blob: 77fa17ee8ab1466c0ffd4e962611821b98295a54 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* TI QSPI driver
*
* Copyright (C) 2013, Texas Instruments, Incorporated
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/omap.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#include <dm.h>
#include <asm/gpio.h>
#include <asm/omap_gpio.h>
#include <asm/omap_common.h>
#include <asm/ti-common/ti-edma3.h>
#include <linux/kernel.h>
#include <regmap.h>
#include <syscon.h>
DECLARE_GLOBAL_DATA_PTR;
/* ti qpsi register bit masks */
#define QSPI_TIMEOUT 2000000
#define QSPI_FCLK 192000000
#define QSPI_DRA7XX_FCLK 76800000
#define QSPI_WLEN_MAX_BITS 128
#define QSPI_WLEN_MAX_BYTES (QSPI_WLEN_MAX_BITS >> 3)
#define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
/* clock control */
#define QSPI_CLK_EN BIT(31)
#define QSPI_CLK_DIV_MAX 0xffff
/* command */
#define QSPI_EN_CS(n) (n << 28)
#define QSPI_WLEN(n) ((n-1) << 19)
#define QSPI_3_PIN BIT(18)
#define QSPI_RD_SNGL BIT(16)
#define QSPI_WR_SNGL (2 << 16)
#define QSPI_INVAL (4 << 16)
#define QSPI_RD_QUAD (7 << 16)
/* device control */
#define QSPI_CKPHA(n) (1 << (2 + n*8))
#define QSPI_CSPOL(n) (1 << (1 + n*8))
#define QSPI_CKPOL(n) (1 << (n*8))
/* status */
#define QSPI_WC BIT(1)
#define QSPI_BUSY BIT(0)
#define QSPI_WC_BUSY (QSPI_WC | QSPI_BUSY)
#define QSPI_XFER_DONE QSPI_WC
#define MM_SWITCH 0x01
#define MEM_CS(cs) ((cs + 1) << 8)
#define MEM_CS_UNSELECT 0xfffff8ff
#define QSPI_SETUP0_READ_NORMAL (0x0 << 12)
#define QSPI_SETUP0_READ_DUAL (0x1 << 12)
#define QSPI_SETUP0_READ_QUAD (0x3 << 12)
#define QSPI_SETUP0_ADDR_SHIFT (8)
#define QSPI_SETUP0_DBITS_SHIFT (10)
/* ti qspi register set */
struct ti_qspi_regs {
u32 pid;
u32 pad0[3];
u32 sysconfig;
u32 pad1[3];
u32 int_stat_raw;
u32 int_stat_en;
u32 int_en_set;
u32 int_en_ctlr;
u32 intc_eoi;
u32 pad2[3];
u32 clk_ctrl;
u32 dc;
u32 cmd;
u32 status;
u32 data;
u32 setup0;
u32 setup1;
u32 setup2;
u32 setup3;
u32 memswitch;
u32 data1;
u32 data2;
u32 data3;
};
/* ti qspi priv */
struct ti_qspi_priv {
void *memory_map;
size_t mmap_size;
uint max_hz;
u32 num_cs;
struct ti_qspi_regs *base;
void *ctrl_mod_mmap;
ulong fclk;
unsigned int mode;
u32 cmd;
u32 dc;
};
static int ti_qspi_set_speed(struct udevice *bus, uint hz)
{
struct ti_qspi_priv *priv = dev_get_priv(bus);
uint clk_div;
if (!hz)
clk_div = 0;
else
clk_div = DIV_ROUND_UP(priv->fclk, hz) - 1;
/* truncate clk_div value to QSPI_CLK_DIV_MAX */
if (clk_div > QSPI_CLK_DIV_MAX)
clk_div = QSPI_CLK_DIV_MAX;
debug("ti_spi_set_speed: hz: %d, clock divider %d\n", hz, clk_div);
/* disable SCLK */
writel(readl(&priv->base->clk_ctrl) & ~QSPI_CLK_EN,
&priv->base->clk_ctrl);
/* enable SCLK and program the clk divider */
writel(QSPI_CLK_EN | clk_div, &priv->base->clk_ctrl);
return 0;
}
