
| debug("%s: EC returned too much data\n", __func__); |
| return -EC_RES_RESPONSE_TOO_BIG; |
| } |
| |
| cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); |
| |
| /* Update in_bytes to actual data size */ |
| in_bytes = sizeof(*rs) + rs->data_len; |
| |
| /* Verify checksum */ |
| csum = cros_ec_calc_checksum(dev->din, in_bytes); |
| if (csum) { |
| debug("%s: EC response checksum invalid: 0x%02x\n", __func__, |
| csum); |
| return -EC_RES_INVALID_CHECKSUM; |
| } |
| |
| /* Return error result, if any */ |
| if (rs->result) |
| return -(int)rs->result; |
| |
| /* If we're still here, set response data pointer and return length */ |
| *dinp = (uint8_t *)(rs + 1); |
| |
| return rs->data_len; |
| } |
| |
| static int send_command_proto3(struct cros_ec_dev *cdev, |
| int cmd, int cmd_version, |
| const void *dout, int dout_len, |
| uint8_t **dinp, int din_len) |
| { |
| struct dm_cros_ec_ops *ops; |
| int out_bytes, in_bytes; |
| int rv; |
| |
| /* Create request packet */ |
| out_bytes = create_proto3_request(cdev, cmd, cmd_version, |
| dout, dout_len); |
| if (out_bytes < 0) |
| return out_bytes; |
| |
| /* Prepare response buffer */ |
| in_bytes = prepare_proto3_response_buffer(cdev, din_len); |
| if (in_bytes < 0) |
| return in_bytes; |
| |
| ops = dm_cros_ec_get_ops(cdev->dev); |
| rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) : |
| -ENOSYS; |
| if (rv < 0) |
| return rv; |
| |
| /* Process the response */ |
| return handle_proto3_response(cdev, dinp, din_len); |
| } |
| |
| static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version, |
| const void *dout, int dout_len, |
| uint8_t **dinp, int din_len) |
| { |
| struct dm_cros_ec_ops *ops; |
| int ret = -1; |
| |
| /* Handle protocol version 3 support */ |
| if (dev->protocol_version == 3) { |
| return send_command_proto3(dev, cmd, cmd_version, |
| dout, dout_len, dinp, din_len); |
| } |
| |
| ops = dm_cros_ec_get_ops(dev->dev); |
| ret = ops->command(dev->dev, cmd, cmd_version, |
| (const uint8_t *)dout, dout_len, dinp, din_len); |
| |
| return ret; |
| } |
| |
| /** |
| * Send a command to the CROS-EC device and return the reply. |
| * |
| * The device's internal input/output buffers are used. |
| * |
| * @param dev CROS-EC device |
| * @param cmd Command to send (EC_CMD_...) |
| * @param cmd_version Version of command to send (EC_VER_...) |
| * @param dout Output data (may be NULL If dout_len=0) |
| * @param dout_len Size of output data in bytes |
| * @param dinp Response data (may be NULL If din_len=0). |
| * If not NULL, it will be updated to point to the data |
| * and will always be double word aligned (64-bits) |
| * @param din_len Maximum size of response in bytes |
| * @return number of bytes in response, or -ve on error |
| */ |
| static int ec_command_inptr(struct udevice *dev, uint8_t cmd, |
| int cmd_version, const void *dout, int dout_len, |
| uint8_t **dinp, int din_len) |
| { |
| struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); |
| uint8_t *din = NULL; |
| int len; |
| |
| len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din, |
| din_len); |
| |
| /* If the command doesn't complete, wait a while */ |
| if (len == -EC_RES_IN_PROGRESS) { |
| struct ec_response_get_comms_status *resp = NULL; |
| ulong start; |
| |
| /* Wait for command to complete */ |
| start = get_timer(0); |
| do { |
| int ret; |
| |
| mdelay(50); /* Insert some reasonable delay */ |
| ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0, |
| NULL, 0, |
| (uint8_t **)&resp, sizeof(*resp)); |
| if (ret < 0) |
| return ret; |
| |
| if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { |
| debug("%s: Command %#02x timeout\n", |
| __func__, cmd); |
| return -EC_RES_TIMEOUT; |
| } |
| } while (resp->flags & EC_COMMS_STATUS_PROCESSING); |
| |
| /* OK it completed, so read the status response */ |
| /* not sure why it was 0 for the last argument */ |
| len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0, |
| &din, din_len); |
| } |
| |
| debug("%s: len=%d, din=%p\n", __func__, len, din); |
| if (dinp) { |
| /* If we have any data to return, it must be 64bit-aligned */ |
| assert(len <= 0 || !((uintptr_t)din & 7)); |
