blob: 16a16b505ae221337739323d931ca8e56fc8b26c [file] [log] [blame]
/*
* Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/arm/cci.h>
#include <drivers/arm/gicv2.h>
#include <drivers/console.h>
#include <lib/bakery_lock.h>
#include <lib/mmio.h>
#include <lib/psci/psci.h>
#include <drivers/ti/uart/uart_16550.h>
#include <plat/common/platform.h>
#include <mcucfg.h>
#include <mt8516_def.h>
#include <mt_cpuxgpt.h> /* generic_timer_backup() */
#include <mtspmc.h>
#include <plat_arm.h>
#include <plat_private.h>
#include <power_tracer.h>
#include <rtc.h>
#include <scu.h>
#include <spm_hotplug.h>
#include <spm_mcdi.h>
#include <spm_suspend.h>
#define MTK_PWR_LVL0 0
#define MTK_PWR_LVL1 1
#define MTK_PWR_LVL2 2
/* Macros to read the MTK power domain state */
#define MTK_CORE_PWR_STATE(state) (state)->pwr_domain_state[MTK_PWR_LVL0]
#define MTK_CLUSTER_PWR_STATE(state) (state)->pwr_domain_state[MTK_PWR_LVL1]
#define MTK_SYSTEM_PWR_STATE(state) ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) ?\
(state)->pwr_domain_state[MTK_PWR_LVL2] : 0)
#if PSCI_EXTENDED_STATE_ID
/*
* The table storing the valid idle power states. Ensure that the
* array entries are populated in ascending order of state-id to
* enable us to use binary search during power state validation.
* The table must be terminated by a NULL entry.
*/
const unsigned int mtk_pm_idle_states[] = {
/* State-id - 0x001 */
mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
MTK_LOCAL_STATE_RET, MTK_PWR_LVL0, PSTATE_TYPE_STANDBY),
/* State-id - 0x002 */
mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
MTK_LOCAL_STATE_OFF, MTK_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
/* State-id - 0x022 */
mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_OFF,
MTK_LOCAL_STATE_OFF, MTK_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
#if PLAT_MAX_PWR_LVL > MTK_PWR_LVL1
/* State-id - 0x222 */
mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF,
MTK_LOCAL_STATE_OFF, MTK_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
#endif
0,
};
#endif
struct core_context {
unsigned long timer_data[8];
unsigned int count;
unsigned int rst;
unsigned int abt;
unsigned int brk;
};
struct cluster_context {
struct core_context core[PLATFORM_MAX_CPUS_PER_CLUSTER];
};
/*
* Top level structure to hold the complete context of a multi cluster system
*/
struct system_context {
struct cluster_context cluster[PLATFORM_CLUSTER_COUNT];
};
/*
* Top level structure which encapsulates the context of the entire system
*/
static struct system_context dormant_data[1];
static inline struct cluster_context *system_cluster(
struct system_context *system,
uint32_t clusterid)
{
return &system->cluster[clusterid];
}
static inline struct core_context *cluster_core(struct cluster_context *cluster,
uint32_t cpuid)
{
return &cluster->core[cpuid];
}
static struct cluster_context *get_cluster_data(unsigned long mpidr)
{
uint32_t clusterid;
clusterid = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS;
return system_cluster(dormant_data, clusterid);
}
static struct core_context *get_core_data(unsigned long mpidr)
{
struct cluster_context *cluster;
uint32_t cpuid;
cluster = get_cluster_data(mpidr);
cpuid = mpidr & MPIDR_CPU_MASK;
return cluster_core(cluster, cpuid);
}
static void mt_save_generic_timer(unsigned long *container)
{
uint64_t ctl;
uint64_t val;
__asm__ volatile("mrs %x0, cntkctl_el1\n\t"
"mrs %x1, cntp_cval_el0\n\t"
"stp %x0, %x1, [%2, #0]"
: "=&r" (ctl), "=&r" (val)
: "r" (container)
: "memory");
__asm__ volatile("mrs %x0, cntp_tval_el0\n\t"
"mrs %x1, cntp_ctl_el0\n\t"
"stp %x0, %x1, [%2, #16]"
: "=&r" (val), "=&r" (ctl)
: "r" (container)
: "memory");
__asm__ volatile("mrs %x0, cntv_tval_el0\n\t"
"mrs %x1, cntv_ctl_el0\n\t"
