blob: 3e8c0bc28c5f540701b2885efe08352508c4cecd [file] [log] [blame]
// SPDX-License-Identifier: Intel
/*
* Copyright (C) 2013, Intel Corporation
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
*
* Ported from Intel released Quark UEFI BIOS
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
*/
/*
* This is the main Quark Memory Reference Code (MRC)
*
* These functions are generic and should work for any Quark-based board.
*
* MRC requires two data structures to be passed in which are initialized by
* mrc_adjust_params().
*
* The basic flow is as follows:
* 01) Check for supported DDR speed configuration
* 02) Set up Memory Manager buffer as pass-through (POR)
* 03) Set Channel Interleaving Mode and Channel Stride to the most aggressive
* setting possible
* 04) Set up the Memory Controller logic
* 05) Set up the DDR_PHY logic
* 06) Initialise the DRAMs (JEDEC)
* 07) Perform the Receive Enable Calibration algorithm
* 08) Perform the Write Leveling algorithm
* 09) Perform the Read Training algorithm (includes internal Vref)
* 10) Perform the Write Training algorithm
* 11) Set Channel Interleaving Mode and Channel Stride to the desired settings
*
* DRAM unit configuration based on Valleyview MRC.
*/
#include <common.h>
#include <version.h>
#include <asm/arch/mrc.h>
#include <asm/arch/msg_port.h>
#include "mrc_util.h"
#include "smc.h"
static const struct mem_init init[] = {
{ 0x0101, BM_COLD | BM_FAST | BM_WARM | BM_S3, clear_self_refresh },
{ 0x0200, BM_COLD | BM_FAST | BM_WARM | BM_S3, prog_ddr_timing_control },
{ 0x0103, BM_COLD | BM_FAST , prog_decode_before_jedec },
{ 0x0104, BM_COLD | BM_FAST , perform_ddr_reset },
{ 0x0300, BM_COLD | BM_FAST | BM_S3, ddrphy_init },
{ 0x0400, BM_COLD | BM_FAST , perform_jedec_init },
{ 0x0105, BM_COLD | BM_FAST , set_ddr_init_complete },
{ 0x0106, BM_FAST | BM_WARM | BM_S3, restore_timings },
{ 0x0106, BM_COLD , default_timings },
{ 0x0500, BM_COLD , rcvn_cal },
{ 0x0600, BM_COLD , wr_level },
{ 0x0120, BM_COLD , prog_page_ctrl },
{ 0x0700, BM_COLD , rd_train },
{ 0x0800, BM_COLD , wr_train },
{ 0x010b, BM_COLD , store_timings },
{ 0x010c, BM_COLD | BM_FAST | BM_WARM | BM_S3, enable_scrambling },
{ 0x010d, BM_COLD | BM_FAST | BM_WARM | BM_S3, prog_ddr_control },
{ 0x010e, BM_COLD | BM_FAST | BM_WARM | BM_S3, prog_dra_drb },
{ 0x010f, BM_WARM | BM_S3, perform_wake },
{ 0x0110, BM_COLD | BM_FAST | BM_WARM | BM_S3, change_refresh_period },
{ 0x0111, BM_COLD | BM_FAST | BM_WARM | BM_S3, set_auto_refresh },
{ 0x0112, BM_COLD | BM_FAST | BM_WARM | BM_S3, ecc_enable },
{ 0x0113, BM_COLD | BM_FAST , memory_test },
{ 0x0114, BM_COLD | BM_FAST | BM_WARM | BM_S3, lock_registers }
};
/* Adjust configuration parameters before initialization sequence */
static void mrc_adjust_params(struct mrc_params *mrc_params)
{
const struct dram_params *dram_params;
uint8_t dram_width;
uint32_t rank_enables;
uint32_t channel_width;
ENTERFN();
/* initially expect success */
mrc_params->status = MRC_SUCCESS;
dram_width = mrc_params->dram_width;
rank_enables = mrc_params->rank_enables;
channel_width = mrc_params->channel_width;
/*
* Setup board layout (must be reviewed as is selecting static timings)
* 0 == R0 (DDR3 x16), 1 == R1 (DDR3 x16),
* 2 == DV (DDR3 x8), 3 == SV (DDR3 x8).