| *dinp = din; |
| } |
| |
| return len; |
| } |
| |
| /** |
| * Send a command to the CROS-EC device and return the reply. |
| * |
| * The device's internal input/output buffers are used. |
| * |
| * @param dev CROS-EC device |
| * @param cmd Command to send (EC_CMD_...) |
| * @param cmd_version Version of command to send (EC_VER_...) |
| * @param dout Output data (may be NULL If dout_len=0) |
| * @param dout_len Size of output data in bytes |
| * @param din Response data (may be NULL If din_len=0). |
| * It not NULL, it is a place for ec_command() to copy the |
| * data to. |
| * @param din_len Maximum size of response in bytes |
| * @return number of bytes in response, or -ve on error |
| */ |
| static int ec_command(struct udevice *dev, uint cmd, int cmd_version, |
| const void *dout, int dout_len, |
| void *din, int din_len) |
| { |
| uint8_t *in_buffer; |
| int len; |
| |
| assert((din_len == 0) || din); |
| len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, |
| &in_buffer, din_len); |
| if (len > 0) { |
| /* |
| * If we were asked to put it somewhere, do so, otherwise just |
| * disregard the result. |
| */ |
| if (din && in_buffer) { |
| assert(len <= din_len); |
| memmove(din, in_buffer, len); |
| } |
| } |
| return len; |
| } |
| |
| int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan) |
| { |
| if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, |
| sizeof(scan->data)) != sizeof(scan->data)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_id(struct udevice *dev, char *id, int maxlen) |
| { |
| struct ec_response_get_version *r; |
| int ret; |
| |
| ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, |
| (uint8_t **)&r, sizeof(*r)); |
| if (ret != sizeof(*r)) { |
| log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r)); |
| return -1; |
| } |
| |
| if (maxlen > (int)sizeof(r->version_string_ro)) |
| maxlen = sizeof(r->version_string_ro); |
| |
| switch (r->current_image) { |
| case EC_IMAGE_RO: |
| memcpy(id, r->version_string_ro, maxlen); |
| break; |
| case EC_IMAGE_RW: |
| memcpy(id, r->version_string_rw, maxlen); |
| break; |
| default: |
| log_err("Invalid EC image %d\n", r->current_image); |
| return -1; |
| } |
| |
| id[maxlen - 1] = '\0'; |
| return 0; |
| } |
| |
| int cros_ec_read_version(struct udevice *dev, |
| struct ec_response_get_version **versionp) |
| { |
| if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, |
| (uint8_t **)versionp, sizeof(**versionp)) |
| != sizeof(**versionp)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_build_info(struct udevice *dev, char **strp) |
| { |
| if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, |
| (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_current_image(struct udevice *dev, |
| enum ec_current_image *image) |
| { |
| struct ec_response_get_version *r; |
| |
| if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, |
| (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) |
| return -1; |
| |
| *image = r->current_image; |
| return 0; |
| } |
| |
| static int cros_ec_wait_on_hash_done(struct udevice *dev, |
| struct ec_response_vboot_hash *hash) |
| { |
| struct ec_params_vboot_hash p; |
| ulong start; |
| |
| start = get_timer(0); |
| while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { |
| mdelay(50); /* Insert some reasonable delay */ |
| |
| p.cmd = EC_VBOOT_HASH_GET; |
| if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { |
| debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); |
| return -EC_RES_TIMEOUT; |
| } |
| } |
| return 0; |
| } |
| |
| int cros_ec_read_hash(struct udevice *dev, uint hash_offset, |
| struct ec_response_vboot_hash *hash) |
| { |
| struct ec_params_vboot_hash p; |
| int rv; |
| |
| p.cmd = EC_VBOOT_HASH_GET; |
| p.offset = hash_offset; |
| if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| /* If the EC is busy calculating the hash, fidget until it's done. */ |
| rv = cros_ec_wait_on_hash_done(dev, hash); |
| if (rv) |
| return rv; |
| |
| /* If the hash is valid, we're done. Otherwise, we have to kick it off |
| * again and wait for it to complete. Note that we explicitly assume |
| * that hashing zero bytes is always wrong, even though that would |