"stp %x0, %x1, [%2, #32]"
: "=&r" (val), "=&r" (ctl)
: "r" (container)
: "memory");
}
static void mt_restore_generic_timer(unsigned long *container)
{
uint64_t ctl;
uint64_t val;
__asm__ volatile("ldp %x0, %x1, [%2, #0]\n\t"
"msr cntkctl_el1, %x0\n\t"
"msr cntp_cval_el0, %x1"
: "=&r" (ctl), "=&r" (val)
: "r" (container)
: "memory");
__asm__ volatile("ldp %x0, %x1, [%2, #16]\n\t"
"msr cntp_tval_el0, %x0\n\t"
"msr cntp_ctl_el0, %x1"
: "=&r" (val), "=&r" (ctl)
: "r" (container)
: "memory");
__asm__ volatile("ldp %x0, %x1, [%2, #32]\n\t"
"msr cntv_tval_el0, %x0\n\t"
"msr cntv_ctl_el0, %x1"
: "=&r" (val), "=&r" (ctl)
: "r" (container)
: "memory");
}
static inline uint64_t read_cntpctl(void)
{
uint64_t cntpctl;
__asm__ volatile("mrs %x0, cntp_ctl_el0"
: "=r" (cntpctl) : : "memory");
return cntpctl;
}
static inline void write_cntpctl(uint64_t cntpctl)
{
__asm__ volatile("msr cntp_ctl_el0, %x0" : : "r"(cntpctl));
}
static void stop_generic_timer(void)
{
/*
* Disable the timer and mask the irq to prevent
* suprious interrupts on this cpu interface. It
* will bite us when we come back if we don't. It
* will be replayed on the inbound cluster.
*/
uint64_t cntpctl = read_cntpctl();
write_cntpctl(clr_cntp_ctl_enable(cntpctl));
}
static void mt_cpu_save(unsigned long mpidr)
{
struct core_context *core;
core = get_core_data(mpidr);
mt_save_generic_timer(core->timer_data);
/* disable timer irq, and upper layer should enable it again. */
stop_generic_timer();
}
static void mt_cpu_restore(unsigned long mpidr)
{
struct core_context *core;
core = get_core_data(mpidr);
mt_restore_generic_timer(core->timer_data);
}
static void mt_platform_save_context(unsigned long mpidr)
{
/* mcusys_save_context: */
mt_cpu_save(mpidr);
}
static void mt_platform_restore_context(unsigned long mpidr)
{
/* mcusys_restore_context: */
mt_cpu_restore(mpidr);
}
static void plat_cpu_standby(plat_local_state_t cpu_state)
{
unsigned int scr;
scr = read_scr_el3();
write_scr_el3(scr | SCR_IRQ_BIT);
isb();
dsb();
wfi();
write_scr_el3(scr);
}
/*******************************************************************************
* MTK_platform handler called when an affinity instance is about to be turned
* on. The level and mpidr determine the affinity instance.
******************************************************************************/
static uintptr_t secure_entrypoint;
static int plat_power_domain_on(unsigned long mpidr)
{
int rc = PSCI_E_SUCCESS;
unsigned long cpu_id;
unsigned long cluster_id;
uintptr_t rv;
cpu_id = mpidr & MPIDR_CPU_MASK;
cluster_id = mpidr & MPIDR_CLUSTER_MASK;
if (cluster_id)
rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
else
rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
mmio_write_32(rv, secure_entrypoint);
INFO("mt_on[%ld:%ld], entry %x\n",
cluster_id, cpu_id, mmio_read_32(rv));
// spm_hotplug_on(mpidr);
rc = spmc_cpu_corex_onoff(plat_core_pos_by_mpidr(mpidr), STA_POWER_ON, MODE_SPMC_HW);
return rc;
}
/*******************************************************************************
* MTK_platform handler called when an affinity instance is about to be turned
* off. The level and mpidr determine the affinity instance. The 'state' arg.
* allows the platform to decide whether the cluster is being turned off and
* take apt actions.
*
* CAUTION: This function is called with coherent stacks so that caches can be
* turned off, flushed and coherency disabled. There is no guarantee that caches
* will remain turned on across calls to this function as each affinity level is
* dealt with. So do not write & read global variables across calls. It will be
* wise to do flush a write to the global to prevent unpredictable results.
