blob: c62d7d772d58f55ab6c78e071b8b692675faf0ab [file] [log] [blame]
/*
* Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef EL3_COMMON_MACROS_S
#define EL3_COMMON_MACROS_S
#include <arch.h>
#include <asm_macros.S>
#include <assert_macros.S>
/*
* Helper macro to initialise EL3 registers we care about.
*/
.macro el3_arch_init_common
/* ---------------------------------------------------------------------
* SCTLR has already been initialised - read current value before
* modifying.
*
* SCTLR.I: Enable the instruction cache.
*
* SCTLR.A: Enable Alignment fault checking. All instructions that load
* or store one or more registers have an alignment check that the
* address being accessed is aligned to the size of the data element(s)
* being accessed.
* ---------------------------------------------------------------------
*/
ldr r1, =(SCTLR_I_BIT | SCTLR_A_BIT)
ldcopr r0, SCTLR
orr r0, r0, r1
stcopr r0, SCTLR
isb
/* ---------------------------------------------------------------------
* Initialise SCR, setting all fields rather than relying on the hw.
*
* SCR.SIF: Enabled so that Secure state instruction fetches from
* Non-secure memory are not permitted.
* ---------------------------------------------------------------------
*/
ldr r0, =(SCR_RESET_VAL | SCR_SIF_BIT)
stcopr r0, SCR
/* -----------------------------------------------------
* Enable the Asynchronous data abort now that the
* exception vectors have been setup.
* -----------------------------------------------------
*/
cpsie a
isb
/* ---------------------------------------------------------------------
* Initialise NSACR, setting all the fields, except for the
* IMPLEMENTATION DEFINED field, rather than relying on the hw. Some
* fields are architecturally UNKNOWN on reset.
*
* NSACR_ENABLE_FP_ACCESS: Represents NSACR.cp11 and NSACR.cp10. The
* cp11 field is ignored, but is set to same value as cp10. The cp10
* field is set to allow access to Advanced SIMD and floating point
* features from both Security states.
* ---------------------------------------------------------------------
*/
ldcopr r0, NSACR
and r0, r0, #NSACR_IMP_DEF_MASK
orr r0, r0, #(NSACR_RESET_VAL | NSACR_ENABLE_FP_ACCESS)
stcopr r0, NSACR
isb
/* ---------------------------------------------------------------------
* Initialise CPACR, setting all fields rather than relying on hw. Some
* fields are architecturally UNKNOWN on reset.
*
* CPACR.TRCDIS: Trap control for PL0 and PL1 System register accesses
* to trace registers. Set to zero to allow access.
*
* CPACR_ENABLE_FP_ACCESS: Represents CPACR.cp11 and CPACR.cp10. The
* cp11 field is ignored, but is set to same value as cp10. The cp10
* field is set to allow full access from PL0 and PL1 to floating-point
* and Advanced SIMD features.
* ---------------------------------------------------------------------
*/
ldr r0, =((CPACR_RESET_VAL | CPACR_ENABLE_FP_ACCESS) & ~(TRCDIS_BIT))
stcopr r0, CPACR
isb
/* ---------------------------------------------------------------------
* Initialise FPEXC, setting all fields rather than relying on hw. Some
* fields are architecturally UNKNOWN on reset and are set to zero
* except for field(s) listed below.
*
* FPEXC.EN: Enable access to Advanced SIMD and floating point features
* from all exception levels.
*
* __SOFTFP__: Predefined macro exposed by soft-float toolchain.
* ARMv7 and Cortex-A32(ARMv8/aarch32) has both soft-float and
* hard-float variants of toolchain, avoid compiling below code with
* soft-float toolchain as "vmsr" instruction will not be recognized.
* ---------------------------------------------------------------------
*/
#if ((ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_VFP)) && !(__SOFTFP__)
ldr r0, =(FPEXC_RESET_VAL | FPEXC_EN_BIT)
vmsr FPEXC, r0
isb
#endif
#if (ARM_ARCH_MAJOR > 7)
/* ---------------------------------------------------------------------
* Initialise SDCR, setting all the fields rather than relying on hw.
*
* SDCR.SPD: Disable AArch32 privileged debug. Debug exceptions from
* Secure EL1 are disabled.
*
* SDCR.SCCD: Set to one so that cycle counting by PMCCNTR is prohibited
* in Secure state. This bit is RES0 in versions of the architecture
* earlier than ARMv8.5, setting it to 1 doesn't have any effect on
* them.
