blob: 647869ede4ff2dc367d17a7b2dd877f103439aa8 [file] [log] [blame]
/*
* Copyright (c) 2015-2018, Renesas Electronics Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common/debug.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include "cpg_registers.h"
#include "avs_driver.h"
#include "rcar_def.h"
#include "rcar_private.h"
#if (AVS_SETTING_ENABLE == 1)
#if PMIC_ROHM_BD9571
/* Read PMIC register for debug. 1:enable / 0:disable */
#define AVS_READ_PMIC_REG_ENABLE 0
/* The re-try number of times of the AVS setting. */
#define AVS_RETRY_NUM (1U)
#endif /* PMIC_ROHM_BD9571 */
/* Base address of Adaptive Voltage Scaling module registers*/
#define AVS_BASE (0xE60A0000U)
/* Adaptive Dynamic Voltage ADJust Parameter2 registers */
#define ADVADJP2 (AVS_BASE + 0x013CU)
/* Mask VOLCOND bit in ADVADJP2 registers */
#define ADVADJP2_VOLCOND_MASK (0x000001FFU) /* VOLCOND[8:0] */
#if PMIC_ROHM_BD9571
/* I2C for DVFS bit in CPG registers for module standby and software reset*/
#define CPG_SYS_DVFS_BIT (0x04000000U)
#endif /* PMIC_ROHM_BD9571 */
/* ADVFS Module bit in CPG registers for module standby and software reset*/
#define CPG_SYS_ADVFS_BIT (0x02000000U)
#if PMIC_ROHM_BD9571
/* Base address of IICDVFS registers*/
#define IIC_DVFS_BASE (0xE60B0000U)
/* IIC bus data register */
#define IIC_ICDR (IIC_DVFS_BASE + 0x0000U)
/* IIC bus control register */
#define IIC_ICCR (IIC_DVFS_BASE + 0x0004U)
/* IIC bus status register */
#define IIC_ICSR (IIC_DVFS_BASE + 0x0008U)
/* IIC interrupt control register */
#define IIC_ICIC (IIC_DVFS_BASE + 0x000CU)
/* IIC clock control register low */
#define IIC_ICCL (IIC_DVFS_BASE + 0x0010U)
/* IIC clock control register high */
#define IIC_ICCH (IIC_DVFS_BASE + 0x0014U)
/* Bit in ICSR register */
#define ICSR_BUSY (0x10U)
#define ICSR_AL (0x08U)
#define ICSR_TACK (0x04U)
#define ICSR_WAIT (0x02U)
#define ICSR_DTE (0x01U)
/* Bit in ICIC register */
#define ICIC_TACKE (0x04U)
#define ICIC_WAITE (0x02U)
#define ICIC_DTEE (0x01U)
/* I2C bus interface enable */
#define ICCR_ENABLE (0x80U)
/* Start condition */
#define ICCR_START (0x94U)
/* Stop condition */
#define ICCR_STOP (0x90U)
/* Restart condition with change to receive mode change */
#define ICCR_START_RECV (0x81U)
/* Stop condition for receive mode */
#define ICCR_STOP_RECV (0xC0U)
/* Low-level period of SCL */
#define ICCL_FREQ_8p33M (0x07U) /* for CP Phy 8.3333MHz */
#define ICCL_FREQ_10M (0x09U) /* for CP Phy 10MHz */
#define ICCL_FREQ_12p5M (0x0BU) /* for CP Phy 12.5MHz */
#define ICCL_FREQ_16p66M (0x0EU) /* for CP Phy 16.6666MHz */
/* High-level period of SCL */
#define ICCH_FREQ_8p33M (0x01U) /* for CP Phy 8.3333MHz */
#define ICCH_FREQ_10M (0x02U) /* for CP Phy 10MHz */
#define ICCH_FREQ_12p5M (0x03U) /* for CP Phy 12.5MHz */
#define ICCH_FREQ_16p66M (0x05U) /* for CP Phy 16.6666MHz */
/* PMIC */
#define PMIC_W_SLAVE_ADDRESS (0x60U) /* ROHM BD9571 slave address + (W) */