******************************************************************************/
static void plat_power_domain_off(const psci_power_state_t *state)
{
unsigned long mpidr = read_mpidr_el1();
spmc_cpu_corex_onoff(plat_core_pos_by_mpidr(mpidr), STA_POWER_DOWN, MODE_AUTO_SHUT_OFF);
/* Prevent interrupts from spuriously waking up this cpu */
gicv2_cpuif_disable();
//spm_hotplug_off(mpidr);
trace_power_flow(mpidr, CPU_DOWN);
if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
/* Disable coherency if this cluster is to be turned off */
plat_cci_disable();
trace_power_flow(mpidr, CLUSTER_DOWN);
}
}
/*******************************************************************************
* MTK_platform handler called when an affinity instance is about to be
* suspended. The level and mpidr determine the affinity instance. The 'state'
* arg. allows the platform to decide whether the cluster is being turned off
* and take apt actions.
*
* CAUTION: This function is called with coherent stacks so that caches can be
* turned off, flushed and coherency disabled. There is no guarantee that caches
* will remain turned on across calls to this function as each affinity level is
* dealt with. So do not write & read global variables across calls. It will be
* wise to do flush a write to the global to prevent unpredictable results.
******************************************************************************/
static void plat_power_domain_suspend(const psci_power_state_t *state)
{
unsigned long mpidr = read_mpidr_el1();
unsigned long cluster_id;
unsigned long cpu_id;
uintptr_t rv;
cpu_id = mpidr & MPIDR_CPU_MASK;
cluster_id = mpidr & MPIDR_CLUSTER_MASK;
if (cluster_id)
rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
else
rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;
mmio_write_32(rv, secure_entrypoint);
if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL0);
if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL1);
}
mt_platform_save_context(mpidr);
/* Perform the common cluster specific operations */
if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
/* Disable coherency if this cluster is to be turned off */
plat_cci_disable();
}
if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
disable_scu(mpidr);
generic_timer_backup();
spm_system_suspend();
/* Prevent interrupts from spuriously waking up this cpu */
gicv2_cpuif_disable();
}
}
/*******************************************************************************
* MTK_platform handler called when an affinity instance has just been powered
* on after being turned off earlier. The level and mpidr determine the affinity
* instance. The 'state' arg. allows the platform to decide whether the cluster
* was turned off prior to wakeup and do what's necessary to setup it up
* correctly.
******************************************************************************/
void mtk_system_pwr_domain_resume(void);
static void plat_power_domain_on_finish(const psci_power_state_t *state)
{
unsigned long mpidr = read_mpidr_el1();
assert(state->pwr_domain_state[MPIDR_AFFLVL0] == MTK_LOCAL_STATE_OFF);
if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
mtk_system_pwr_domain_resume();
if (state->pwr_domain_state[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF) {
plat_cci_enable();
trace_power_flow(mpidr, CLUSTER_UP);
}
if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
return;
/* Enable the gic cpu interface */
gicv2_cpuif_enable();
gicv2_pcpu_distif_init();
trace_power_flow(mpidr, CPU_UP);
}
/*******************************************************************************
* MTK_platform handler called when an affinity instance has just been powered
* on after having been suspended earlier. The level and mpidr determine the
* affinity instance.
******************************************************************************/
static void plat_power_domain_suspend_finish(const psci_power_state_t *state)
{
unsigned long mpidr = read_mpidr_el1();
if (state->pwr_domain_state[MTK_PWR_LVL0] == MTK_LOCAL_STATE_RET)
return;
if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
/* Enable the gic cpu interface */
plat_arm_gic_init();
spm_system_suspend_finish();
enable_scu(mpidr);
}
/* Perform the common cluster specific operations */
if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
/* Enable coherency if this cluster was off */
plat_cci_enable();
}
mt_platform_restore_context(mpidr);
if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL0);
if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL1);
}
gicv2_pcpu_distif_init();
}
static void plat_get_sys_suspend_power_state(psci_power_state_t *req_state)
{
assert(PLAT_MAX_PWR_LVL >= 2);
for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++)
req_state->pwr_domain_state[i] = MTK_LOCAL_STATE_OFF;
}
/*******************************************************************************
* MTK handlers to shutdown/reboot the system
******************************************************************************/
static void __dead2 plat_system_off(void)
{
INFO("MTK System Off\n");
rtc_bbpu_power_down();
wfi();
ERROR("MTK System Off: operation not handled.\n");
panic();
}
static void __dead2 plat_system_reset(void)
{
/* Write the System Configuration Control Register */
INFO("MTK System Reset\n");
mmio_clrsetbits_32(MTK_WDT_BASE,
(MTK_WDT_MODE_DUAL_MODE | MTK_WDT_MODE_IRQ),
MTK_WDT_MODE_KEY);
mmio_setbits_32(MTK_WDT_BASE, (MTK_WDT_MODE_KEY | MTK_WDT_MODE_EXTEN));
mmio_setbits_32(MTK_WDT_SWRST, MTK_WDT_SWRST_KEY);
wfi();
ERROR("MTK System Reset: operation not handled.\n");
panic();
}
#if !PSCI_EXTENDED_STATE_ID
static int plat_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
int pstate = psci_get_pstate_type(power_state);
int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
int i;
assert(req_state);
if (pwr_lvl > PLAT_MAX_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
/* Sanity check the requested state */
if (pstate == PSTATE_TYPE_STANDBY) {
/*
* It's possible to enter standby only on power level 0
* Ignore any other power level.