| * produce a valid hash value. */ |
| if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) |
| return 0; |
| |
| debug("%s: No valid hash (status=%d size=%d). Compute one...\n", |
| __func__, hash->status, hash->size); |
| |
| p.cmd = EC_VBOOT_HASH_START; |
| p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; |
| p.nonce_size = 0; |
| p.offset = hash_offset; |
| |
| if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| rv = cros_ec_wait_on_hash_done(dev, hash); |
| if (rv) |
| return rv; |
| |
| debug("%s: hash done\n", __func__); |
| |
| return 0; |
| } |
| |
| static int cros_ec_invalidate_hash(struct udevice *dev) |
| { |
| struct ec_params_vboot_hash p; |
| struct ec_response_vboot_hash *hash; |
| |
| /* We don't have an explict command for the EC to discard its current |
| * hash value, so we'll just tell it to calculate one that we know is |
| * wrong (we claim that hashing zero bytes is always invalid). |
| */ |
| p.cmd = EC_VBOOT_HASH_RECALC; |
| p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; |
| p.nonce_size = 0; |
| p.offset = 0; |
| p.size = 0; |
| |
| debug("%s:\n", __func__); |
| |
| if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| (uint8_t **)&hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| /* No need to wait for it to finish */ |
| return 0; |
| } |
| |
| int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags) |
| { |
| struct ec_params_reboot_ec p; |
| |
| p.cmd = cmd; |
| p.flags = flags; |
| |
| if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) |
| < 0) |
| return -1; |
| |
| if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { |
| /* |
| * EC reboot will take place immediately so delay to allow it |
| * to complete. Note that some reboot types (EC_REBOOT_COLD) |
| * will reboot the AP as well, in which case we won't actually |
| * get to this point. |
| */ |
| /* |
| * TODO(rspangler@chromium.org): Would be nice if we had a |
| * better way to determine when the reboot is complete. Could |
| * we poll a memory-mapped LPC value? |
| */ |
| udelay(50000); |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_interrupt_pending(struct udevice *dev) |
| { |
| struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); |
| |
| /* no interrupt support : always poll */ |
| if (!dm_gpio_is_valid(&cdev->ec_int)) |
| return -ENOENT; |
| |
| return dm_gpio_get_value(&cdev->ec_int); |
| } |
| |
| int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info) |
| { |
| if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, |
| sizeof(*info)) != sizeof(*info)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask) |
| { |
| struct ec_response_host_event_mask rsp; |
| int ret; |
| |
| ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp)); |
| if (ret < 0) |
| return ret; |
| else if (ret != sizeof(rsp)) |
| return -EINVAL; |
| |
| *mask = rsp.mask; |
| |
| return 0; |
| } |
| |
| int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask) |
| { |
| struct ec_params_host_event_mask req; |
| int ret; |
| |
| req.mask = mask; |
| |
| ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr) |
| { |
| struct ec_response_host_event_mask *resp; |
| |
| /* |
| * Use the B copy of the event flags, because the main copy is already |
| * used by ACPI/SMI. |
| */ |
| if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, |
| (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) |
| return -1; |
| |
| if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) |
| return -1; |
| |
| *events_ptr = resp->mask; |
| return 0; |
| } |
| |
| int cros_ec_clear_host_events(struct udevice *dev, uint32_t events) |
| { |
| struct ec_params_host_event_mask params; |
| |
| params.mask = events; |
| |
| /* |
| * Use the B copy of the event flags, so it affects the data returned |
| * by cros_ec_get_host_events(). |
| */ |
| if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, |
| ¶ms, sizeof(params), NULL, 0) < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask, |
| uint32_t set_flags, |
| struct ec_response_flash_protect *resp) |
| { |
| struct ec_params_flash_protect params; |
| |
| params.mask = set_mask; |
| params.flags = set_flags; |
