blob: 4f9724cadbff8fdf47be7513dd5668ff4e273983 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015 Freescale Semiconductor, Inc.
*
* Author:
* Peng Fan <Peng.Fan@freescale.com>
*/
#include <common.h>
#include <div64.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *)
ANATOP_BASE_ADDR;
struct mxc_ccm_reg *ccm_reg = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
#ifdef CONFIG_FSL_ESDHC_IMX
DECLARE_GLOBAL_DATA_PTR;
#endif
int get_clocks(void)
{
#ifdef CONFIG_FSL_ESDHC_IMX
#if CONFIG_SYS_FSL_ESDHC_ADDR == USDHC2_BASE_ADDR
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
#elif CONFIG_SYS_FSL_ESDHC_ADDR == USDHC3_BASE_ADDR
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
#else
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
#endif
#endif
return 0;
}
u32 get_ahb_clk(void)
{
return get_root_clk(AHB_CLK_ROOT);
}
static u32 get_ipg_clk(void)
{
/*
* The AHB and IPG are fixed at 2:1 ratio, and synchronized to
* each other.
*/
return get_ahb_clk() / 2;
}
u32 imx_get_uartclk(void)
{
return get_root_clk(UART_CLK_ROOT);
}
u32 imx_get_fecclk(void)
{
return get_root_clk(ENET_AXI_CLK_ROOT);
}
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
clock_enable(CCGR_OCOTP, enable);
}
void enable_thermal_clk(void)
{
enable_ocotp_clk(1);
}
#endif
void enable_usboh3_clk(unsigned char enable)
{
u32 target;
if (enable) {
/* disable the clock gate first */
clock_enable(CCGR_USB_HSIC, 0);
/* 120Mhz */
target = CLK_ROOT_ON |
USB_HSIC_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(USB_HSIC_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_USB_CTRL, 1);
clock_enable(CCGR_USB_HSIC, 1);
clock_enable(CCGR_USB_PHY1, 1);
clock_enable(CCGR_USB_PHY2, 1);
} else {
clock_enable(CCGR_USB_CTRL, 0);
clock_enable(CCGR_USB_HSIC, 0);
clock_enable(CCGR_USB_PHY1, 0);
clock_enable(CCGR_USB_PHY2, 0);
}
}
static u32 decode_pll(enum pll_clocks pll, u32 infreq)
{
u32 reg, div_sel;
u32 num, denom;
/*
* Alought there are four choices for the bypass src,
* we choose OSC_24M which is the default set in ROM.
*/
switch (pll) {
case PLL_CORE:
reg = readl(&ccm_anatop->pll_arm);
if (reg & CCM_ANALOG_PLL_ARM_POWERDOWN_MASK)
return 0;
if (reg & CCM_ANALOG_PLL_ARM_BYPASS_MASK)
return MXC_HCLK;
div_sel = (reg & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT;
return (infreq * div_sel) / 2;
case PLL_SYS:
reg = readl(&ccm_anatop->pll_480);
if (reg & CCM_ANALOG_PLL_480_POWERDOWN_MASK)
return 0;
if (reg & CCM_ANALOG_PLL_480_BYPASS_MASK)
return MXC_HCLK;
if (((reg & CCM_ANALOG_PLL_480_DIV_SELECT_MASK) >>
CCM_ANALOG_PLL_480_DIV_SELECT_SHIFT) == 0)
return 480000000u;
else
return 528000000u;
case PLL_ENET:
reg = readl(&ccm_anatop->pll_enet);
if (reg & CCM_ANALOG_PLL_ENET_POWERDOWN_MASK)
return 0;
if (reg & CCM_ANALOG_PLL_ENET_BYPASS_MASK)
return MXC_HCLK;
return 1000000000u;
case PLL_DDR:
reg = readl(&ccm_anatop->pll_ddr);
if (reg & CCM_ANALOG_PLL_DDR_POWERDOWN_MASK)
return 0;
num = ccm_anatop->pll_ddr_num;
denom = ccm_anatop->pll_ddr_denom;
if (reg & CCM_ANALOG_PLL_DDR_BYPASS_MASK)
return MXC_HCLK;
div_sel = (reg & CCM_ANALOG_PLL_DDR_DIV_SELECT_MASK) >>
CCM_ANALOG_PLL_DDR_DIV_SELECT_SHIFT;
return infreq * (div_sel + num / denom);
case PLL_USB:
return 480000000u;