*/
if (pwr_lvl != 0)
return PSCI_E_INVALID_PARAMS;
req_state->pwr_domain_state[MTK_PWR_LVL0] =
MTK_LOCAL_STATE_RET;
} else {
for (i = 0; i <= pwr_lvl; i++)
req_state->pwr_domain_state[i] =
MTK_LOCAL_STATE_OFF;
}
/*
* We expect the 'state id' to be zero.
*/
if (psci_get_pstate_id(power_state))
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
#else
int plat_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
unsigned int state_id;
int i;
assert(req_state);
/*
* Currently we are using a linear search for finding the matching
* entry in the idle power state array. This can be made a binary
* search if the number of entries justify the additional complexity.
*/
for (i = 0; !!mtk_pm_idle_states[i]; i++) {
if (power_state == mtk_pm_idle_states[i])
break;
}
/* Return error if entry not found in the idle state array */
if (!mtk_pm_idle_states[i])
return PSCI_E_INVALID_PARAMS;
i = 0;
state_id = psci_get_pstate_id(power_state);
/* Parse the State ID and populate the state info parameter */
while (state_id) {
req_state->pwr_domain_state[i++] = state_id &
MTK_LOCAL_PSTATE_MASK;
state_id >>= MTK_LOCAL_PSTATE_WIDTH;
}
return PSCI_E_SUCCESS;
}
#endif
void mtk_system_pwr_domain_resume(void)
{
static console_16550_t console;
console_16550_register(MT8516_UART0_BASE, MT8516_UART_CLOCK, MT8516_BAUDRATE, &console);
/* Assert system power domain is available on the platform */
assert(PLAT_MAX_PWR_LVL >= MTK_PWR_LVL2);
plat_arm_gic_init();
}
static const plat_psci_ops_t plat_plat_pm_ops = {
.cpu_standby = plat_cpu_standby,
.pwr_domain_on = plat_power_domain_on,
.pwr_domain_on_finish = plat_power_domain_on_finish,
.pwr_domain_off = plat_power_domain_off,
.pwr_domain_suspend = plat_power_domain_suspend,
.pwr_domain_suspend_finish = plat_power_domain_suspend_finish,
.system_off = plat_system_off,
.system_reset = plat_system_reset,
.validate_power_state = plat_validate_power_state,
.get_sys_suspend_power_state = plat_get_sys_suspend_power_state,
};
int plat_setup_psci_ops(uintptr_t sec_entrypoint,
const plat_psci_ops_t **psci_ops)
{
*psci_ops = &plat_plat_pm_ops;
secure_entrypoint = sec_entrypoint;
return 0;
}
/*
* The PSCI generic code uses this API to let the platform participate in state
* coordination during a power management operation. It compares the platform
* specific local power states requested by each cpu for a given power domain
* and returns the coordinated target power state that the domain should
* enter. A platform assigns a number to a local power state. This default
* implementation assumes that the platform assigns these numbers in order of
* increasing depth of the power state i.e. for two power states X & Y, if X < Y
* then X represents a shallower power state than Y. As a result, the
* coordinated target local power state for a power domain will be the minimum
* of the requested local power states.
*/
plat_local_state_t plat_get_target_pwr_state(unsigned int lvl,
const plat_local_state_t *states,
unsigned int ncpu)
{
plat_local_state_t target = PLAT_MAX_OFF_STATE, temp;
assert(ncpu);
do {
temp = *states++;
if (temp < target)
target = temp;
} while (--ncpu);
return target;
}