| |
| if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, |
| ¶ms, sizeof(params), |
| resp, sizeof(*resp)) != sizeof(*resp)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_entering_mode(struct udevice *dev, int mode) |
| { |
| int rc; |
| |
| rc = ec_command(dev, EC_CMD_ENTERING_MODE, 0, &mode, sizeof(mode), |
| NULL, 0); |
| if (rc) |
| return -1; |
| return 0; |
| } |
| |
| static int cros_ec_check_version(struct udevice *dev) |
| { |
| struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); |
| struct ec_params_hello req; |
| struct ec_response_hello *resp; |
| |
| struct dm_cros_ec_ops *ops; |
| int ret; |
| |
| ops = dm_cros_ec_get_ops(dev); |
| if (ops->check_version) { |
| ret = ops->check_version(dev); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * TODO(sjg@chromium.org). |
| * There is a strange oddity here with the EC. We could just ignore |
| * the response, i.e. pass the last two parameters as NULL and 0. |
| * In this case we won't read back very many bytes from the EC. |
| * On the I2C bus the EC gets upset about this and will try to send |
| * the bytes anyway. This means that we will have to wait for that |
| * to complete before continuing with a new EC command. |
| * |
| * This problem is probably unique to the I2C bus. |
| * |
| * So for now, just read all the data anyway. |
| */ |
| |
| /* Try sending a version 3 packet */ |
| cdev->protocol_version = 3; |
| req.in_data = 0; |
| if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), |
| (uint8_t **)&resp, sizeof(*resp)) > 0) |
| return 0; |
| |
| /* Try sending a version 2 packet */ |
| cdev->protocol_version = 2; |
| if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), |
| (uint8_t **)&resp, sizeof(*resp)) > 0) |
| return 0; |
| |
| /* |
| * Fail if we're still here, since the EC doesn't understand any |
| * protcol version we speak. Version 1 interface without command |
| * version is no longer supported, and we don't know about any new |
| * protocol versions. |
| */ |
| cdev->protocol_version = 0; |
| printf("%s: ERROR: old EC interface not supported\n", __func__); |
| return -1; |
| } |
| |
| int cros_ec_test(struct udevice *dev) |
| { |
| struct ec_params_hello req; |
| struct ec_response_hello *resp; |
| |
| req.in_data = 0x12345678; |
| if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), |
| (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { |
| printf("ec_command_inptr() returned error\n"); |
| return -1; |
| } |
| if (resp->out_data != req.in_data + 0x01020304) { |
| printf("Received invalid handshake %x\n", resp->out_data); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region, |
| uint32_t *offset, uint32_t *size) |
| { |
| struct ec_params_flash_region_info p; |
| struct ec_response_flash_region_info *r; |
| int ret; |
| |
| p.region = region; |
| ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, |
| EC_VER_FLASH_REGION_INFO, |
| &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); |
| if (ret != sizeof(*r)) |
| return -1; |
| |
| if (offset) |
| *offset = r->offset; |
| if (size) |
| *size = r->size; |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size) |
| { |
| struct ec_params_flash_erase p; |
| |
| p.offset = offset; |
| p.size = size; |
| return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), |
| NULL, 0); |
| } |
| |
| /** |
| * Write a single block to the flash |
| * |
| * Write a block of data to the EC flash. The size must not exceed the flash |
| * write block size which you can obtain from cros_ec_flash_write_burst_size(). |
| * |
| * The offset starts at 0. You can obtain the region information from |
| * cros_ec_flash_offset() to find out where to write for a particular region. |
| * |
| * Attempting to write to the region where the EC is currently running from |
| * will result in an error. |
| * |
| * @param dev CROS-EC device |
| * @param data Pointer to data buffer to write |
| * @param offset Offset within flash to write to. |
| * @param size Number of bytes to write |
| * @return 0 if ok, -1 on error |
| */ |
| static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data, |
| uint32_t offset, uint32_t size) |