static void ti_qspi_cs_deactivate(struct ti_qspi_priv *priv)
{
writel(priv->cmd | QSPI_INVAL, &priv->base->cmd);
/* dummy readl to ensure bus sync */
readl(&priv->base->cmd);
}
static void ti_qspi_ctrl_mode_mmap(void *ctrl_mod_mmap, int cs, bool enable)
{
u32 val;
val = readl(ctrl_mod_mmap);
if (enable)
val |= MEM_CS(cs);
else
val &= MEM_CS_UNSELECT;
writel(val, ctrl_mod_mmap);
}
static int ti_qspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct dm_spi_slave_platdata *slave = dev_get_parent_platdata(dev);
struct ti_qspi_priv *priv;
struct udevice *bus;
uint words = bitlen >> 3; /* fixed 8-bit word length */
const uchar *txp = dout;
uchar *rxp = din;
uint status;
int timeout;
unsigned int cs = slave->cs;
bus = dev->parent;
priv = dev_get_priv(bus);
if (cs > priv->num_cs) {
debug("invalid qspi chip select\n");
return -EINVAL;
}
if (bitlen == 0)
return -1;
if (bitlen % 8) {
debug("spi_xfer: Non byte aligned SPI transfer\n");
return -1;
}
/* Setup command reg */
priv->cmd = 0;
priv->cmd |= QSPI_WLEN(8);
priv->cmd |= QSPI_EN_CS(cs);
if (priv->mode & SPI_3WIRE)
priv->cmd |= QSPI_3_PIN;
priv->cmd |= 0xfff;
while (words) {
u8 xfer_len = 0;
if (txp) {
u32 cmd = priv->cmd;
if (words >= QSPI_WLEN_MAX_BYTES) {
u32 *txbuf = (u32 *)txp;
u32 data;
data = cpu_to_be32(*txbuf++);
writel(data, &priv->base->data3);
data = cpu_to_be32(*txbuf++);
writel(data, &priv->base->data2);
data = cpu_to_be32(*txbuf++);
writel(data, &priv->base->data1);
data = cpu_to_be32(*txbuf++);
writel(data, &priv->base->data);
cmd &= ~QSPI_WLEN_MASK;
cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
xfer_len = QSPI_WLEN_MAX_BYTES;
} else {
writeb(*txp, &priv->base->data);
xfer_len = 1;
}
debug("tx cmd %08x dc %08x\n",
cmd | QSPI_WR_SNGL, priv->dc);
writel(cmd | QSPI_WR_SNGL, &priv->base->cmd);
status = readl(&priv->base->status);
timeout = QSPI_TIMEOUT;
while ((status & QSPI_WC_BUSY) != QSPI_XFER_DONE) {
if (--timeout < 0) {
printf("spi_xfer: TX timeout!\n");
return -1;
}
status = readl(&priv->base->status);
}
txp += xfer_len;
debug("tx done, status %08x\n", status);
}
if (rxp) {
debug("rx cmd %08x dc %08x\n",
((u32)(priv->cmd | QSPI_RD_SNGL)), priv->dc);
writel(priv->cmd | QSPI_RD_SNGL, &priv->base->cmd);
status = readl(&priv->base->status);
timeout = QSPI_TIMEOUT;
while ((status & QSPI_WC_BUSY) != QSPI_XFER_DONE) {
if (--timeout < 0) {
printf("spi_xfer: RX timeout!\n");
return -1;
}
status = readl(&priv->base->status);
}
*rxp++ = readl(&priv->base->data);
xfer_len = 1;
debug("rx done, status %08x, read %02x\n",
status, *(rxp-1));
}
words -= xfer_len;
}
/* Terminate frame */
if (flags & SPI_XFER_END)
ti_qspi_cs_deactivate(priv);
return 0;
}
/* TODO: control from sf layer to here through dm-spi */
static void ti_qspi_copy_mmap(void *data, void *offset, size_t len)
{
#if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