#define PMIC_R_SLAVE_ADDRESS (0x61U) /* ROHM BD9571 slave address + (R) */
#define PMIC_DVFS_SETVID (0x54U) /* ROHM BD9571 DVFS SetVID register */
#endif /* PMIC_ROHM_BD9571 */
/* Individual information */
#define EFUSE_AVS0 (0U)
#define EFUSE_AVS_NUM ARRAY_SIZE(init_vol_tbl)
typedef struct {
uint32_t avs; /* AVS code */
uint8_t vol; /* Voltage */
} initial_voltage_t;
static const initial_voltage_t init_vol_tbl[] = {
/* AVS code, RHOM BD9571 DVFS SetVID register */
{0x00U, 0x53U}, /* AVS0, 0.83V */
{0x01U, 0x52U}, /* AVS1, 0.82V */
{0x02U, 0x51U}, /* AVS2, 0.81V */
{0x04U, 0x50U}, /* AVS3, 0.80V */
{0x08U, 0x4FU}, /* AVS4, 0.79V */
{0x10U, 0x4EU}, /* AVS5, 0.78V */
{0x20U, 0x4DU}, /* AVS6, 0.77V */
{0x40U, 0x4CU} /* AVS7, 0.76V */
};
#if PMIC_ROHM_BD9571
/* Kind of AVS settings status */
typedef enum {
avs_status_none = 0,
avs_status_init,
avs_status_start_condition,
avs_status_set_slave_addr,
avs_status_write_reg_addr,
avs_status_write_reg_data,
avs_status_stop_condition,
avs_status_end,
avs_status_complete,
avs_status_al_start,
avs_status_al_transfer,
avs_status_nack,
avs_status_error_stop,
ave_status_error_end
} avs_status_t;
/* Kind of AVS error */
typedef enum {
avs_error_none = 0,
avs_error_al,
avs_error_nack
} avs_error_t;
static avs_status_t avs_status;
static uint32_t avs_retry;
#endif /* PMIC_ROHM_BD9571 */
static uint32_t efuse_avs = EFUSE_AVS0;
#if PMIC_ROHM_BD9571
/* prototype */
static avs_error_t avs_check_error(void);
static void avs_set_iic_clock(void);
#if AVS_READ_PMIC_REG_ENABLE == 1
static uint8_t avs_read_pmic_reg(uint8_t addr);
static void avs_poll(uint8_t bit_pos, uint8_t val);
#endif
#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */
/*
* Initialize to enable the AVS setting.
*/
void rcar_avs_init(void)
{
#if (AVS_SETTING_ENABLE == 1)
uint32_t val;
#if PMIC_ROHM_BD9571
/* Initialize AVS status */
avs_status = avs_status_init;
#endif /* PMIC_ROHM_BD9571 */
/* Enable clock supply to ADVFS. */
mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_ADVFS_BIT);
/* Read AVS code (Initial values are derived from eFuse) */
val = mmio_read_32(ADVADJP2) & ADVADJP2_VOLCOND_MASK;
for (efuse_avs = 0U; efuse_avs < EFUSE_AVS_NUM; efuse_avs++) {
if (val == init_vol_tbl[efuse_avs].avs)
break;
}
if (efuse_avs >= EFUSE_AVS_NUM)
efuse_avs = EFUSE_AVS0; /* Not applicable */
#if PMIC_ROHM_BD9571
/* Enable clock supply to DVFS. */
mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_DVFS_BIT);
/* Disable I2C module and All internal registers initialized. */
mmio_write_8(IIC_ICCR, 0x00U);
while ((mmio_read_8(IIC_ICCR) & ICCR_ENABLE) != 0U) {
/* Disable I2C module and All internal registers initialized. */
mmio_write_8(IIC_ICCR, 0x00U);
}
/* Set next status */
avs_status = avs_status_start_condition;
#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */
}
/*
* Set the value of register corresponding to the voltage
* by transfer of I2C to PIMC.
