| /* |
| * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <errno.h> |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include <drivers/delay_timer.h> |
| #include <denver.h> |
| #include <lib/mmio.h> |
| #include <plat/common/platform.h> |
| |
| #include <mce_private.h> |
| #include <t18x_ari.h> |
| |
| /******************************************************************************* |
| * Register offsets for ARI request/results |
| ******************************************************************************/ |
| #define ARI_REQUEST 0x0U |
| #define ARI_REQUEST_EVENT_MASK 0x4U |
| #define ARI_STATUS 0x8U |
| #define ARI_REQUEST_DATA_LO 0xCU |
| #define ARI_REQUEST_DATA_HI 0x10U |
| #define ARI_RESPONSE_DATA_LO 0x14U |
| #define ARI_RESPONSE_DATA_HI 0x18U |
| |
| /* Status values for the current request */ |
| #define ARI_REQ_PENDING 1U |
| #define ARI_REQ_ONGOING 3U |
| #define ARI_REQUEST_VALID_BIT (1U << 8) |
| #define ARI_EVT_MASK_STANDBYWFI_BIT (1U << 7) |
| |
| /* default timeout (us) to wait for ARI completion */ |
| #define ARI_MAX_RETRY_COUNT U(2000000) |
| |
| /******************************************************************************* |
| * ARI helper functions |
| ******************************************************************************/ |
| static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg) |
| { |
| return mmio_read_32((uint64_t)ari_base + (uint64_t)reg); |
| } |
| |
| static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg) |
| { |
| mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val); |
| } |
| |
| static inline uint32_t ari_get_request_low(uint32_t ari_base) |
| { |
| return ari_read_32(ari_base, ARI_REQUEST_DATA_LO); |
| } |
| |
| static inline uint32_t ari_get_request_high(uint32_t ari_base) |
| { |
| return ari_read_32(ari_base, ARI_REQUEST_DATA_HI); |
| } |
| |
| static inline uint32_t ari_get_response_low(uint32_t ari_base) |
| { |
| return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO); |
| } |
| |
| static inline uint32_t ari_get_response_high(uint32_t ari_base) |
| { |
| return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI); |
| } |
| |
| static inline void ari_clobber_response(uint32_t ari_base) |
| { |
| ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO); |
| ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI); |
| } |
| |
| static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req, |
| uint32_t lo, uint32_t hi) |
| { |
| uint32_t retries = (uint32_t)ARI_MAX_RETRY_COUNT; |
| uint32_t status; |
| int32_t ret = 0; |
| |
| /* program the request, event_mask, hi and lo registers */ |
| ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO); |
| ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI); |
| ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK); |
| ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST); |
| |
| /* |
| * For commands that have an event trigger, we should bypass |
| * ARI_STATUS polling, since MCE is waiting for SW to trigger |
| * the event. |
| */ |
| if (evt_mask != 0U) { |
| ret = 0; |
| } else { |
| /* For shutdown/reboot commands, we dont have to check for timeouts */ |
| if ((req == TEGRA_ARI_MISC_CCPLEX) && |
| ((lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) || |
| (lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) { |
| ret = 0; |
| } else { |
| /* |
| * Wait for the command response for not more than the timeout |
| */ |
| while (retries != 0U) { |
| |
| /* read the command status */ |
| status = ari_read_32(ari_base, ARI_STATUS); |
| if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) { |
| break; |
| } |
| |
| /* delay 1 us */ |
| udelay(1); |
| |
| /* decrement the retry count */ |
| retries--; |
| } |
| |
| /* assert if the command timed out */ |
| if (retries == 0U) { |
| ERROR("ARI request timed out: req %d on CPU %d\n", |
| req, plat_my_core_pos()); |
| assert(retries != 0U); |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time) |
| { |
| int32_t ret = 0; |
| |
| /* check for allowed power state */ |
| if ((state != TEGRA_ARI_CORE_C0) && |
| (state != TEGRA_ARI_CORE_C1) && |
| (state != TEGRA_ARI_CORE_C6) && |
| (state != TEGRA_ARI_CORE_C7)) { |
| ERROR("%s: unknown cstate (%d)\n", __func__, state); |
| ret = EINVAL; |
| } else { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* Enter the cstate, to be woken up after wake_time (TSC ticks) */ |
| ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT, |
| (uint32_t)TEGRA_ARI_ENTER_CSTATE, state, wake_time); |
| } |
| |
| return ret; |
| } |
| |
| int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex, |
| uint32_t system, uint8_t sys_state_force, uint32_t wake_mask, |
| uint8_t update_wake_mask) |
| { |
| uint64_t val = 0U; |
| |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* update CLUSTER_CSTATE? */ |
| if (cluster != 0U) { |
| val |= (cluster & CLUSTER_CSTATE_MASK) | |
| CLUSTER_CSTATE_UPDATE_BIT; |
| } |
| |
| /* update CCPLEX_CSTATE? */ |
| if (ccplex != 0U) { |
| val |= ((ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT) | |
| CCPLEX_CSTATE_UPDATE_BIT; |
| } |
| |
