blob: 4212eca1d7485e93b4230babce7ed0ff6e0f375c [file] [log] [blame]
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include "ivc.h"
/*
* IVC channel reset protocol.
*
* Each end uses its tx_channel.state to indicate its synchronization state.
*/
enum {
/*
* This value is zero for backwards compatibility with services that
* assume channels to be initially zeroed. Such channels are in an
* initially valid state, but cannot be asynchronously reset, and must
* maintain a valid state at all times.
*
* The transmitting end can enter the established state from the sync or
* ack state when it observes the receiving endpoint in the ack or
* established state, indicating that has cleared the counters in our
* rx_channel.
*/
ivc_state_established = U(0),
/*
* If an endpoint is observed in the sync state, the remote endpoint is
* allowed to clear the counters it owns asynchronously with respect to
* the current endpoint. Therefore, the current endpoint is no longer
* allowed to communicate.
*/
ivc_state_sync = U(1),
/*
* When the transmitting end observes the receiving end in the sync
* state, it can clear the w_count and r_count and transition to the ack
* state. If the remote endpoint observes us in the ack state, it can
* return to the established state once it has cleared its counters.
*/
ivc_state_ack = U(2)
};
/*
* This structure is divided into two-cache aligned parts, the first is only
* written through the tx_channel pointer, while the second is only written
* through the rx_channel pointer. This delineates ownership of the cache lines,
* which is critical to performance and necessary in non-cache coherent
* implementations.
*/
struct ivc_channel_header {
struct {
/* fields owned by the transmitting end */
uint32_t w_count;
uint32_t state;
uint32_t w_rsvd[IVC_CHHDR_TX_FIELDS - 2];
};
struct {
/* fields owned by the receiving end */
uint32_t r_count;
uint32_t r_rsvd[IVC_CHHDR_RX_FIELDS - 1];
};
};
static inline bool ivc_channel_empty(const struct ivc *ivc,
volatile const struct ivc_channel_header *ch)
{
/*
* This function performs multiple checks on the same values with
* security implications, so sample the counters' current values in
* shared memory to ensure that these checks use the same values.
*/
uint32_t wr_count = ch->w_count;
uint32_t rd_count = ch->r_count;
bool ret = false;
(void)ivc;
/*
* Perform an over-full check to prevent denial of service attacks where
* a server could be easily fooled into believing that there's an
* extremely large number of frames ready, since receivers are not
* expected to check for full or over-full conditions.
*
* Although the channel isn't empty, this is an invalid case caused by
* a potentially malicious peer, so returning empty is safer, because it
* gives the impression that the channel has gone silent.
*/
if (((wr_count - rd_count) > ivc->nframes) || (wr_count == rd_count)) {
ret = true;
}
return ret;
}
static inline bool ivc_channel_full(const struct ivc *ivc,
volatile const struct ivc_channel_header *ch)
{
uint32_t wr_count = ch->w_count;
uint32_t rd_count = ch->r_count;
(void)ivc;
/*
* Invalid cases where the counters indicate that the queue is over
* capacity also appear full.
*/
return ((wr_count - rd_count) >= ivc->nframes);
}
static inline uint32_t ivc_channel_avail_count(const struct ivc *ivc,
volatile const struct ivc_channel_header *ch)
{
uint32_t wr_count = ch->w_count;
uint32_t rd_count = ch->r_count;
(void)ivc;
/*
* This function isn't expected to be used in scenarios where an
* over-full situation can lead to denial of service attacks. See the
* comment in ivc_channel_empty() for an explanation about special
* over-full considerations.
*/
return (wr_count - rd_count);
}
static inline void ivc_advance_tx(struct ivc *ivc)
{
ivc->tx_channel->w_count++;
if (ivc->w_pos == (ivc->nframes - (uint32_t)1U)) {
ivc->w_pos = 0U;
} else {
ivc->w_pos++;
}
}
static inline void ivc_advance_rx(struct ivc *ivc)
{
ivc->rx_channel->r_count++;
if (ivc->r_pos == (ivc->nframes - (uint32_t)1U)) {
ivc->r_pos = 0U;
} else {
ivc->r_pos++;
}
}
static inline int32_t ivc_check_read(const struct ivc *ivc)
{
/*
* tx_channel->state is set locally, so it is not synchronized with
* state from the remote peer. The remote peer cannot reset its
* transmit counters until we've acknowledged its synchronization
* request, so no additional synchronization is required because an
* asynchronous transition of rx_channel->state to ivc_state_ack is not
* allowed.
*/
if (ivc->tx_channel->state != ivc_state_established) {
return -ECONNRESET;
}
/*
* Avoid unnecessary invalidations when performing repeated accesses to
* an IVC channel by checking the old queue pointers first.
* Synchronization is only necessary when these pointers indicate empty
* or full.