unsigned int addr = (unsigned int) (data);
unsigned int edma_slot_num = 1;
/* Invalidate the area, so no writeback into the RAM races with DMA */
invalidate_dcache_range(addr, addr + roundup(len, ARCH_DMA_MINALIGN));
/* enable edma3 clocks */
enable_edma3_clocks();
/* Call edma3 api to do actual DMA transfer */
edma3_transfer(EDMA3_BASE, edma_slot_num, data, offset, len);
/* disable edma3 clocks */
disable_edma3_clocks();
#else
memcpy_fromio(data, offset, len);
#endif
*((unsigned int *)offset) += len;
}
static void ti_qspi_setup_mmap_read(struct ti_qspi_priv *priv, u8 opcode,
u8 data_nbits, u8 addr_width,
u8 dummy_bytes)
{
u32 memval = opcode;
switch (data_nbits) {
case 4:
memval |= QSPI_SETUP0_READ_QUAD;
break;
case 2:
memval |= QSPI_SETUP0_READ_DUAL;
break;
default:
memval |= QSPI_SETUP0_READ_NORMAL;
break;
}
memval |= ((addr_width - 1) << QSPI_SETUP0_ADDR_SHIFT |
dummy_bytes << QSPI_SETUP0_DBITS_SHIFT);
writel(memval, &priv->base->setup0);
}
static int ti_qspi_set_mode(struct udevice *bus, uint mode)
{
struct ti_qspi_priv *priv = dev_get_priv(bus);
priv->dc = 0;
if (mode & SPI_CPHA)
priv->dc |= QSPI_CKPHA(0);
if (mode & SPI_CPOL)
priv->dc |= QSPI_CKPOL(0);
if (mode & SPI_CS_HIGH)
priv->dc |= QSPI_CSPOL(0);
return 0;
}
static int ti_qspi_exec_mem_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct ti_qspi_priv *priv;
struct udevice *bus;
bus = slave->dev->parent;
priv = dev_get_priv(bus);
u32 from = 0;
int ret = 0;
/* Only optimize read path. */
if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
!op->addr.nbytes || op->addr.nbytes > 4)
return -ENOTSUPP;
/* Address exceeds MMIO window size, fall back to regular mode. */
from = op->addr.val;
if (from + op->data.nbytes > priv->mmap_size)
return -ENOTSUPP;
ti_qspi_setup_mmap_read(priv, op->cmd.opcode, op->data.buswidth,
op->addr.nbytes, op->dummy.nbytes);
ti_qspi_copy_mmap((void *)op->data.buf.in,
(void *)priv->memory_map + from, op->data.nbytes);
return ret;
}
static int ti_qspi_claim_bus(struct udevice *dev)
{
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
struct ti_qspi_priv *priv;
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
if (slave_plat->cs > priv->num_cs) {
debug("invalid qspi chip select\n");
return -EINVAL;
}
writel(MM_SWITCH, &priv->base->memswitch);
if (priv->ctrl_mod_mmap)
ti_qspi_ctrl_mode_mmap(priv->ctrl_mod_mmap,
slave_plat->cs, true);
writel(priv->dc, &priv->base->dc);
writel(0, &priv->base->cmd);
writel(0, &priv->base->data);
priv->dc <<= slave_plat->cs * 8;
writel(priv->dc, &priv->base->dc);
return 0;
}
static int ti_qspi_release_bus(struct udevice *dev)
{
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
struct ti_qspi_priv *priv;
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
writel(~MM_SWITCH, &priv->base->memswitch);