* ---------------------------------------------------------------------
*/
ldr r0, =(SDCR_RESET_VAL | SDCR_SPD(SDCR_SPD_DISABLE) | SDCR_SCCD_BIT)
stcopr r0, SDCR
/* ---------------------------------------------------------------------
* Initialise PMCR, setting all fields rather than relying
* on hw. Some fields are architecturally UNKNOWN on reset.
*
* PMCR.LP: Set to one so that event counter overflow, that
* is recorded in PMOVSCLR[0-30], occurs on the increment
* that changes PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU
* is implemented. This bit is RES0 in versions of the architecture
* earlier than ARMv8.5, setting it to 1 doesn't have any effect
* on them.
* This bit is Reserved, UNK/SBZP in ARMv7.
*
* PMCR.LC: Set to one so that cycle counter overflow, that
* is recorded in PMOVSCLR[31], occurs on the increment
* that changes PMCCNTR[63] from 1 to 0.
* This bit is Reserved, UNK/SBZP in ARMv7.
*
* PMCR.DP: Set to one to prohibit cycle counting whilst in Secure mode.
* ---------------------------------------------------------------------
*/
ldr r0, =(PMCR_RESET_VAL | PMCR_DP_BIT | PMCR_LC_BIT | \
PMCR_LP_BIT)
#else
ldr r0, =(PMCR_RESET_VAL | PMCR_DP_BIT)
#endif
stcopr r0, PMCR
/*
* If Data Independent Timing (DIT) functionality is implemented,
* always enable DIT in EL3
*/
ldcopr r0, ID_PFR0
and r0, r0, #(ID_PFR0_DIT_MASK << ID_PFR0_DIT_SHIFT)
cmp r0, #ID_PFR0_DIT_SUPPORTED
bne 1f
mrs r0, cpsr
orr r0, r0, #CPSR_DIT_BIT
msr cpsr_cxsf, r0
1:
.endm
/* -----------------------------------------------------------------------------
* This is the super set of actions that need to be performed during a cold boot
* or a warm boot in EL3. This code is shared by BL1 and BL32 (SP_MIN).
*
* This macro will always perform reset handling, architectural initialisations
* and stack setup. The rest of the actions are optional because they might not
* be needed, depending on the context in which this macro is called. This is
* why this macro is parameterised ; each parameter allows to enable/disable
* some actions.
*
* _init_sctlr:
* Whether the macro needs to initialise the SCTLR register including
* configuring the endianness of data accesses.
*
* _warm_boot_mailbox:
* Whether the macro needs to detect the type of boot (cold/warm). The
* detection is based on the platform entrypoint address : if it is zero
* then it is a cold boot, otherwise it is a warm boot. In the latter case,
* this macro jumps on the platform entrypoint address.
*
* _secondary_cold_boot:
* Whether the macro needs to identify the CPU that is calling it: primary
* CPU or secondary CPU. The primary CPU will be allowed to carry on with
* the platform initialisations, while the secondaries will be put in a
* platform-specific state in the meantime.
*
* If the caller knows this macro will only be called by the primary CPU
* then this parameter can be defined to 0 to skip this step.
*
* _init_memory:
* Whether the macro needs to initialise the memory.
*
* _init_c_runtime:
* Whether the macro needs to initialise the C runtime environment.
*
* _exception_vectors:
* Address of the exception vectors to program in the VBAR_EL3 register.
* -----------------------------------------------------------------------------
*/
.macro el3_entrypoint_common \
_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
_init_memory, _init_c_runtime, _exception_vectors
/* Make sure we are in Secure Mode */
#if ENABLE_ASSERTIONS
ldcopr r0, SCR
tst r0, #SCR_NS_BIT
ASM_ASSERT(eq)
#endif
.if \_init_sctlr
/* -------------------------------------------------------------
* This is the initialisation of SCTLR and so must ensure that
* all fields are explicitly set rather than relying on hw. Some
* fields reset to an IMPLEMENTATION DEFINED value.
*
* SCTLR.TE: Set to zero so that exceptions to an Exception
* Level executing at PL1 are taken to A32 state.
*
* SCTLR.EE: Set the CPU endianness before doing anything that
* might involve memory reads or writes. Set to zero to select
* Little Endian.
*
* SCTLR.V: Set to zero to select the normal exception vectors
* with base address held in VBAR.