default:
printf("Unsupported pll clocks %d\n", pll);
break;
}
return 0;
}
static u32 mxc_get_pll_sys_derive(int derive)
{
u32 freq, div, frac;
u32 reg;
div = 1;
reg = readl(&ccm_anatop->pll_480);
freq = decode_pll(PLL_SYS, MXC_HCLK);
switch (derive) {
case PLL_SYS_MAIN_480M_CLK:
if (reg & CCM_ANALOG_PLL_480_MAIN_DIV1_CLKGATE_MASK)
return 0;
else
return freq;
case PLL_SYS_MAIN_240M_CLK:
if (reg & CCM_ANALOG_PLL_480_MAIN_DIV2_CLKGATE_MASK)
return 0;
else
return freq / 2;
case PLL_SYS_MAIN_120M_CLK:
if (reg & CCM_ANALOG_PLL_480_MAIN_DIV4_CLKGATE_MASK)
return 0;
else
return freq / 4;
case PLL_SYS_PFD0_392M_CLK:
reg = readl(&ccm_anatop->pfd_480a);
if (reg & CCM_ANALOG_PFD_480A_PFD0_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
break;
case PLL_SYS_PFD0_196M_CLK:
if (reg & CCM_ANALOG_PLL_480_PFD0_DIV2_CLKGATE_MASK)
return 0;
reg = readl(&ccm_anatop->pfd_480a);
frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
div = 2;
break;
case PLL_SYS_PFD1_332M_CLK:
reg = readl(&ccm_anatop->pfd_480a);
if (reg & CCM_ANALOG_PFD_480A_PFD1_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
break;
case PLL_SYS_PFD1_166M_CLK:
if (reg & CCM_ANALOG_PLL_480_PFD1_DIV2_CLKGATE_MASK)
return 0;
reg = readl(&ccm_anatop->pfd_480a);
frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
div = 2;
break;
case PLL_SYS_PFD2_270M_CLK:
reg = readl(&ccm_anatop->pfd_480a);
if (reg & CCM_ANALOG_PFD_480A_PFD2_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
break;
case PLL_SYS_PFD2_135M_CLK:
if (reg & CCM_ANALOG_PLL_480_PFD2_DIV2_CLKGATE_MASK)
return 0;
reg = readl(&ccm_anatop->pfd_480a);
frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
div = 2;
break;
case PLL_SYS_PFD3_CLK:
reg = readl(&ccm_anatop->pfd_480a);
if (reg & CCM_ANALOG_PFD_480A_PFD3_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480A_PFD3_FRAC_MASK) >>
CCM_ANALOG_PFD_480A_PFD3_FRAC_SHIFT;
break;
case PLL_SYS_PFD4_CLK:
reg = readl(&ccm_anatop->pfd_480b);
if (reg & CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480B_PFD4_FRAC_MASK) >>
CCM_ANALOG_PFD_480B_PFD4_FRAC_SHIFT;
break;
case PLL_SYS_PFD5_CLK:
reg = readl(&ccm_anatop->pfd_480b);
if (reg & CCM_ANALOG_PFD_480B_PFD5_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480B_PFD5_FRAC_MASK) >>
CCM_ANALOG_PFD_480B_PFD5_FRAC_SHIFT;
break;
case PLL_SYS_PFD6_CLK:
reg = readl(&ccm_anatop->pfd_480b);
if (reg & CCM_ANALOG_PFD_480B_PFD6_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480B_PFD6_FRAC_MASK) >>
CCM_ANALOG_PFD_480B_PFD6_FRAC_SHIFT;
break;
case PLL_SYS_PFD7_CLK:
reg = readl(&ccm_anatop->pfd_480b);
if (reg & CCM_ANALOG_PFD_480B_PFD7_DIV1_CLKGATE_MASK)
return 0;
frac = (reg & CCM_ANALOG_PFD_480B_PFD7_FRAC_MASK) >>
CCM_ANALOG_PFD_480B_PFD7_FRAC_SHIFT;
break;
default:
printf("Error derived pll_sys clock %d\n", derive);
return 0;
}
return ((freq / frac) * 18) / div;
}
static u32 mxc_get_pll_enet_derive(int derive)
{
u32 freq, reg;
freq = decode_pll(PLL_ENET, MXC_HCLK);
reg = readl(&ccm_anatop->pll_enet);
switch (derive) {
case PLL_ENET_MAIN_500M_CLK:
if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK)
return freq / 2;
break;
case PLL_ENET_MAIN_250M_CLK:
if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK)
return freq / 4;
