blob: a57bc11b9c86f1db287970b36f11d5258798af8a [file] [log] [blame]
/*
* Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <denver.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>
#include <mce_private.h>
#include <t18x_ari.h>
/*******************************************************************************
* Register offsets for ARI request/results
******************************************************************************/
#define ARI_REQUEST 0x0U
#define ARI_REQUEST_EVENT_MASK 0x4U
#define ARI_STATUS 0x8U
#define ARI_REQUEST_DATA_LO 0xCU
#define ARI_REQUEST_DATA_HI 0x10U
#define ARI_RESPONSE_DATA_LO 0x14U
#define ARI_RESPONSE_DATA_HI 0x18U
/* Status values for the current request */
#define ARI_REQ_PENDING 1U
#define ARI_REQ_ONGOING 3U
#define ARI_REQUEST_VALID_BIT (1U << 8)
#define ARI_EVT_MASK_STANDBYWFI_BIT (1U << 7)
/* default timeout (us) to wait for ARI completion */
#define ARI_MAX_RETRY_COUNT U(2000000)
/*******************************************************************************
* ARI helper functions
******************************************************************************/
static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
{
return mmio_read_32((uint64_t)ari_base + (uint64_t)reg);
}
static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
{
mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val);
}
static inline uint32_t ari_get_request_low(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
}
static inline uint32_t ari_get_request_high(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
}
static inline uint32_t ari_get_response_low(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
}
static inline uint32_t ari_get_response_high(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
}
static inline void ari_clobber_response(uint32_t ari_base)
{
ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
}
static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
uint32_t lo, uint32_t hi)
{
uint32_t retries = (uint32_t)ARI_MAX_RETRY_COUNT;
uint32_t status;
int32_t ret = 0;
/* program the request, event_mask, hi and lo registers */
ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
/*
* For commands that have an event trigger, we should bypass
* ARI_STATUS polling, since MCE is waiting for SW to trigger
* the event.
*/
if (evt_mask != 0U) {
ret = 0;
} else {
/* For shutdown/reboot commands, we dont have to check for timeouts */
if ((req == TEGRA_ARI_MISC_CCPLEX) &&
((lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
(lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
ret = 0;
} else {
/*
* Wait for the command response for not more than the timeout
*/
while (retries != 0U) {
/* read the command status */
status = ari_read_32(ari_base, ARI_STATUS);
if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) {
break;
}
/* delay 1 us */
udelay(1);
/* decrement the retry count */
retries--;
}
/* assert if the command timed out */
if (retries == 0U) {
ERROR("ARI request timed out: req %d on CPU %d\n",
req, plat_my_core_pos());
assert(retries != 0U);
}
}
}
return ret;
}
int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
int32_t ret = 0;
/* check for allowed power state */
if ((state != TEGRA_ARI_CORE_C0) &&
(state != TEGRA_ARI_CORE_C1) &&
(state != TEGRA_ARI_CORE_C6) &&
(state != TEGRA_ARI_CORE_C7)) {
ERROR("%s: unknown cstate (%d)\n", __func__, state);
ret = EINVAL;
} else {
/* clean the previous response state */
ari_clobber_response(ari_base);
/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
(uint32_t)TEGRA_ARI_ENTER_CSTATE, state, wake_time);
}
return ret;
}
int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
uint8_t update_wake_mask)
{
uint64_t val = 0U;
/* clean the previous response state */
ari_clobber_response(ari_base);
/* update CLUSTER_CSTATE? */
if (cluster != 0U) {
val |= (cluster & CLUSTER_CSTATE_MASK) |
CLUSTER_CSTATE_UPDATE_BIT;
}
/* update CCPLEX_CSTATE? */
if (ccplex != 0U) {
val |= ((ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT) |
CCPLEX_CSTATE_UPDATE_BIT;
}
/* update SYSTEM_CSTATE? */
if (system != 0U) {
val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) |
(((uint64_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
SYSTEM_CSTATE_UPDATE_BIT);
}
/* update wake mask value? */
if (update_wake_mask != 0U) {
val |= CSTATE_WAKE_MASK_UPDATE_BIT;
}
/* set the updated cstate info */