| { |
| struct ec_params_flash_write *p; |
| int ret; |
| |
| p = malloc(sizeof(*p) + size); |
| if (!p) |
| return -ENOMEM; |
| |
| p->offset = offset; |
| p->size = size; |
| assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE); |
| memcpy(p + 1, data, p->size); |
| |
| ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, |
| p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1; |
| |
| free(p); |
| |
| return ret; |
| } |
| |
| /** |
| * Return optimal flash write burst size |
| */ |
| static int cros_ec_flash_write_burst_size(struct udevice *dev) |
| { |
| return EC_FLASH_WRITE_VER0_SIZE; |
| } |
| |
| /** |
| * Check if a block of data is erased (all 0xff) |
| * |
| * This function is useful when dealing with flash, for checking whether a |
| * data block is erased and thus does not need to be programmed. |
| * |
| * @param data Pointer to data to check (must be word-aligned) |
| * @param size Number of bytes to check (must be word-aligned) |
| * @return 0 if erased, non-zero if any word is not erased |
| */ |
| static int cros_ec_data_is_erased(const uint32_t *data, int size) |
| { |
| assert(!(size & 3)); |
| size /= sizeof(uint32_t); |
| for (; size > 0; size -= 4, data++) |
| if (*data != -1U) |
| return 0; |
| |
| return 1; |
| } |
| |
| /** |
| * Read back flash parameters |
| * |
| * This function reads back parameters of the flash as reported by the EC |
| * |
| * @param dev Pointer to device |
| * @param info Pointer to output flash info struct |
| */ |
| int cros_ec_read_flashinfo(struct udevice *dev, |
| struct ec_response_flash_info *info) |
| { |
| int ret; |
| |
| ret = ec_command(dev, EC_CMD_FLASH_INFO, 0, |
| NULL, 0, info, sizeof(*info)); |
| if (ret < 0) |
| return ret; |
| |
| return ret < sizeof(*info) ? -1 : 0; |
| } |
| |
| int cros_ec_flash_write(struct udevice *dev, const uint8_t *data, |
| uint32_t offset, uint32_t size) |
| { |
| struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); |
| uint32_t burst = cros_ec_flash_write_burst_size(dev); |
| uint32_t end, off; |
| int ret; |
| |
| if (!burst) |
| return -EINVAL; |
| |
| /* |
| * TODO: round up to the nearest multiple of write size. Can get away |
| * without that on link right now because its write size is 4 bytes. |
| */ |
| end = offset + size; |
| for (off = offset; off < end; off += burst, data += burst) { |
| uint32_t todo; |
| |
| /* If the data is empty, there is no point in programming it */ |
| todo = min(end - off, burst); |
| if (cdev->optimise_flash_write && |
| cros_ec_data_is_erased((uint32_t *)data, todo)) |
| continue; |
| |
| ret = cros_ec_flash_write_block(dev, data, off, todo); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Run verification on a slot |
| * |
| * @param me CrosEc instance |
| * @param region Region to run verification on |
| * @return 0 if success or not applicable. Non-zero if verification failed. |
| */ |
| int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region) |
| { |
| struct ec_params_efs_verify p; |
| int rv; |
| |
| log_info("EFS: EC is verifying updated image...\n"); |
| p.region = region; |
| |
| rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0); |
| if (rv >= 0) { |
| log_info("EFS: Verification success\n"); |
| return 0; |
| } |
| if (rv == -EC_RES_INVALID_COMMAND) { |
| log_info("EFS: EC doesn't support EFS_VERIFY command\n"); |
| return 0; |
| } |
| log_info("EFS: Verification failed\n"); |
| |
| return rv; |
| } |
| |
| /** |
| * Read a single block from the flash |
| * |
| * Read a block of data from the EC flash. The size must not exceed the flash |
| * write block size which you can obtain from cros_ec_flash_write_burst_size(). |
| * |
| * The offset starts at 0. You can obtain the region information from |
| * cros_ec_flash_offset() to find out where to read for a particular region. |
| * |
| * @param dev CROS-EC device |
| * @param data Pointer to data buffer to read into |
| * @param offset Offset within flash to read from |
| * @param size Number of bytes to read |
| * @return 0 if ok, -1 on error |
| */ |
| static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data, |
| uint32_t offset, uint32_t size) |
| { |