break;
case PLL_ENET_MAIN_125M_CLK:
if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK)
return freq / 8;
break;
case PLL_ENET_MAIN_100M_CLK:
if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK)
return freq / 10;
break;
case PLL_ENET_MAIN_50M_CLK:
if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK)
return freq / 20;
break;
case PLL_ENET_MAIN_40M_CLK:
if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK)
return freq / 25;
break;
case PLL_ENET_MAIN_25M_CLK:
if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK)
return freq / 40;
break;
default:
printf("Error derived pll_enet clock %d\n", derive);
break;
}
return 0;
}
static u32 mxc_get_pll_ddr_derive(int derive)
{
u32 freq, reg;
freq = decode_pll(PLL_DDR, MXC_HCLK);
reg = readl(&ccm_anatop->pll_ddr);
switch (derive) {
case PLL_DRAM_MAIN_1066M_CLK:
return freq;
case PLL_DRAM_MAIN_533M_CLK:
if (reg & CCM_ANALOG_PLL_DDR_DIV2_ENABLE_CLK_MASK)
return freq / 2;
break;
default:
printf("Error derived pll_ddr clock %d\n", derive);
break;
}
return 0;
}
static u32 mxc_get_pll_derive(enum pll_clocks pll, int derive)
{
switch (pll) {
case PLL_SYS:
return mxc_get_pll_sys_derive(derive);
case PLL_ENET:
return mxc_get_pll_enet_derive(derive);
case PLL_DDR:
return mxc_get_pll_ddr_derive(derive);
default:
printf("Error pll.\n");
return 0;
}
}
static u32 get_root_src_clk(enum clk_root_src root_src)
{
switch (root_src) {
case OSC_24M_CLK:
return 24000000u;
case PLL_ARM_MAIN_800M_CLK:
return decode_pll(PLL_CORE, MXC_HCLK);
case PLL_SYS_MAIN_480M_CLK:
case PLL_SYS_MAIN_240M_CLK:
case PLL_SYS_MAIN_120M_CLK:
case PLL_SYS_PFD0_392M_CLK:
case PLL_SYS_PFD0_196M_CLK:
case PLL_SYS_PFD1_332M_CLK:
case PLL_SYS_PFD1_166M_CLK:
case PLL_SYS_PFD2_270M_CLK:
case PLL_SYS_PFD2_135M_CLK:
case PLL_SYS_PFD3_CLK:
case PLL_SYS_PFD4_CLK:
case PLL_SYS_PFD5_CLK:
case PLL_SYS_PFD6_CLK:
case PLL_SYS_PFD7_CLK:
return mxc_get_pll_derive(PLL_SYS, root_src);
case PLL_ENET_MAIN_500M_CLK:
case PLL_ENET_MAIN_250M_CLK:
case PLL_ENET_MAIN_125M_CLK:
case PLL_ENET_MAIN_100M_CLK:
case PLL_ENET_MAIN_50M_CLK:
case PLL_ENET_MAIN_40M_CLK:
case PLL_ENET_MAIN_25M_CLK:
return mxc_get_pll_derive(PLL_ENET, root_src);
case PLL_DRAM_MAIN_1066M_CLK:
case PLL_DRAM_MAIN_533M_CLK:
return mxc_get_pll_derive(PLL_DDR, root_src);
case PLL_AUDIO_MAIN_CLK:
return decode_pll(PLL_AUDIO, MXC_HCLK);
case PLL_VIDEO_MAIN_CLK:
return decode_pll(PLL_VIDEO, MXC_HCLK);
case PLL_USB_MAIN_480M_CLK:
return decode_pll(PLL_USB, MXC_HCLK);
case REF_1M_CLK:
return 1000000;
case OSC_32K_CLK:
return MXC_CLK32;
case EXT_CLK_1:
case EXT_CLK_2:
case EXT_CLK_3:
case EXT_CLK_4:
printf("No EXT CLK supported??\n");
break;
};
return 0;
}
u32 get_root_clk(enum clk_root_index clock_id)
{
enum clk_root_src root_src;
u32 post_podf, pre_podf, auto_podf, root_src_clk;
int auto_en;
if (clock_root_enabled(clock_id) <= 0)
return 0;
if (clock_get_prediv(clock_id, &pre_podf) < 0)
return 0;
if (clock_get_postdiv(clock_id, &post_podf) < 0)
return 0;
if (clock_get_autopostdiv(clock_id, &auto_podf, &auto_en) < 0)
return 0;
if (auto_en == 0)
auto_podf = 0;
if (clock_get_src(clock_id, &root_src) < 0)
return 0;
root_src_clk = get_root_src_clk(root_src);
/*
* bypass clk is ignored.