| /* update SYSTEM_CSTATE? */ |
| if (system != 0U) { |
| val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) | |
| (((uint64_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) | |
| SYSTEM_CSTATE_UPDATE_BIT); |
| } |
| |
| /* update wake mask value? */ |
| if (update_wake_mask != 0U) { |
| val |= CSTATE_WAKE_MASK_UPDATE_BIT; |
| } |
| |
| /* set the updated cstate info */ |
| return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_UPDATE_CSTATE_INFO, |
| (uint32_t)val, wake_mask); |
| } |
| |
| int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time) |
| { |
| int32_t ret = 0; |
| |
| /* sanity check crossover type */ |
| if ((type == TEGRA_ARI_CROSSOVER_C1_C6) || |
| (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) { |
| ret = EINVAL; |
| } else { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* update crossover threshold time */ |
| ret = ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_UPDATE_CROSSOVER, type, time); |
| } |
| |
| return ret; |
| } |
| |
| uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state) |
| { |
| int32_t ret; |
| uint64_t result; |
| |
| /* sanity check crossover type */ |
| if (state == 0U) { |
| result = EINVAL; |
| } else { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| ret = ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_CSTATE_STATS, state, 0U); |
| if (ret != 0) { |
| result = EINVAL; |
| } else { |
| result = (uint64_t)ari_get_response_low(ari_base); |
| } |
| } |
| return result; |
| } |
| |
| int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats) |
| { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* write the cstate stats */ |
| return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_WRITE_CSTATE_STATS, |
| state, stats); |
| } |
| |
| uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data) |
| { |
| uint64_t resp; |
| int32_t ret; |
| uint32_t local_data = data; |
| |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */ |
| if (cmd != TEGRA_ARI_MISC_ECHO) { |
| local_data = 0U; |
| } |
| |
| ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MISC, cmd, local_data); |
| if (ret != 0) { |
| resp = (uint64_t)ret; |
| } else { |
| /* get the command response */ |
| resp = ari_get_response_low(ari_base); |
| resp |= ((uint64_t)ari_get_response_high(ari_base) << 32); |
| } |
| |
| return resp; |
| } |
| |
| int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time) |
| { |
| int32_t ret; |
| uint32_t result; |
| |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_IS_CCX_ALLOWED, |
| state & 0x7U, wake_time); |
| if (ret != 0) { |
| ERROR("%s: failed (%d)\n", __func__, ret); |
| result = 0U; |
| } else { |
| result = ari_get_response_low(ari_base) & 0x1U; |
| } |
| |
| /* 1 = CCx allowed, 0 = CCx not allowed */ |
| return (int32_t)result; |
| } |
| |
| int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time) |
| { |
| int32_t ret, result; |
| |
| /* check for allowed power state */ |
| if ((state != TEGRA_ARI_CORE_C0) && (state != TEGRA_ARI_CORE_C1) && |
| (state != TEGRA_ARI_CORE_C6) && (state != TEGRA_ARI_CORE_C7)) { |
| ERROR("%s: unknown cstate (%d)\n", __func__, state); |
| result = EINVAL; |
| } else { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| ret = ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_IS_SC7_ALLOWED, state, wake_time); |
| if (ret != 0) { |
| ERROR("%s: failed (%d)\n", __func__, ret); |
| result = 0; |
| } else { |
| /* 1 = SC7 allowed, 0 = SC7 not allowed */ |
| result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0; |
| } |
| } |
| |
| return result; |
| } |
| |
| int32_t ari_online_core(uint32_t ari_base, uint32_t core) |
| { |
| uint64_t cpu = read_mpidr() & (MPIDR_CPU_MASK); |
| uint64_t cluster = (read_mpidr() & (MPIDR_CLUSTER_MASK)) >> |
| (MPIDR_AFFINITY_BITS); |
| uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; |
| int32_t ret; |
| |
| /* construct the current CPU # */ |
| cpu |= (cluster << 2); |
| |
| /* sanity check target core id */ |
| if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) { |
| ERROR("%s: unsupported core id (%d)\n", __func__, core); |
| ret = EINVAL; |
| } else { |
| /* |
| * The Denver cluster has 2 CPUs only - 0, 1. |
| */ |
| if ((impl == DENVER_IMPL) && ((core == 2U) || (core == 3U))) { |
| ERROR("%s: unknown core id (%d)\n", __func__, core); |
| ret = EINVAL; |
| } else { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| ret = ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_ONLINE_CORE, core, 0U); |
| } |
| } |
| |
| return ret; |
| } |
| |
| int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable) |
| { |
| uint32_t val; |
| |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* |
| * If the enable bit is cleared, Auto-CC3 will be disabled by setting |
| * the SW visible voltage/frequency request registers for all non |
| * floorswept cores valid independent of StandbyWFI and disabling |
| * the IDLE voltage/frequency request register. If set, Auto-CC3 |
| * will be enabled by setting the ARM SW visible voltage/frequency |
| * request registers for all non floorswept cores to be enabled by |