return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_UPDATE_CSTATE_INFO,
(uint32_t)val, wake_mask);
}
int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
{
int32_t ret = 0;
/* sanity check crossover type */
if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
(type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) {
ret = EINVAL;
} else {
/* clean the previous response state */
ari_clobber_response(ari_base);
/* update crossover threshold time */
ret = ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_UPDATE_CROSSOVER, type, time);
}
return ret;
}
uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
{
int32_t ret;
uint64_t result;
/* sanity check crossover type */
if (state == 0U) {
result = EINVAL;
} else {
/* clean the previous response state */
ari_clobber_response(ari_base);
ret = ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_CSTATE_STATS, state, 0U);
if (ret != 0) {
result = EINVAL;
} else {
result = (uint64_t)ari_get_response_low(ari_base);
}
}
return result;
}
int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
/* write the cstate stats */
return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_WRITE_CSTATE_STATS,
state, stats);
}
uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
{
uint64_t resp;
int32_t ret;
uint32_t local_data = data;
/* clean the previous response state */
ari_clobber_response(ari_base);
/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
if (cmd != TEGRA_ARI_MISC_ECHO) {
local_data = 0U;
}
ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MISC, cmd, local_data);
if (ret != 0) {
resp = (uint64_t)ret;
} else {
/* get the command response */
resp = ari_get_response_low(ari_base);
resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
}
return resp;
}
int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
int32_t ret;
uint32_t result;
/* clean the previous response state */
ari_clobber_response(ari_base);
ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_IS_CCX_ALLOWED,
state & 0x7U, wake_time);
if (ret != 0) {
ERROR("%s: failed (%d)\n", __func__, ret);
result = 0U;
} else {
result = ari_get_response_low(ari_base) & 0x1U;
}
/* 1 = CCx allowed, 0 = CCx not allowed */
return (int32_t)result;
}
int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
int32_t ret, result;
/* check for allowed power state */
if ((state != TEGRA_ARI_CORE_C0) && (state != TEGRA_ARI_CORE_C1) &&
(state != TEGRA_ARI_CORE_C6) && (state != TEGRA_ARI_CORE_C7)) {
ERROR("%s: unknown cstate (%d)\n", __func__, state);
result = EINVAL;
} else {
/* clean the previous response state */
ari_clobber_response(ari_base);
ret = ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_IS_SC7_ALLOWED, state, wake_time);
if (ret != 0) {
ERROR("%s: failed (%d)\n", __func__, ret);
result = 0;
} else {
/* 1 = SC7 allowed, 0 = SC7 not allowed */
result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0;
}
}
return result;
}
int32_t ari_online_core(uint32_t ari_base, uint32_t core)
{
uint64_t cpu = read_mpidr() & (MPIDR_CPU_MASK);
uint64_t cluster = (read_mpidr() & (MPIDR_CLUSTER_MASK)) >>
(MPIDR_AFFINITY_BITS);
uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
int32_t ret;
/* construct the current CPU # */
cpu |= (cluster << 2);
/* sanity check target core id */
if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) {
ERROR("%s: unsupported core id (%d)\n", __func__, core);
ret = EINVAL;
} else {
/*
* The Denver cluster has 2 CPUs only - 0, 1.
*/
if ((impl == DENVER_IMPL) && ((core == 2U) || (core == 3U))) {
ERROR("%s: unknown core id (%d)\n", __func__, core);
ret = EINVAL;
} else {
/* clean the previous response state */
ari_clobber_response(ari_base);
ret = ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_ONLINE_CORE, core, 0U);
}
}
return ret;
}
int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
{
uint32_t val;
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* If the enable bit is cleared, Auto-CC3 will be disabled by setting
* the SW visible voltage/frequency request registers for all non
* floorswept cores valid independent of StandbyWFI and disabling
* the IDLE voltage/frequency request register. If set, Auto-CC3
* will be enabled by setting the ARM SW visible voltage/frequency
* request registers for all non floorswept cores to be enabled by
* StandbyWFI or the equivalent signal, and always keeping the IDLE
* voltage/frequency request register enabled.