*/
return root_src_clk / (post_podf + 1) / (pre_podf + 1) /
(auto_podf + 1);
}
static u32 get_ddrc_clk(void)
{
u32 reg, freq;
enum root_post_div post_div;
reg = readl(&ccm_reg->root[DRAM_CLK_ROOT].target_root);
if (reg & CLK_ROOT_MUX_MASK)
/* DRAM_ALT_CLK_ROOT */
freq = get_root_clk(DRAM_ALT_CLK_ROOT);
else
/* PLL_DRAM_MAIN_1066M_CLK */
freq = mxc_get_pll_derive(PLL_DDR, PLL_DRAM_MAIN_1066M_CLK);
post_div = reg & DRAM_CLK_ROOT_POST_DIV_MASK;
return freq / (post_div + 1) / 2;
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_root_clk(ARM_A7_CLK_ROOT);
case MXC_AXI_CLK:
return get_root_clk(MAIN_AXI_CLK_ROOT);
case MXC_AHB_CLK:
return get_root_clk(AHB_CLK_ROOT);
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_I2C_CLK:
return get_root_clk(I2C1_CLK_ROOT);
case MXC_UART_CLK:
return get_root_clk(UART1_CLK_ROOT);
case MXC_CSPI_CLK:
return get_root_clk(ECSPI1_CLK_ROOT);
case MXC_DDR_CLK:
return get_ddrc_clk();
case MXC_ESDHC_CLK:
return get_root_clk(USDHC1_CLK_ROOT);
case MXC_ESDHC2_CLK:
return get_root_clk(USDHC2_CLK_ROOT);
case MXC_ESDHC3_CLK:
return get_root_clk(USDHC3_CLK_ROOT);
default:
printf("Unsupported mxc_clock %d\n", clk);
break;
}
return 0;
}
#ifdef CONFIG_SYS_I2C_MXC
/* i2c_num can be 0 - 3 */
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
{
u32 target;
if (i2c_num >= 4)
return -EINVAL;
if (enable) {
clock_enable(CCGR_I2C1 + i2c_num, 0);
/* Set i2c root clock to PLL_SYS_MAIN_120M_CLK */
target = CLK_ROOT_ON |
I2C1_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
clock_set_target_val(I2C1_CLK_ROOT + i2c_num, target);
clock_enable(CCGR_I2C1 + i2c_num, 1);
} else {
clock_enable(CCGR_I2C1 + i2c_num, 0);
}
return 0;
}
#endif
static void init_clk_esdhc(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_USDHC1, 0);
clock_enable(CCGR_USDHC2, 0);
clock_enable(CCGR_USDHC3, 0);
/* 196: 392/2 */
target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
clock_set_target_val(USDHC1_CLK_ROOT, target);
target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
clock_set_target_val(USDHC2_CLK_ROOT, target);
target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
clock_set_target_val(USDHC3_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_USDHC1, 1);
clock_enable(CCGR_USDHC2, 1);
clock_enable(CCGR_USDHC3, 1);
}
static void init_clk_uart(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_UART1, 0);
clock_enable(CCGR_UART2, 0);
clock_enable(CCGR_UART3, 0);
clock_enable(CCGR_UART4, 0);
clock_enable(CCGR_UART5, 0);
clock_enable(CCGR_UART6, 0);
clock_enable(CCGR_UART7, 0);
/* 24Mhz */
target = CLK_ROOT_ON | UART1_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(UART1_CLK_ROOT, target);
target = CLK_ROOT_ON | UART2_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(UART2_CLK_ROOT, target);
target = CLK_ROOT_ON | UART3_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(UART3_CLK_ROOT, target);
target = CLK_ROOT_ON | UART4_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(UART4_CLK_ROOT, target);
target = CLK_ROOT_ON | UART5_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(UART5_CLK_ROOT, target);
target = CLK_ROOT_ON | UART6_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(UART6_CLK_ROOT, target);
target = CLK_ROOT_ON | UART7_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(UART7_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_UART1, 1);
clock_enable(CCGR_UART2, 1);