*/
if (dram_width == X8)
mrc_params->board_id = 2; /* select x8 layout */
else
mrc_params->board_id = 0; /* select x16 layout */
/* initially no memory */
mrc_params->mem_size = 0;
/* begin of channel settings */
dram_params = &mrc_params->params;
/*
* Determine column bits:
*
* Column: 11 for 8Gbx8, else 10
*/
mrc_params->column_bits[0] =
(dram_params[0].density == 4) &&
(dram_width == X8) ? 11 : 10;
/*
* Determine row bits:
*
* 512Mbx16=12 512Mbx8=13
* 1Gbx16=13 1Gbx8=14
* 2Gbx16=14 2Gbx8=15
* 4Gbx16=15 4Gbx8=16
* 8Gbx16=16 8Gbx8=16
*/
mrc_params->row_bits[0] = 12 + dram_params[0].density +
(dram_params[0].density < 4) &&
(dram_width == X8) ? 1 : 0;
/*
* Determine per-channel memory size:
*
* (For 2 RANKs, multiply by 2)
* (For 16 bit data bus, divide by 2)
*
* DENSITY WIDTH MEM_AVAILABLE
* 512Mb x16 0x008000000 ( 128MB)
* 512Mb x8 0x010000000 ( 256MB)
* 1Gb x16 0x010000000 ( 256MB)
* 1Gb x8 0x020000000 ( 512MB)
* 2Gb x16 0x020000000 ( 512MB)
* 2Gb x8 0x040000000 (1024MB)
* 4Gb x16 0x040000000 (1024MB)
* 4Gb x8 0x080000000 (2048MB)
*/
mrc_params->channel_size[0] = 1 << dram_params[0].density;
mrc_params->channel_size[0] *= (dram_width == X8) ? 2 : 1;
mrc_params->channel_size[0] *= (rank_enables == 0x3) ? 2 : 1;
mrc_params->channel_size[0] *= (channel_width == X16) ? 1 : 2;
/* Determine memory size (convert number of 64MB/512Mb units) */
mrc_params->mem_size += mrc_params->channel_size[0] << 26;
LEAVEFN();
}
static void mrc_mem_init(struct mrc_params *mrc_params)
{
int i;
ENTERFN();
/* MRC started */
mrc_post_code(0x01, 0x00);
if (mrc_params->boot_mode != BM_COLD) {
if (mrc_params->ddr_speed != mrc_params->timings.ddr_speed) {
/* full training required as frequency changed */
mrc_params->boot_mode = BM_COLD;
}
}
for (i = 0; i < ARRAY_SIZE(init); i++) {
uint64_t my_tsc;
if (mrc_params->boot_mode & init[i].boot_path) {
uint8_t major = init[i].post_code >> 8 & 0xff;
uint8_t minor = init[i].post_code >> 0 & 0xff;
mrc_post_code(major, minor);
my_tsc = rdtsc();
init[i].init_fn(mrc_params);
DPF(D_TIME, "Execution time %llx", rdtsc() - my_tsc);
}
}
/* display the timings */
print_timings(mrc_params);
/* MRC complete */
mrc_post_code(0x01, 0xff);
LEAVEFN();
}
void mrc_init(struct mrc_params *mrc_params)
{
ENTERFN();
DPF(D_INFO, "MRC Version %04x %s %s\n", MRC_VERSION,
U_BOOT_DATE, U_BOOT_TIME);
/* Set up the data structures used by mrc_mem_init() */
mrc_adjust_params(mrc_params);
/* Initialize system memory */
mrc_mem_init(mrc_params);
LEAVEFN();
}