| struct ec_params_flash_read p; |
| |
| p.offset = offset; |
| p.size = size; |
| |
| return ec_command(dev, EC_CMD_FLASH_READ, 0, |
| &p, sizeof(p), data, size) >= 0 ? 0 : -1; |
| } |
| |
| int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset, |
| uint32_t size) |
| { |
| uint32_t burst = cros_ec_flash_write_burst_size(dev); |
| uint32_t end, off; |
| int ret; |
| |
| end = offset + size; |
| for (off = offset; off < end; off += burst, data += burst) { |
| ret = cros_ec_flash_read_block(dev, data, off, |
| min(end - off, burst)); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image, |
| int image_size) |
| { |
| uint32_t rw_offset, rw_size; |
| int ret; |
| |
| if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset, |
| &rw_size)) |
| return -1; |
| if (image_size > (int)rw_size) |
| return -1; |
| |
| /* Invalidate the existing hash, just in case the AP reboots |
| * unexpectedly during the update. If that happened, the EC RW firmware |
| * would be invalid, but the EC would still have the original hash. |
| */ |
| ret = cros_ec_invalidate_hash(dev); |
| if (ret) |
| return ret; |
| |
| /* |
| * Erase the entire RW section, so that the EC doesn't see any garbage |
| * past the new image if it's smaller than the current image. |
| * |
| * TODO: could optimize this to erase just the current image, since |
| * presumably everything past that is 0xff's. But would still need to |
| * round up to the nearest multiple of erase size. |
| */ |
| ret = cros_ec_flash_erase(dev, rw_offset, rw_size); |
| if (ret) |
| return ret; |
| |
| /* Write the image */ |
| ret = cros_ec_flash_write(dev, image, rw_offset, image_size); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size) |
| { |
| struct ec_params_vbnvcontext p; |
| int len; |
| |
| if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2) |
| return -EINVAL; |
| |
| p.op = EC_VBNV_CONTEXT_OP_READ; |
| |
| len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, |
| &p, sizeof(uint32_t) + size, block, size); |
| if (len != size) { |
| log_err("Expected %d bytes, got %d\n", size, len); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size) |
| { |
| struct ec_params_vbnvcontext p; |
| int len; |
| |
| if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2) |
| return -EINVAL; |
| p.op = EC_VBNV_CONTEXT_OP_WRITE; |
| memcpy(p.block, block, size); |
| |
| len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, |
| &p, sizeof(uint32_t) + size, NULL, 0); |
| if (len < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags) |
| { |
| struct ec_params_battery_cutoff p; |
| int len; |
| |
| p.flags = flags; |
| len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p), |
| NULL, 0); |
| |
| if (len < 0) |
| return -1; |
| return 0; |
| } |
| |
| int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state) |
| { |
| struct ec_params_ldo_set params; |
| |
| params.index = index; |
| params.state = state; |
| |
| if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), |
| NULL, 0)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state) |
| { |
| struct ec_params_ldo_get params; |
| struct ec_response_ldo_get *resp; |
| |
| params.index = index; |
| |
| if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), |
| (uint8_t **)&resp, sizeof(*resp)) != |
| sizeof(*resp)) |
| return -1; |
| |
| *state = resp->state; |
| |
| return 0; |
| } |
| |
| int cros_ec_register(struct udevice *dev) |
| { |
| struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); |
| char id[MSG_BYTES]; |
| |
| cdev->dev = dev; |
| gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, |
| GPIOD_IS_IN); |
| cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write"); |
| |
| if (cros_ec_check_version(dev)) { |
| debug("%s: Could not detect CROS-EC version\n", __func__); |
| return -CROS_EC_ERR_CHECK_VERSION; |
| } |
| |
| if (cros_ec_read_id(dev, id, sizeof(id))) { |
| debug("%s: Could not read KBC ID\n", __func__); |
| return -CROS_EC_ERR_READ_ID; |
| } |
| |
| /* Remember this device for use by the cros_ec command */ |
| debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n", |
| cdev->protocol_version, id); |
| |
| return 0; |
| } |
| |