clock_enable(CCGR_UART3, 1);
clock_enable(CCGR_UART4, 1);
clock_enable(CCGR_UART5, 1);
clock_enable(CCGR_UART6, 1);
clock_enable(CCGR_UART7, 1);
}
static void init_clk_weim(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_WEIM, 0);
/* 120Mhz */
target = CLK_ROOT_ON | EIM_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(EIM_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_WEIM, 1);
}
static void init_clk_ecspi(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_ECSPI1, 0);
clock_enable(CCGR_ECSPI2, 0);
clock_enable(CCGR_ECSPI3, 0);
clock_enable(CCGR_ECSPI4, 0);
/* 60Mhz: 240/4 */
target = CLK_ROOT_ON | ECSPI1_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
clock_set_target_val(ECSPI1_CLK_ROOT, target);
target = CLK_ROOT_ON | ECSPI2_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
clock_set_target_val(ECSPI2_CLK_ROOT, target);
target = CLK_ROOT_ON | ECSPI3_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
clock_set_target_val(ECSPI3_CLK_ROOT, target);
target = CLK_ROOT_ON | ECSPI4_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
clock_set_target_val(ECSPI4_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_ECSPI1, 1);
clock_enable(CCGR_ECSPI2, 1);
clock_enable(CCGR_ECSPI3, 1);
clock_enable(CCGR_ECSPI4, 1);
}
static void init_clk_wdog(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_WDOG1, 0);
clock_enable(CCGR_WDOG2, 0);
clock_enable(CCGR_WDOG3, 0);
clock_enable(CCGR_WDOG4, 0);
/* 24Mhz */
target = CLK_ROOT_ON | WDOG_CLK_ROOT_FROM_OSC_24M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(WDOG_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_WDOG1, 1);
clock_enable(CCGR_WDOG2, 1);
clock_enable(CCGR_WDOG3, 1);
clock_enable(CCGR_WDOG4, 1);
}
#ifdef CONFIG_MXC_EPDC
static void init_clk_epdc(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_EPDC, 0);
/* 24Mhz */
target = CLK_ROOT_ON | EPDC_PIXEL_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV12);
clock_set_target_val(EPDC_PIXEL_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_EPDC, 1);
}
#endif
static int enable_pll_enet(void)
{
u32 reg;
s32 timeout = 100000;
reg = readl(&ccm_anatop->pll_enet);
/* If pll_enet powered up, no need to set it again */
if (reg & ANADIG_PLL_ENET_PWDN_MASK) {
reg &= ~ANADIG_PLL_ENET_PWDN_MASK;
writel(reg, &ccm_anatop->pll_enet);
while (timeout--) {
if (readl(&ccm_anatop->pll_enet) & ANADIG_PLL_LOCK)
break;
}
if (timeout <= 0) {
/* If timeout, we set pwdn for pll_enet. */
reg |= ANADIG_PLL_ENET_PWDN_MASK;
return -ETIME;
}
}
/* Clear bypass */
writel(CCM_ANALOG_PLL_ENET_BYPASS_MASK, &ccm_anatop->pll_enet_clr);
writel((CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK
| CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK
| CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK
| CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK
| CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK
| CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK
| CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK),
&ccm_anatop->pll_enet_set);
return 0;
}
static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
u32 post_div)
{
u32 reg = 0;
ulong start;
debug("pll5 div = %d, num = %d, denom = %d\n",
pll_div, pll_num, pll_denom);
/* Power up PLL5 video and disable its output */
writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK |
CCM_ANALOG_PLL_VIDEO_CLR_POWERDOWN_MASK |