| * StandbyWFI or the equivalent signal, and always keeping the IDLE |
| * voltage/frequency request register enabled. |
| */ |
| val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\ |
| ((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\ |
| ((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U)); |
| |
| return ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_CC3_CTRL, val, 0U); |
| } |
| |
| int32_t ari_reset_vector_update(uint32_t ari_base) |
| { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* |
| * Need to program the CPU reset vector one time during cold boot |
| * and SC7 exit |
| */ |
| (void)ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U); |
| |
| return 0; |
| } |
| |
| int32_t ari_roc_flush_cache_trbits(uint32_t ari_base) |
| { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| return ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS, 0U, 0U); |
| } |
| |
| int32_t ari_roc_flush_cache(uint32_t ari_base) |
| { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| return ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_ONLY, 0U, 0U); |
| } |
| |
| int32_t ari_roc_clean_cache(uint32_t ari_base) |
| { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| return ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_ROC_CLEAN_CACHE_ONLY, 0U, 0U); |
| } |
| |
| uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data) |
| { |
| uint64_t mca_arg_data, result = 0; |
| uint32_t resp_lo, resp_hi; |
| uint32_t mca_arg_err, mca_arg_finish; |
| int32_t ret; |
| |
| /* Set data (write) */ |
| mca_arg_data = (data != NULL) ? *data : 0ULL; |
| |
| /* Set command */ |
| ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO); |
| ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI); |
| |
| ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MCA, |
| (uint32_t)mca_arg_data, |
| (uint32_t)(mca_arg_data >> 32U)); |
| if (ret == 0) { |
| resp_lo = ari_get_response_low(ari_base); |
| resp_hi = ari_get_response_high(ari_base); |
| |
| mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK; |
| mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) & |
| MCA_ARG_FINISH_MASK; |
| |
| if (mca_arg_finish == 0U) { |
| result = (uint64_t)mca_arg_err; |
| } else { |
| if (data != NULL) { |
| resp_lo = ari_get_request_low(ari_base); |
| resp_hi = ari_get_request_high(ari_base); |
| *data = ((uint64_t)resp_hi << 32U) | |
| (uint64_t)resp_lo; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx) |
| { |
| int32_t ret = 0; |
| /* sanity check GSC ID */ |
| if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX) { |
| ret = EINVAL; |
| } else { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* |
| * The MCE code will read the GSC carveout value, corrseponding to |
| * the ID, from the MC registers and update the internal GSC registers |
| * of the CCPLEX. |
| */ |
| (void)ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U); |
| } |
| |
| return ret; |
| } |
| |
| void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx) |
| { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* |
| * The MCE will shutdown or restart the entire system |
| */ |
| (void)ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_MISC_CCPLEX, state_idx, 0U); |
| } |
| |
| int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req, |
| uint64_t *data) |
| { |
| int32_t ret, result; |
| uint32_t val, req_status; |
| uint8_t req_cmd; |
| |
| req_cmd = (uint8_t)(req & UNCORE_PERFMON_CMD_MASK); |
| |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| |
| /* sanity check input parameters */ |
| if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) { |
| ERROR("invalid parameters\n"); |
| result = EINVAL; |
| } else { |
| /* |
| * For "write" commands get the value that has to be written |
| * to the uncore perfmon registers |
| */ |
| val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ? |
| (uint32_t)*data : 0U; |
| |
| ret = ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_PERFMON, val, (uint32_t)req); |
| if (ret != 0) { |
| result = ret; |
| } else { |
| /* read the command status value */ |
| req_status = ari_get_response_high(ari_base) & |
| UNCORE_PERFMON_RESP_STATUS_MASK; |
| |
| /* |
| * For "read" commands get the data from the uncore |
| * perfmon registers |
| */ |
| req_status &= UNCORE_PERFMON_RESP_STATUS_MASK; |
| if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) { |
| *data = ari_get_response_low(ari_base); |
| } |
| result = (int32_t)req_status; |
| } |
| } |
| |
| return result; |
| } |
| |
| void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value) |
| { |
| /* |
| * This invokes the ARI_MISC_CCPLEX commands. This can be |
| * used to enable/disable coresight clock gating. |
| */ |
| |
| if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) || |
| ((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) && |
| (value > 1U))) { |
| ERROR("%s: invalid parameters \n", __func__); |
| } else { |
| /* clean the previous response state */ |
| ari_clobber_response(ari_base); |
| (void)ari_request_wait(ari_base, 0U, |
| (uint32_t)TEGRA_ARI_MISC_CCPLEX, index, value); |
| } |
| } |