*/
if (!ivc_channel_empty(ivc, ivc->rx_channel)) {
return 0;
}
return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
}
static inline int32_t ivc_check_write(const struct ivc *ivc)
{
if (ivc->tx_channel->state != ivc_state_established) {
return -ECONNRESET;
}
if (!ivc_channel_full(ivc, ivc->tx_channel)) {
return 0;
}
return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
}
bool tegra_ivc_can_read(const struct ivc *ivc)
{
return ivc_check_read(ivc) == 0;
}
bool tegra_ivc_can_write(const struct ivc *ivc)
{
return ivc_check_write(ivc) == 0;
}
bool tegra_ivc_tx_empty(const struct ivc *ivc)
{
return ivc_channel_empty(ivc, ivc->tx_channel);
}
static inline uintptr_t calc_frame_offset(uint32_t frame_index,
uint32_t frame_size, uint32_t frame_offset)
{
return ((uintptr_t)frame_index * (uintptr_t)frame_size) +
(uintptr_t)frame_offset;
}
static void *ivc_frame_pointer(const struct ivc *ivc,
volatile const struct ivc_channel_header *ch,
uint32_t frame)
{
assert(frame < ivc->nframes);
return (void *)((uintptr_t)(&ch[1]) +
calc_frame_offset(frame, ivc->frame_size, 0));
}
int32_t tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read)
{
const void *src;
int32_t result;
if (buf == NULL) {
return -EINVAL;
}
if (max_read > ivc->frame_size) {
return -E2BIG;
}
result = ivc_check_read(ivc);
if (result != 0) {
return result;
}
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
dmbish();
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
(void)memcpy(buf, src, max_read);
ivc_advance_rx(ivc);
/*
* Ensure our write to r_pos occurs before our read from w_pos.
*/
dmbish();
/*
* Notify only upon transition from full to non-full.
* The available count can only asynchronously increase, so the
* worst possible side-effect will be a spurious notification.
*/
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == (ivc->nframes - (uint32_t)1U)) {
ivc->notify(ivc);
}
return (int32_t)max_read;
}
/* directly peek at the next frame rx'ed */
void *tegra_ivc_read_get_next_frame(const struct ivc *ivc)
{
if (ivc_check_read(ivc) != 0) {
return NULL;
}
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
dmbld();
return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
}
int32_t tegra_ivc_read_advance(struct ivc *ivc)
{
/*
* No read barriers or synchronization here: the caller is expected to
* have already observed the channel non-empty. This check is just to
* catch programming errors.
*/
int32_t result = ivc_check_read(ivc);
if (result != 0) {
return result;
}
ivc_advance_rx(ivc);
/*
* Ensure our write to r_pos occurs before our read from w_pos.
*/
dmbish();
/*
* Notify only upon transition from full to non-full.
* The available count can only asynchronously increase, so the
* worst possible side-effect will be a spurious notification.
*/
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == (ivc->nframes - (uint32_t)1U)) {
ivc->notify(ivc);
}
return 0;
}
int32_t tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size)
{
void *p;
int32_t result;
if ((buf == NULL) || (ivc == NULL)) {
return -EINVAL;
}
if (size > ivc->frame_size) {
return -E2BIG;
}
result = ivc_check_write(ivc);
if (result != 0) {
return result;
}
p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
(void)memset(p, 0, ivc->frame_size);
(void)memcpy(p, buf, size);
/*
* Ensure that updated data is visible before the w_pos counter
* indicates that it is ready.
*/
dmbst();
ivc_advance_tx(ivc);
/*
* Ensure our write to w_pos occurs before our read from r_pos.
*/
dmbish();
/*
* Notify only upon transition from empty to non-empty.
* The available count can only asynchronously decrease, so the
* worst possible side-effect will be a spurious notification.
*/
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1U) {
ivc->notify(ivc);
}
return (int32_t)size;
}
/* directly poke at the next frame to be tx'ed */
void *tegra_ivc_write_get_next_frame(const struct ivc *ivc)
{
if (ivc_check_write(ivc) != 0) {
return NULL;
}
return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
}
/* advance the tx buffer */
int32_t tegra_ivc_write_advance(struct ivc *ivc)
{
int32_t result = ivc_check_write(ivc);
if (result != 0) {
return result;
}
/*
* Order any possible stores to the frame before update of w_pos.
*/
dmbst();
ivc_advance_tx(ivc);
/*
* Ensure our write to w_pos occurs before our read from r_pos.
*/
dmbish();
/*
* Notify only upon transition from empty to non-empty.
* The available count can only asynchronously decrease, so the
* worst possible side-effect will be a spurious notification.
*/
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == (uint32_t)1U) {
ivc->notify(ivc);
}
return 0;
}
void tegra_ivc_channel_reset(const struct ivc *ivc)
{
ivc->tx_channel->state = ivc_state_sync;
ivc->notify(ivc);
}
/*
* ===============================================================
* IVC State Transition Table - see tegra_ivc_channel_notified()
* ===============================================================
*
* local remote action
* ----- ------ -----------------------------------
* SYNC EST <none>
* SYNC ACK reset counters; move to EST; notify
* SYNC SYNC reset counters; move to ACK; notify
* ACK EST move to EST; notify
* ACK ACK move to EST; notify
* ACK SYNC reset counters; move to ACK; notify
* EST EST <none>
* EST ACK <none>
* EST SYNC reset counters; move to ACK; notify
*
* ===============================================================
*/
int32_t tegra_ivc_channel_notified(struct ivc *ivc)
{
uint32_t peer_state;
/* Copy the receiver's state out of shared memory. */
peer_state = ivc->rx_channel->state;
if (peer_state == (uint32_t)ivc_state_sync) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
dmbld();
/*
* Reset tx_channel counters. The remote end is in the SYNC
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0U;
ivc->rx_channel->r_count = 0U;
ivc->w_pos = 0U;
ivc->r_pos = 0U;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
dmbst();
/*
* Move to ACK state. We have just cleared our counters, so it
* is now safe for the remote end to start using these values.