if (priv->ctrl_mod_mmap)
ti_qspi_ctrl_mode_mmap(priv->ctrl_mod_mmap,
slave_plat->cs, false);
writel(0, &priv->base->dc);
writel(0, &priv->base->cmd);
writel(0, &priv->base->data);
writel(0, &priv->base->setup0);
return 0;
}
static int ti_qspi_probe(struct udevice *bus)
{
struct ti_qspi_priv *priv = dev_get_priv(bus);
priv->fclk = dev_get_driver_data(bus);
return 0;
}
static void *map_syscon_chipselects(struct udevice *bus)
{
#if CONFIG_IS_ENABLED(SYSCON)
struct udevice *syscon;
struct regmap *regmap;
const fdt32_t *cell;
int len, err;
err = uclass_get_device_by_phandle(UCLASS_SYSCON, bus,
"syscon-chipselects", &syscon);
if (err) {
debug("%s: unable to find syscon device (%d)\n", __func__,
err);
return NULL;
}
regmap = syscon_get_regmap(syscon);
if (IS_ERR(regmap)) {
debug("%s: unable to find regmap (%ld)\n", __func__,
PTR_ERR(regmap));
return NULL;
}
cell = fdt_getprop(gd->fdt_blob, dev_of_offset(bus),
"syscon-chipselects", &len);
if (len < 2*sizeof(fdt32_t)) {
debug("%s: offset not available\n", __func__);
return NULL;
}
return fdtdec_get_number(cell + 1, 1) + regmap_get_range(regmap, 0);
#else
fdt_addr_t addr;
addr = devfdt_get_addr_index(bus, 2);
return (addr == FDT_ADDR_T_NONE) ? NULL :
map_physmem(addr, 0, MAP_NOCACHE);
#endif
}
static int ti_qspi_ofdata_to_platdata(struct udevice *bus)
{
struct ti_qspi_priv *priv = dev_get_priv(bus);
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
fdt_addr_t mmap_addr;
fdt_addr_t mmap_size;
priv->ctrl_mod_mmap = map_syscon_chipselects(bus);
priv->base = map_physmem(devfdt_get_addr(bus),
sizeof(struct ti_qspi_regs), MAP_NOCACHE);
mmap_addr = devfdt_get_addr_size_index(bus, 1, &mmap_size);
priv->memory_map = map_physmem(mmap_addr, mmap_size, MAP_NOCACHE);
priv->mmap_size = mmap_size;
priv->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency", -1);
if (priv->max_hz < 0) {
debug("Error: Max frequency missing\n");
return -ENODEV;
}
priv->num_cs = fdtdec_get_int(blob, node, "num-cs", 4);
debug("%s: regs=<0x%x>, max-frequency=%d\n", __func__,
(int)priv->base, priv->max_hz);
return 0;
}
static const struct spi_controller_mem_ops ti_qspi_mem_ops = {
.exec_op = ti_qspi_exec_mem_op,
};
static const struct dm_spi_ops ti_qspi_ops = {
.claim_bus = ti_qspi_claim_bus,
.release_bus = ti_qspi_release_bus,
.xfer = ti_qspi_xfer,
.set_speed = ti_qspi_set_speed,
.set_mode = ti_qspi_set_mode,
.mem_ops = &ti_qspi_mem_ops,
};
static const struct udevice_id ti_qspi_ids[] = {
{ .compatible = "ti,dra7xxx-qspi", .data = QSPI_DRA7XX_FCLK},
{ .compatible = "ti,am4372-qspi", .data = QSPI_FCLK},
{ }
};
U_BOOT_DRIVER(ti_qspi) = {
.name = "ti_qspi",
.id = UCLASS_SPI,
.of_match = ti_qspi_ids,
.ops = &ti_qspi_ops,
.ofdata_to_platdata = ti_qspi_ofdata_to_platdata,
.priv_auto_alloc_size = sizeof(struct ti_qspi_priv),
.probe = ti_qspi_probe,
};