*/
void rcar_avs_setting(void)
{
#if (AVS_SETTING_ENABLE == 1)
#if PMIC_ROHM_BD9571
avs_error_t err;
switch (avs_status) {
case avs_status_start_condition:
/* Set ICCR.ICE=1 to activate the I2C module. */
mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE);
/* Set frequency of 400kHz */
avs_set_iic_clock();
/* Set ICIC.TACKE=1, ICIC.WAITE=1, ICIC.DTEE=1 to */
/* enable interrupt control. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
| ICIC_TACKE | ICIC_WAITE | ICIC_DTEE);
/* Write H'94 in ICCR to issue start condition */
mmio_write_8(IIC_ICCR, ICCR_START);
/* Set next status */
avs_status = avs_status_set_slave_addr;
break;
case avs_status_set_slave_addr:
/* Check error. */
err = avs_check_error();
if (err == avs_error_al) {
/* Recovery sequence of just after start. */
avs_status = avs_status_al_start;
} else if (err == avs_error_nack) {
/* Recovery sequence of detected NACK */
avs_status = avs_status_nack;
} else {
/* Was data transmission enabled ? */
if ((mmio_read_8(IIC_ICSR) & ICSR_DTE) == ICSR_DTE) {
/* Clear ICIC.DTEE to disable a DTE interrupt */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
& (uint8_t) (~ICIC_DTEE));
/* Send PMIC slave address + (W) */
mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS);
/* Set next status */
avs_status = avs_status_write_reg_addr;
}
}
break;
case avs_status_write_reg_addr:
/* Check error. */
err = avs_check_error();
if (err == avs_error_al) {
/* Recovery sequence of during data transfer. */
avs_status = avs_status_al_transfer;
} else if (err == avs_error_nack) {
/* Recovery sequence of detected NACK */
avs_status = avs_status_nack;
} else {
/* If wait state after data transmission. */
if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
/* Write PMIC DVFS_SetVID address */
mmio_write_8(IIC_ICDR, PMIC_DVFS_SETVID);
/* Clear ICSR.WAIT to exit from wait state. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
& (uint8_t) (~ICSR_WAIT));
/* Set next status */
avs_status = avs_status_write_reg_data;
}
}
break;
case avs_status_write_reg_data:
/* Check error. */
err = avs_check_error();
if (err == avs_error_al) {
/* Recovery sequence of during data transfer. */
avs_status = avs_status_al_transfer;
} else if (err == avs_error_nack) {
/* Recovery sequence of detected NACK */
avs_status = avs_status_nack;
} else {
/* If wait state after data transmission. */
if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
/* Dose efuse_avs exceed the number of */
/* the tables? */
if (efuse_avs >= EFUSE_AVS_NUM) {
ERROR("AVS number of eFuse is out "
"of a range. number=%u\n",
efuse_avs);
/* Infinite loop */
panic();
}
/* Write PMIC DVFS_SetVID value */
mmio_write_8(IIC_ICDR,
init_vol_tbl[efuse_avs].vol);
/* Clear ICSR.WAIT to exit from wait state. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
& (uint8_t) (~ICSR_WAIT));
/* Set next status */
avs_status = avs_status_stop_condition;
}
}
break;
case avs_status_stop_condition:
err = avs_check_error();
if (err == avs_error_al) {
/* Recovery sequence of during data transfer. */
avs_status = avs_status_al_transfer;
} else if (err == avs_error_nack) {
/* Recovery sequence of detected NACK */
avs_status = avs_status_nack;
} else {
/* If wait state after data transmission. */
if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
/* Write H'90 in ICCR to issue stop condition */
mmio_write_8(IIC_ICCR, ICCR_STOP);
/* Clear ICSR.WAIT to exit from wait state. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
& (uint8_t) (~ICSR_WAIT));
/* Set next status */
avs_status = avs_status_end;
}
}
break;
case avs_status_end:
/* Is this module not busy?. */
if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) {
/* Set ICCR=H'00 to disable the I2C module. */
mmio_write_8(IIC_ICCR, 0x00U);
/* Set next status */
avs_status = avs_status_complete;
}
break;
case avs_status_al_start:
/* Clear ICSR.AL bit */
mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR)
& (uint8_t) (~ICSR_AL)));
/* Transmit a clock pulse */
mmio_write_8(IIC_ICDR, init_vol_tbl[EFUSE_AVS0].vol);
/* Set next status */
avs_status = avs_status_error_stop;
break;
case avs_status_al_transfer:
/* Clear ICSR.AL bit */
mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR)
& (uint8_t) (~ICSR_AL)));
/* Set next status */
avs_status = avs_status_error_stop;
break;
case avs_status_nack:
/* Write H'90 in ICCR to issue stop condition */
mmio_write_8(IIC_ICCR, ICCR_STOP);
/* Disable a WAIT and DTEE interrupt. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
& (uint8_t) (~(ICIC_WAITE | ICIC_DTEE)));
/* Clear ICSR.TACK bit */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
& (uint8_t) (~ICSR_TACK));
/* Set next status */
avs_status = ave_status_error_end;
break;
case avs_status_error_stop:
/* If wait state after data transmission. */
if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
/* Write H'90 in ICCR to issue stop condition */
mmio_write_8(IIC_ICCR, ICCR_STOP);
/* Clear ICSR.WAIT to exit from wait state. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
& (uint8_t) (~ICSR_WAIT));
/* Set next status */
avs_status = ave_status_error_end;
}
break;
case ave_status_error_end:
/* Is this module not busy?. */
if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) {
/* Set ICCR=H'00 to disable the I2C module. */
mmio_write_8(IIC_ICCR, 0x00U);
/* Increment the re-try number of times. */
avs_retry++;
/* Set start a re-try to status. */
avs_status = avs_status_start_condition;
}
break;
case avs_status_complete:
/* After "avs_status" became the "avs_status_complete", */
/* "avs_setting()" function may be called. */
break;
default:
/* This case is not possible. */
ERROR("AVS setting is in invalid status. status=%u\n",
avs_status);
/* Infinite loop */
panic();
break;
}
#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */
}
/*
* Finish the AVS setting.