| int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config) |
| { |
| ofnode flash_node, node; |
| |
| flash_node = dev_read_subnode(dev, "flash"); |
| if (!ofnode_valid(flash_node)) { |
| debug("Failed to find flash node\n"); |
| return -1; |
| } |
| |
| if (ofnode_read_fmap_entry(flash_node, &config->flash)) { |
| debug("Failed to decode flash node in chrome-ec\n"); |
| return -1; |
| } |
| |
| config->flash_erase_value = ofnode_read_s32_default(flash_node, |
| "erase-value", -1); |
| ofnode_for_each_subnode(node, flash_node) { |
| const char *name = ofnode_get_name(node); |
| enum ec_flash_region region; |
| |
| if (0 == strcmp(name, "ro")) { |
| region = EC_FLASH_REGION_RO; |
| } else if (0 == strcmp(name, "rw")) { |
| region = EC_FLASH_REGION_ACTIVE; |
| } else if (0 == strcmp(name, "wp-ro")) { |
| region = EC_FLASH_REGION_WP_RO; |
| } else { |
| debug("Unknown EC flash region name '%s'\n", name); |
| return -1; |
| } |
| |
| if (ofnode_read_fmap_entry(node, &config->region[region])) { |
| debug("Failed to decode flash region in chrome-ec'\n"); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in, |
| int nmsgs) |
| { |
| union { |
| struct ec_params_i2c_passthru p; |
| uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; |
| } params; |
| union { |
| struct ec_response_i2c_passthru r; |
| uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; |
| } response; |
| struct ec_params_i2c_passthru *p = ¶ms.p; |
| struct ec_response_i2c_passthru *r = &response.r; |
| struct ec_params_i2c_passthru_msg *msg; |
| uint8_t *pdata, *read_ptr = NULL; |
| int read_len; |
| int size; |
| int rv; |
| int i; |
| |
| p->port = port; |
| |
| p->num_msgs = nmsgs; |
| size = sizeof(*p) + p->num_msgs * sizeof(*msg); |
| |
| /* Create a message to write the register address and optional data */ |
| pdata = (uint8_t *)p + size; |
| |
| read_len = 0; |
| for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) { |
| bool is_read = in->flags & I2C_M_RD; |
| |
| msg->addr_flags = in->addr; |
| msg->len = in->len; |
| if (is_read) { |
| msg->addr_flags |= EC_I2C_FLAG_READ; |
| read_len += in->len; |
| read_ptr = in->buf; |
| if (sizeof(*r) + read_len > sizeof(response)) { |
| puts("Read length too big for buffer\n"); |
| return -1; |
| } |
| } else { |
| if (pdata - (uint8_t *)p + in->len > sizeof(params)) { |
| puts("Params too large for buffer\n"); |
| return -1; |
| } |
| memcpy(pdata, in->buf, in->len); |
| pdata += in->len; |
| } |
| } |
| |
| rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p, |
| r, sizeof(*r) + read_len); |
| if (rv < 0) |
| return rv; |
| |
| /* Parse response */ |
| if (r->i2c_status & EC_I2C_STATUS_ERROR) { |
| printf("Transfer failed with status=0x%x\n", r->i2c_status); |
| return -1; |
| } |
| |
| if (rv < sizeof(*r) + read_len) { |
| puts("Truncated read response\n"); |
| return -1; |
| } |
| |
| /* We only support a single read message for each transfer */ |
| if (read_len) |
| memcpy(read_ptr, r->data, read_len); |
| |
| return 0; |
| } |
| |
| int cros_ec_check_feature(struct udevice *dev, int feature) |
| { |
| struct ec_response_get_features r; |
| int rv; |
| |
| rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, &r, sizeof(r), NULL, 0); |
| if (rv) |
| return rv; |
| |
| if (feature >= 8 * sizeof(r.flags)) |
| return -1; |
| |
| return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature); |
| } |
| |
| /* |
| * Query the EC for specified mask indicating enabled events. |
| * The EC maintains separate event masks for SMI, SCI and WAKE. |
| */ |
| static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action, |
| uint64_t *value) |
| { |
| int ret; |
| struct ec_params_host_event req; |
| struct ec_response_host_event rsp; |
| |
| req.action = action; |
| req.mask_type = mask; |
| if (action != EC_HOST_EVENT_GET) |
| req.value = *value; |
| else |
| *value = 0; |
| ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp, |
| sizeof(rsp)); |
| |
| if (action != EC_HOST_EVENT_GET) |
| return ret; |
| if (ret == 0) |
| *value = rsp.value; |
| |
| return ret; |
| } |
| |
| static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd, |
| uint action, uint64_t *value) |
| { |