*/
ivc->tx_channel->state = ivc_state_ack;
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if ((ivc->tx_channel->state == (uint32_t)ivc_state_sync) &&
(peer_state == (uint32_t)ivc_state_ack)) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
dmbld();
/*
* Reset tx_channel counters. The remote end is in the ACK
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0U;
ivc->rx_channel->r_count = 0U;
ivc->w_pos = 0U;
ivc->r_pos = 0U;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
dmbst();
/*
* Move to ESTABLISHED state. We know that the remote end has
* already cleared its counters, so it is safe to start
* writing/reading on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if (ivc->tx_channel->state == (uint32_t)ivc_state_ack) {
/*
* At this point, we have observed the peer to be in either
* the ACK or ESTABLISHED state. Next, order observation of
* peer state before storing to tx_channel.
*/
dmbld();
/*
* Move to ESTABLISHED state. We know that we have previously
* cleared our counters, and we know that the remote end has
* cleared its counters, so it is safe to start writing/reading
* on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else {
/*
* There is no need to handle any further action. Either the
* channel is already fully established, or we are waiting for
* the remote end to catch up with our current state. Refer
* to the diagram in "IVC State Transition Table" above.
*/
}
return ((ivc->tx_channel->state == (uint32_t)ivc_state_established) ? 0 : -EAGAIN);
}
size_t tegra_ivc_align(size_t size)
{
return (size + (IVC_ALIGN - 1U)) & ~(IVC_ALIGN - 1U);
}
size_t tegra_ivc_total_queue_size(size_t queue_size)
{
if ((queue_size & (IVC_ALIGN - 1U)) != 0U) {
ERROR("queue_size (%d) must be %d-byte aligned\n",
(int32_t)queue_size, IVC_ALIGN);
return 0;
}
return queue_size + sizeof(struct ivc_channel_header);
}
static int32_t check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2,
uint32_t nframes, uint32_t frame_size)
{
assert((offsetof(struct ivc_channel_header, w_count)
& (IVC_ALIGN - 1U)) == 0U);
assert((offsetof(struct ivc_channel_header, r_count)
& (IVC_ALIGN - 1U)) == 0U);
assert((sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1U)) == 0U);
if (((uint64_t)nframes * (uint64_t)frame_size) >= 0x100000000ULL) {
ERROR("nframes * frame_size overflows\n");
return -EINVAL;
}
/*
* The headers must at least be aligned enough for counters
* to be accessed atomically.
*/
if ((queue_base1 & (IVC_ALIGN - 1U)) != 0U) {
ERROR("ivc channel start not aligned: %lx\n", queue_base1);
return -EINVAL;
}
if ((queue_base2 & (IVC_ALIGN - 1U)) != 0U) {
ERROR("ivc channel start not aligned: %lx\n", queue_base2);
return -EINVAL;
}
if ((frame_size & (IVC_ALIGN - 1U)) != 0U) {
ERROR("frame size not adequately aligned: %u\n",
frame_size);
return -EINVAL;
}
if (queue_base1 < queue_base2) {
if ((queue_base1 + ((uint64_t)frame_size * nframes)) > queue_base2) {
ERROR("queue regions overlap: %lx + %x, %x\n",
queue_base1, frame_size,
frame_size * nframes);
return -EINVAL;
}
} else {
if ((queue_base2 + ((uint64_t)frame_size * nframes)) > queue_base1) {
ERROR("queue regions overlap: %lx + %x, %x\n",
queue_base2, frame_size,
frame_size * nframes);
return -EINVAL;
}
}
return 0;
}
int32_t tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base,
uint32_t nframes, uint32_t frame_size,
ivc_notify_function notify)
{
int32_t result;
/* sanity check input params */
if ((ivc == NULL) || (notify == NULL)) {
return -EINVAL;
}
result = check_ivc_params(rx_base, tx_base, nframes, frame_size);
if (result != 0) {
return result;
}
/*
* All sizes that can be returned by communication functions should
* fit in a 32-bit integer.
*/
if (frame_size > (1u << 31)) {
return -E2BIG;
}
ivc->rx_channel = (struct ivc_channel_header *)rx_base;
ivc->tx_channel = (struct ivc_channel_header *)tx_base;
ivc->notify = notify;
ivc->frame_size = frame_size;
ivc->nframes = nframes;
ivc->w_pos = 0U;
ivc->r_pos = 0U;
INFO("%s: done\n", __func__);
return 0;
}