*/
val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U));
return ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_CC3_CTRL, val, 0U);
}
int32_t ari_reset_vector_update(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* Need to program the CPU reset vector one time during cold boot
* and SC7 exit
*/
(void)ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U);
return 0;
}
int32_t ari_roc_flush_cache_trbits(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
return ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS, 0U, 0U);
}
int32_t ari_roc_flush_cache(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
return ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_ONLY, 0U, 0U);
}
int32_t ari_roc_clean_cache(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
return ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_ROC_CLEAN_CACHE_ONLY, 0U, 0U);
}
uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data)
{
uint64_t mca_arg_data, result = 0;
uint32_t resp_lo, resp_hi;
uint32_t mca_arg_err, mca_arg_finish;
int32_t ret;
/* Set data (write) */
mca_arg_data = (data != NULL) ? *data : 0ULL;
/* Set command */
ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO);
ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI);
ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MCA,
(uint32_t)mca_arg_data,
(uint32_t)(mca_arg_data >> 32U));
if (ret == 0) {
resp_lo = ari_get_response_low(ari_base);
resp_hi = ari_get_response_high(ari_base);
mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK;
mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) &
MCA_ARG_FINISH_MASK;
if (mca_arg_finish == 0U) {
result = (uint64_t)mca_arg_err;
} else {
if (data != NULL) {
resp_lo = ari_get_request_low(ari_base);
resp_hi = ari_get_request_high(ari_base);
*data = ((uint64_t)resp_hi << 32U) |
(uint64_t)resp_lo;
}
}
}
return result;
}
int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
{
int32_t ret = 0;
/* sanity check GSC ID */
if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX) {
ret = EINVAL;
} else {
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* The MCE code will read the GSC carveout value, corrseponding to
* the ID, from the MC registers and update the internal GSC registers
* of the CCPLEX.
*/
(void)ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U);
}
return ret;
}
void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* The MCE will shutdown or restart the entire system
*/
(void)ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_MISC_CCPLEX, state_idx, 0U);
}
int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req,
uint64_t *data)
{
int32_t ret, result;
uint32_t val, req_status;
uint8_t req_cmd;
req_cmd = (uint8_t)(req & UNCORE_PERFMON_CMD_MASK);
/* clean the previous response state */
ari_clobber_response(ari_base);
/* sanity check input parameters */
if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) {
ERROR("invalid parameters\n");
result = EINVAL;
} else {
/*
* For "write" commands get the value that has to be written
* to the uncore perfmon registers
*/
val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ?
(uint32_t)*data : 0U;
ret = ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_PERFMON, val, (uint32_t)req);
if (ret != 0) {
result = ret;
} else {
/* read the command status value */
req_status = ari_get_response_high(ari_base) &
UNCORE_PERFMON_RESP_STATUS_MASK;
/*
* For "read" commands get the data from the uncore
* perfmon registers
*/
req_status &= UNCORE_PERFMON_RESP_STATUS_MASK;
if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) {
*data = ari_get_response_low(ari_base);
}
result = (int32_t)req_status;
}
}
return result;
}
void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
{
/*
* This invokes the ARI_MISC_CCPLEX commands. This can be
* used to enable/disable coresight clock gating.
*/
if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
(value > 1U))) {
ERROR("%s: invalid parameters \n", __func__);
} else {
/* clean the previous response state */
ari_clobber_response(ari_base);
(void)ari_request_wait(ari_base, 0U,
(uint32_t)TEGRA_ARI_MISC_CCPLEX, index, value);
}
}