| int ret = -1; |
| struct ec_params_host_event_mask req; |
| struct ec_response_host_event_mask rsp; |
| |
| if (hcmd == INVALID_HCMD) |
| return ret; |
| |
| if (action != EC_HOST_EVENT_GET) |
| req.mask = (uint32_t)*value; |
| else |
| *value = 0; |
| |
| ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp)); |
| if (action != EC_HOST_EVENT_GET) |
| return ret; |
| if (ret == 0) |
| *value = rsp.mask; |
| |
| return ret; |
| } |
| |
| bool cros_ec_is_uhepi_supported(struct udevice *dev) |
| { |
| #define UHEPI_SUPPORTED 1 |
| #define UHEPI_NOT_SUPPORTED 2 |
| static int uhepi_support; |
| |
| if (!uhepi_support) { |
| uhepi_support = cros_ec_check_feature(dev, |
| EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED : |
| UHEPI_NOT_SUPPORTED; |
| log_debug("Chrome EC: UHEPI %s\n", |
| uhepi_support == UHEPI_SUPPORTED ? "supported" : |
| "not supported"); |
| } |
| return uhepi_support == UHEPI_SUPPORTED; |
| } |
| |
| static int cros_ec_get_mask(struct udevice *dev, uint type) |
| { |
| u64 value = 0; |
| |
| if (cros_ec_is_uhepi_supported(dev)) { |
| cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value); |
| } else { |
| assert(type < ARRAY_SIZE(event_map)); |
| cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd, |
| EC_HOST_EVENT_GET, &value); |
| } |
| return value; |
| } |
| |
| static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask) |
| { |
| if (cros_ec_is_uhepi_supported(dev)) |
| return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask); |
| |
| assert(type < ARRAY_SIZE(event_map)); |
| |
| return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd, |
| EC_HOST_EVENT_CLEAR, &mask); |
| } |
| |
| uint64_t cros_ec_get_events_b(struct udevice *dev) |
| { |
| return cros_ec_get_mask(dev, EC_HOST_EVENT_B); |
| } |
| |
| int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask) |
| { |
| log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask); |
| |
| return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask); |
| } |
| |
| int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp) |
| { |
| struct ec_params_charge_state p; |
| struct ec_response_charge_state r; |
| int ret; |
| |
| p.cmd = CHARGE_STATE_CMD_GET_PARAM; |
| p.get_param.param = CS_PARAM_LIMIT_POWER; |
| ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p), |
| &r, sizeof(r)); |
| |
| /* |
| * If our EC doesn't support the LIMIT_POWER parameter, assume that |
| * LIMIT_POWER is not requested. |
| */ |
| if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) { |
| log_warning("PARAM_LIMIT_POWER not supported by EC\n"); |
| return -ENOSYS; |
| } |
| |
| if (ret != sizeof(r.get_param)) |
| return -EINVAL; |
| |
| *limit_powerp = r.get_param.value; |
| return 0; |
| } |
| |
| int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags) |
| { |
| struct ec_params_config_power_button params; |
| int ret; |
| |
| params.flags = flags; |
| ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0, |
| ¶ms, sizeof(params), NULL, 0); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| int cros_ec_get_lid_shutdown_mask(struct udevice *dev) |
| { |
| u32 mask; |
| int ret; |
| |
| ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK, |
| &mask); |
| if (ret < 0) |
| return ret; |
| |
| return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED)); |
| } |
| |
| int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable) |
| { |
| u32 mask; |
| int ret; |
| |
| ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK, |
| &mask); |
| if (ret < 0) |
| return ret; |
| |
| /* Set lid close event state in the EC SMI event mask */ |
| if (enable) |
| mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED); |
| else |
| mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED); |
| |
| ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask); |
| if (ret < 0) |
| return ret; |
| |
| printf("EC: %sabled lid close event\n", enable ? "en" : "dis"); |
| return 0; |
| } |
| |
| UCLASS_DRIVER(cros_ec) = { |
| .id = UCLASS_CROS_EC, |
| .name = "cros-ec", |
| .per_device_auto_alloc_size = sizeof(struct cros_ec_dev), |
| .post_bind = dm_scan_fdt_dev, |
| .flags = DM_UC_FLAG_ALLOC_PRIV_DMA, |
| }; |