*/
void rcar_avs_end(void)
{
#if (AVS_SETTING_ENABLE == 1)
uint32_t mstp;
#if PMIC_ROHM_BD9571
/* While status is not completion, be repeated. */
while (avs_status != avs_status_complete)
rcar_avs_setting();
NOTICE("AVS setting succeeded. DVFS_SetVID=0x%x\n",
init_vol_tbl[efuse_avs].vol);
#if AVS_READ_PMIC_REG_ENABLE == 1
{
uint8_t addr = PMIC_DVFS_SETVID;
uint8_t value = avs_read_pmic_reg(addr);
NOTICE("Read PMIC register. address=0x%x value=0x%x \n",
addr, value);
}
#endif
/* Bit of the module which wants to disable clock supply. */
mstp = CPG_SYS_DVFS_BIT;
/* Disables the supply of clock signal to a module. */
cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp);
#endif /* PMIC_ROHM_BD9571 */
/* Bit of the module which wants to disable clock supply. */
mstp = CPG_SYS_ADVFS_BIT;
/* Disables the supply of clock signal to a module. */
cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp);
#endif /* (AVS_SETTING_ENABLE==1) */
}
#if (AVS_SETTING_ENABLE == 1)
#if PMIC_ROHM_BD9571
/*
* Check error and judge re-try.
*/
static avs_error_t avs_check_error(void)
{
avs_error_t ret;
if ((mmio_read_8(IIC_ICSR) & ICSR_AL) == ICSR_AL) {
NOTICE("Loss of arbitration is detected. "
"AVS status=%d Retry=%u\n", avs_status, avs_retry);
/* Check of retry number of times */
if (avs_retry >= AVS_RETRY_NUM) {
ERROR("AVS setting failed in retry. max=%u\n",
AVS_RETRY_NUM);
/* Infinite loop */
panic();
}
/* Set the error detected to error status. */
ret = avs_error_al;
} else if ((mmio_read_8(IIC_ICSR) & ICSR_TACK) == ICSR_TACK) {
NOTICE("Non-acknowledge is detected. "
"AVS status=%d Retry=%u\n", avs_status, avs_retry);
/* Check of retry number of times */
if (avs_retry >= AVS_RETRY_NUM) {
ERROR("AVS setting failed in retry. max=%u\n",
AVS_RETRY_NUM);
/* Infinite loop */
panic();
}
/* Set the error detected to error status. */
ret = avs_error_nack;
} else {
/* Not error. */
ret = avs_error_none;
}
return ret;
}
/*
* Set I2C for DVFS clock.