CCM_ANALOG_PLL_VIDEO_CLR_BYPASS_MASK |
CCM_ANALOG_PLL_VIDEO_CLR_DIV_SELECT_MASK |
CCM_ANALOG_PLL_VIDEO_CLR_POST_DIV_SEL_MASK |
CCM_ANALOG_PLL_VIDEO_CLR_TEST_DIV_SELECT_MASK,
&ccm_anatop->pll_video_clr);
/* Set div, num and denom */
switch (post_div) {
case 1:
writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x1) |
CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
&ccm_anatop->pll_video_set);
break;
case 2:
writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
&ccm_anatop->pll_video_set);
break;
case 3:
writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x1),
&ccm_anatop->pll_video_set);
break;
case 4:
writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x3),
&ccm_anatop->pll_video_set);
break;
case 0:
default:
writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x2) |
CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
&ccm_anatop->pll_video_set);
break;
}
writel(CCM_ANALOG_PLL_VIDEO_NUM_A(pll_num),
&ccm_anatop->pll_video_num);
writel(CCM_ANALOG_PLL_VIDEO_DENOM_B(pll_denom),
&ccm_anatop->pll_video_denom);
/* Wait PLL5 lock */
start = get_timer(0); /* Get current timestamp */
do {
reg = readl(&ccm_anatop->pll_video);
if (reg & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) {
/* Enable PLL out */
writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK,
&ccm_anatop->pll_video_set);
return 0;
}
} while (get_timer(0) < (start + 10)); /* Wait 10ms */
printf("Lock PLL5 timeout\n");
return 1;
}
int set_clk_qspi(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_QSPI, 0);
/* 49M: 392/2/4 */
target = CLK_ROOT_ON | QSPI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
clock_set_target_val(QSPI_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_QSPI, 1);
return 0;
}
int set_clk_nand(void)
{
u32 target;
/* disable the clock gate first */
clock_enable(CCGR_RAWNAND, 0);
enable_pll_enet();
/* 100: 500/5 */
target = CLK_ROOT_ON | NAND_CLK_ROOT_FROM_PLL_ENET_MAIN_500M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV5);
clock_set_target_val(NAND_CLK_ROOT, target);
/* enable the clock gate */
clock_enable(CCGR_RAWNAND, 1);
return 0;
}
void mxs_set_lcdclk(uint32_t base_addr, uint32_t freq)
{
u32 hck = MXC_HCLK/1000;
u32 min = hck * 27;
u32 max = hck * 54;
u32 temp, best = 0;
u32 i, j, pred = 1, postd = 1;
u32 pll_div, pll_num, pll_denom, post_div = 0;
u32 target;
debug("mxs_set_lcdclk, freq = %d\n", freq);
clock_enable(CCGR_LCDIF, 0);
temp = (freq * 8 * 8);
if (temp < min) {
for (i = 1; i <= 4; i++) {
if ((temp * (1 << i)) > min) {
post_div = i;
freq = (freq * (1 << i));
break;
}
}
if (5 == i) {
printf("Fail to set rate to %dkhz", freq);
return;
}
}
for (i = 1; i <= 8; i++) {
for (j = 1; j <= 8; j++) {
temp = freq * i * j;
if (temp > max || temp < min)
continue;
if (best == 0 || temp < best) {
best = temp;
pred = i;
postd = j;
}
}
}
if (best == 0) {
printf("Fail to set rate to %dkhz", freq);
return;
}
debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
pll_div = best / hck;
pll_denom = 1000000;
pll_num = (best - hck * pll_div) * pll_denom / hck;
if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
return;
target = CLK_ROOT_ON | LCDIF_PIXEL_CLK_ROOT_FROM_PLL_VIDEO_MAIN_CLK |
CLK_ROOT_PRE_DIV((pred - 1)) | CLK_ROOT_POST_DIV((postd - 1));
clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, target);
clock_enable(CCGR_LCDIF, 1);
}
#ifdef CONFIG_FEC_MXC
int set_clk_enet(enum enet_freq type)
{
u32 target;
int ret;
u32 enet1_ref, enet2_ref;
/* disable the clock first */
clock_enable(CCGR_ENET1, 0);
clock_enable(CCGR_ENET2, 0);
switch (type) {
case ENET_125MHZ:
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
break;
case ENET_50MHZ:
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
break;
case ENET_25MHZ:
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
break;
default:
return -EINVAL;
}
ret = enable_pll_enet();
if (ret != 0)
return ret;
/* set enet axi clock 196M: 392/2 */
target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
clock_set_target_val(ENET_AXI_CLK_ROOT, target);
target = CLK_ROOT_ON | enet1_ref |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(ENET1_REF_CLK_ROOT, target);
target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
clock_set_target_val(ENET1_TIME_CLK_ROOT, target);
target = CLK_ROOT_ON | enet2_ref |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(ENET2_REF_CLK_ROOT, target);
target = CLK_ROOT_ON | ENET2_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
clock_set_target_val(ENET2_TIME_CLK_ROOT, target);
#ifdef CONFIG_FEC_MXC_25M_REF_CLK
target = CLK_ROOT_ON |
ENET_PHY_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(ENET_PHY_REF_CLK_ROOT, target);
#endif
/* enable clock */
clock_enable(CCGR_ENET1, 1);
clock_enable(CCGR_ENET2, 1);
return 0;
}
#endif
/* Configure PLL/PFD freq */
void clock_init(void)
{
/* Rom has enabled PLL_ARM, PLL_DDR, PLL_SYS, PLL_ENET
* In u-boot, we have to:
* 1. Configure PFD3- PFD7 for freq we needed in u-boot
* 2. Set clock root for peripherals (ip channel) used in u-boot but without set rate
* interface. The clocks for these peripherals are enabled after this intialization.
* 3. Other peripherals with set clock rate interface does not be set in this function.
*/
u32 reg;
/*
* Configure PFD4 to 392M
* 480M * 18 / 0x16 = 392M
*/
reg = readl(&ccm_anatop->pfd_480b);
reg &= ~(ANATOP_PFD480B_PFD4_FRAC_MASK |
CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK);
reg |= ANATOP_PFD480B_PFD4_FRAC_392M_VAL;
writel(reg, &ccm_anatop->pfd_480b);
init_clk_esdhc();
init_clk_uart();
init_clk_weim();
init_clk_ecspi();
init_clk_wdog();
#ifdef CONFIG_MXC_EPDC
init_clk_epdc();
#endif
enable_usboh3_clk(1);
clock_enable(CCGR_SNVS, 1);
#ifdef CONFIG_NAND_MXS
clock_enable(CCGR_RAWNAND, 1);
#endif
if (IS_ENABLED(CONFIG_IMX_RDC)) {
clock_enable(CCGR_RDC, 1);
clock_enable(CCGR_SEMA1, 1);
clock_enable(CCGR_SEMA2, 1);
}
}
#ifdef CONFIG_SECURE_BOOT
void hab_caam_clock_enable(unsigned char enable)
{
if (enable)
clock_enable(CCGR_CAAM, 1);
else
clock_enable(CCGR_CAAM, 0);
}
#endif
#ifdef CONFIG_MXC_EPDC
void epdc_clock_enable(void)
{
clock_enable(CCGR_EPDC, 1);
}
void epdc_clock_disable(void)
{
clock_enable(CCGR_EPDC, 0);
}
#endif
#ifndef CONFIG_SPL_BUILD
/*
* Dump some core clockes.
*/
int do_mx7_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
u32 freq;
freq = decode_pll(PLL_CORE, MXC_HCLK);
printf("PLL_CORE %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_SYS, MXC_HCLK);
printf("PLL_SYS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_ENET, MXC_HCLK);
printf("PLL_NET %8d MHz\n", freq / 1000000);
printf("\n");
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
#ifdef CONFIG_MXC_SPI
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
#endif
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx7_showclocks,
"display clocks",
""
);
#endif