*
* SCTLR.DSSBS: Set to zero to disable speculation store bypass
* safe behaviour upon exception entry to EL3.
* -------------------------------------------------------------
*/
ldr r0, =(SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_EE_BIT | \
SCTLR_V_BIT | SCTLR_DSSBS_BIT))
stcopr r0, SCTLR
isb
.endif /* _init_sctlr */
/* Switch to monitor mode */
cps #MODE32_mon
isb
.if \_warm_boot_mailbox
/* -------------------------------------------------------------
* This code will be executed for both warm and cold resets.
* Now is the time to distinguish between the two.
* Query the platform entrypoint address and if it is not zero
* then it means it is a warm boot so jump to this address.
* -------------------------------------------------------------
*/
bl plat_get_my_entrypoint
cmp r0, #0
bxne r0
.endif /* _warm_boot_mailbox */
/* ---------------------------------------------------------------------
* Set the exception vectors (VBAR/MVBAR).
* ---------------------------------------------------------------------
*/
ldr r0, =\_exception_vectors
stcopr r0, VBAR
stcopr r0, MVBAR
isb
/* ---------------------------------------------------------------------
* It is a cold boot.
* Perform any processor specific actions upon reset e.g. cache, TLB
* invalidations etc.
* ---------------------------------------------------------------------
*/
bl reset_handler
el3_arch_init_common
.if \_secondary_cold_boot
/* -------------------------------------------------------------
* Check if this is a primary or secondary CPU cold boot.
* The primary CPU will set up the platform while the
* secondaries are placed in a platform-specific state until the
* primary CPU performs the necessary actions to bring them out
* of that state and allows entry into the OS.
* -------------------------------------------------------------
*/
bl plat_is_my_cpu_primary
cmp r0, #0
bne do_primary_cold_boot
/* This is a cold boot on a secondary CPU */
bl plat_secondary_cold_boot_setup
/* plat_secondary_cold_boot_setup() is not supposed to return */
no_ret plat_panic_handler
do_primary_cold_boot:
.endif /* _secondary_cold_boot */
/* ---------------------------------------------------------------------
* Initialize memory now. Secondary CPU initialization won't get to this
* point.
* ---------------------------------------------------------------------
*/
.if \_init_memory
bl platform_mem_init
.endif /* _init_memory */
/* ---------------------------------------------------------------------
* Init C runtime environment:
* - Zero-initialise the NOBITS sections. There are 2 of them:
* - the .bss section;
* - the coherent memory section (if any).
* - Relocate the data section from ROM to RAM, if required.
* ---------------------------------------------------------------------
*/
.if \_init_c_runtime
#if defined(IMAGE_BL32) || (defined(IMAGE_BL2) && BL2_AT_EL3)
/* -----------------------------------------------------------------
* Invalidate the RW memory used by the image. This
* includes the data and NOBITS sections. This is done to
* safeguard against possible corruption of this memory by
* dirty cache lines in a system cache as a result of use by
* an earlier boot loader stage.
* -----------------------------------------------------------------
*/
ldr r0, =__RW_START__
ldr r1, =__RW_END__
sub r1, r1, r0
bl inv_dcache_range
#endif
ldr r0, =__BSS_START__
ldr r1, =__BSS_SIZE__
bl zeromem
#if USE_COHERENT_MEM
ldr r0, =__COHERENT_RAM_START__
ldr r1, =__COHERENT_RAM_UNALIGNED_SIZE__
bl zeromem
#endif
#ifdef IMAGE_BL1
/* -----------------------------------------------------
* Copy data from ROM to RAM.
* -----------------------------------------------------
*/
ldr r0, =__DATA_RAM_START__
ldr r1, =__DATA_ROM_START__
ldr r2, =__DATA_SIZE__
bl memcpy4
#endif
.endif /* _init_c_runtime */
/* ---------------------------------------------------------------------
* Allocate a stack whose memory will be marked as Normal-IS-WBWA when
* the MMU is enabled. There is no risk of reading stale stack memory
* after enabling the MMU as only the primary CPU is running at the
* moment.
* ---------------------------------------------------------------------
*/
bl plat_set_my_stack
#if STACK_PROTECTOR_ENABLED
.if \_init_c_runtime
bl update_stack_protector_canary
.endif /* _init_c_runtime */
#endif
.endm
#endif /* EL3_COMMON_MACROS_S */