*/
static void avs_set_iic_clock(void)
{
uint32_t md_pin;
/* Read Mode pin register. */
md_pin = mmio_read_32(RCAR_MODEMR) & CHECK_MD13_MD14;
/* Set the module clock (CP phy) for the IIC-DVFS. */
/* CP phy is EXTAL / 2. */
switch (md_pin) {
case MD14_MD13_TYPE_0: /* EXTAL = 16.6666MHz */
mmio_write_8(IIC_ICCL, ICCL_FREQ_8p33M);
mmio_write_8(IIC_ICCH, ICCH_FREQ_8p33M);
break;
case MD14_MD13_TYPE_1: /* EXTAL = 20MHz */
mmio_write_8(IIC_ICCL, ICCL_FREQ_10M);
mmio_write_8(IIC_ICCH, ICCH_FREQ_10M);
break;
case MD14_MD13_TYPE_2: /* EXTAL = 25MHz (H3/M3) */
mmio_write_8(IIC_ICCL, ICCL_FREQ_12p5M);
mmio_write_8(IIC_ICCH, ICCH_FREQ_12p5M);
break;
case MD14_MD13_TYPE_3: /* EXTAL = 33.3333MHz */
mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M);
mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M);
break;
default: /* This case is not possible. */
/* CP Phy frequency is to be set for the 16.66MHz */
mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M);
mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M);
break;
}
}
#if AVS_READ_PMIC_REG_ENABLE == 1
/*
* Read the value of the register of PMIC.
*/
static uint8_t avs_read_pmic_reg(uint8_t addr)
{
uint8_t reg;
/* Set ICCR.ICE=1 to activate the I2C module. */
mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE);
/* Set frequency of 400kHz */
avs_set_iic_clock();
/* Set ICIC.WAITE=1, ICIC.DTEE=1 to enable data transmission */
/* interrupt and wait interrupt. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_WAITE | ICIC_DTEE);
/* Write H'94 in ICCR to issue start condition */
mmio_write_8(IIC_ICCR, ICCR_START);
/* Wait for a until ICSR.DTE becomes 1. */
avs_poll(ICSR_DTE, 1U);
/* Clear ICIC.DTEE to disable a DTE interrupt. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
/* Send slave address of PMIC */
mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS);
/* Wait for a until ICSR.WAIT becomes 1. */
avs_poll(ICSR_WAIT, 1U);
/* write PMIC address */
mmio_write_8(IIC_ICDR, addr);
/* Clear ICSR.WAIT to exit from WAIT status. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
/* Wait for a until ICSR.WAIT becomes 1. */
avs_poll(ICSR_WAIT, 1U);
/* Write H'94 in ICCR to issue restart condition */
mmio_write_8(IIC_ICCR, ICCR_START);
/* Clear ICSR.WAIT to exit from WAIT status. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
/* Set ICIC.DTEE=1 to enable data transmission interrupt. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE);
/* Wait for a until ICSR.DTE becomes 1. */
avs_poll(ICSR_DTE, 1U);
/* Clear ICIC.DTEE to disable a DTE interrupt. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
/* Send slave address of PMIC */
mmio_write_8(IIC_ICDR, PMIC_R_SLAVE_ADDRESS);
/* Wait for a until ICSR.WAIT becomes 1. */
avs_poll(ICSR_WAIT, 1U);
/* Write H'81 to ICCR to issue the repeated START condition */
/* for changing the transmission mode to the receive mode. */
mmio_write_8(IIC_ICCR, ICCR_START_RECV);
/* Clear ICSR.WAIT to exit from WAIT status. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
/* Wait for a until ICSR.WAIT becomes 1. */
avs_poll(ICSR_WAIT, 1U);
/* Set ICCR to H'C0 for the STOP condition */
mmio_write_8(IIC_ICCR, ICCR_STOP_RECV);
/* Clear ICSR.WAIT to exit from WAIT status. */
mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
/* Set ICIC.DTEE=1 to enable data transmission interrupt. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE);
/* Wait for a until ICSR.DTE becomes 1. */
avs_poll(ICSR_DTE, 1U);
/* Receive DVFS SetVID register */
/* Clear ICIC.DTEE to disable a DTE interrupt. */
mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
/* Receive DVFS SetVID register */
reg = mmio_read_8(IIC_ICDR);
/* Wait until ICSR.BUSY is cleared. */
avs_poll(ICSR_BUSY, 0U);
/* Set ICCR=H'00 to disable the I2C module. */
mmio_write_8(IIC_ICCR, 0x00U);
return reg;
}
/*
* Wait processing by the polling.
*/
static void avs_poll(uint8_t bit_pos, uint8_t val)
{
uint8_t bit_val = 0U;
if (val != 0U)
bit_val = bit_pos;
while (1) {
if ((mmio_read_8(IIC_ICSR) & bit_pos) == bit_val)
break;
}
}
#endif /* AVS_READ_PMIC_REG_ENABLE */
#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */