blob: 07a37167ff862cba5c3e379d5de18eacda307078 [file] [log] [blame]
/*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io>
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <errno.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/allwinner/sunxi_rsb.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <sunxi_def.h>
#include <sunxi_mmap.h>
#include <sunxi_private.h>
static enum pmic_type {
GENERIC_H5,
GENERIC_A64,
REF_DESIGN_H5, /* regulators controlled by GPIO pins on port L */
AXP803_RSB, /* PMIC connected via RSB on most A64 boards */
} pmic;
#define AXP803_HW_ADDR 0x3a3
#define AXP803_RT_ADDR 0x2d
/*
* On boards without a proper PMIC we struggle to turn off the system properly.
* Try to turn off as much off the system as we can, to reduce power
* consumption. This should be entered with only one core running and SMP
* disabled.
* This function only cares about peripherals.
*/
void sunxi_turn_off_soc(uint16_t socid)
{
int i;
/** Turn off most peripherals, most importantly DRAM users. **/
/* Keep DRAM controller running for now. */
mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, ~BIT_32(14));
mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, ~BIT_32(14));
/* Contains msgbox (bit 21) and spinlock (bit 22) */
mmio_write_32(SUNXI_CCU_BASE + 0x2c4, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x64, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x2c8, 0);
/* Keep PIO controller running for now. */
mmio_clrbits_32(SUNXI_CCU_BASE + 0x68, ~(BIT_32(5)));
mmio_write_32(SUNXI_CCU_BASE + 0x2d0, 0);
/* Contains UART0 (bit 16) */
mmio_write_32(SUNXI_CCU_BASE + 0x2d8, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x6c, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x70, 0);
/** Turn off DRAM controller. **/
mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, BIT_32(14));
mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, BIT_32(14));
/** Migrate CPU and bus clocks away from the PLLs. **/
/* AHB1: use OSC24M/1, APB1 = AHB1 / 2 */
mmio_write_32(SUNXI_CCU_BASE + 0x54, 0x1000);
/* APB2: use OSC24M */
mmio_write_32(SUNXI_CCU_BASE + 0x58, 0x1000000);
/* AHB2: use AHB1 clock */
mmio_write_32(SUNXI_CCU_BASE + 0x5c, 0);
/* CPU: use OSC24M */
mmio_write_32(SUNXI_CCU_BASE + 0x50, 0x10000);
/** Turn off PLLs. **/
for (i = 0; i < 6; i++)
mmio_clrbits_32(SUNXI_CCU_BASE + i * 8, BIT(31));
switch (socid) {
case SUNXI_SOC_H5:
mmio_clrbits_32(SUNXI_CCU_BASE + 0x44, BIT(31));
break;
case SUNXI_SOC_A64:
mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c, BIT(31));
mmio_clrbits_32(SUNXI_CCU_BASE + 0x4c, BIT(31));
break;
}
}
static int rsb_init(void)
{
int ret;
ret = rsb_init_controller();
if (ret)
return ret;
/* Start with 400 KHz to issue the I2C->RSB switch command. */
ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 400000);
if (ret)
return ret;
/*
* Initiate an I2C transaction to write 0x7c into register 0x3e,
* switching the PMIC to RSB mode.
*/
ret = rsb_set_device_mode(0x7c3e00);
if (ret)
return ret;
/* Now in RSB mode, switch to the recommended 3 MHz. */
ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 3000000);
if (ret)
return ret;
/* Associate the 8-bit runtime address with the 12-bit bus address. */
return rsb_assign_runtime_address(AXP803_HW_ADDR,
AXP803_RT_ADDR);
}
static int axp_write(uint8_t reg, uint8_t val)
{
return rsb_write(AXP803_RT_ADDR, reg, val);
}
static int axp_clrsetbits(uint8_t reg, uint8_t clr_mask, uint8_t set_mask)
{
uint8_t regval;
int ret;
ret = rsb_read(AXP803_RT_ADDR, reg);
if (ret < 0)
return ret;
regval = (ret & ~clr_mask) | set_mask;
return rsb_write(AXP803_RT_ADDR, reg, regval);
}
#define axp_clrbits(reg, clr_mask) axp_clrsetbits(reg, clr_mask, 0)
#define axp_setbits(reg, set_mask) axp_clrsetbits(reg, 0, set_mask)
static bool should_enable_regulator(const void *fdt, int node)
{
if (fdt_getprop(fdt, node, "phandle", NULL) != NULL)
return true;
if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL)
return true;
return false;
}
/*
* Retrieve the voltage from a given regulator DTB node.
* Both the regulator-{min,max}-microvolt properties must be present and
* have the same value. Return that value in millivolts.
*/
static int fdt_get_regulator_millivolt(const void *fdt, int node)
{
const fdt32_t *prop;
uint32_t min_volt;
prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
min_volt = fdt32_to_cpu(*prop);
prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
if (fdt32_to_cpu(*prop) != min_volt)
return -EINVAL;
return min_volt / 1000;
}
#define NO_SPLIT 0xff
static const struct axp_regulator {
char *dt_name;
uint16_t min_volt;
uint16_t max_volt;
uint16_t step;
unsigned char split;
unsigned char volt_reg;
unsigned char switch_reg;
unsigned char switch_bit;
} regulators[] = {
{"dcdc1", 1600, 3400, 100, NO_SPLIT, 0x20, 0x10, 0},
{"dcdc5", 800, 1840, 10, 32, 0x24, 0x10, 4},
{"dcdc6", 600, 1520, 10, 50, 0x25, 0x10, 5},
{"dldo1", 700, 3300, 100, NO_SPLIT, 0x15, 0x12, 3},
{"dldo2", 700, 4200, 100, 27, 0x16, 0x12, 4},
{"dldo3", 700, 3300, 100, NO_SPLIT, 0x17, 0x12, 5},
{"fldo1", 700, 1450, 50, NO_SPLIT, 0x1c, 0x13, 2},
{}
};
static int setup_regulator(const void *fdt, int node,
const struct axp_regulator *reg)
{
int mvolt;
uint8_t regval;
if (!should_enable_regulator(fdt, node))
return -ENOENT;
mvolt = fdt_get_regulator_millivolt(fdt, node);
if (mvolt < reg->min_volt || mvolt > reg->max_volt)
return -EINVAL;
regval = (mvolt / reg->step) - (reg->min_volt / reg->step);
if (regval > reg->split)
regval = ((regval - reg->split) / 2) + reg->split;
axp_write(reg->volt_reg, regval);
if (reg->switch_reg < 0xff)
axp_setbits(reg->switch_reg, BIT(reg->switch_bit));
INFO("PMIC: AXP803: %s voltage: %d.%03dV\n", reg->dt_name,
mvolt / 1000, mvolt % 1000);
return 0;
}
static void setup_axp803_rails(const void *fdt)
{
int node;
bool dc1sw = false;
/* locate the PMIC DT node, bail out if not found */
node = fdt_node_offset_by_compatible(fdt, -1, "x-powers,axp803");
if (node < 0) {
WARN("BL31: PMIC: Cannot find AXP803 DT node, skipping initial setup.\n");
return;
}
if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL)) {
axp_clrbits(0x8f, BIT(4));
axp_setbits(0x30, BIT(2));
INFO("PMIC: AXP803: Enabling DRIVEVBUS\n");
}
/* descend into the "regulators" subnode */
node = fdt_subnode_offset(fdt, node, "regulators");
if (node < 0) {
WARN("BL31: PMIC: Cannot find regulators subnode, skipping initial setup.\n");
return;
}
/* iterate over all regulators to find used ones */
for (node = fdt_first_subnode(fdt, node);
node >= 0;
node = fdt_next_subnode(fdt, node)) {
const struct axp_regulator *reg;
const char *name;
int length;
/* We only care if it's always on or referenced. */
if (!should_enable_regulator(fdt, node))
continue;
name = fdt_get_name(fdt, node, &length);
for (reg = regulators; reg->dt_name; reg++) {
if (!strncmp(name, reg->dt_name, length)) {
setup_regulator(fdt, node, reg);
break;
}
}
if (!strncmp(name, "dc1sw", length)) {
/* Delay DC1SW enablement to avoid overheating. */
dc1sw = true;
continue;
}
}
/*
* If DLDO2 is enabled after DC1SW, the PMIC overheats and shuts
* down. So always enable DC1SW as the very last regulator.
*/
if (dc1sw) {
INFO("PMIC: AXP803: Enabling DC1SW\n");
axp_setbits(0x12, BIT(7));
}
}
int sunxi_pmic_setup(uint16_t socid, const void *fdt)
{
int ret;
switch (socid) {
case SUNXI_SOC_H5:
pmic = REF_DESIGN_H5;
NOTICE("BL31: PMIC: Defaulting to PortL GPIO according to H5 reference design.\n");
break;
case SUNXI_SOC_A64:
pmic = GENERIC_A64;
ret = sunxi_init_platform_r_twi(socid, true);
if (ret)
return ret;
ret = rsb_init();
if (ret)
return ret;
pmic = AXP803_RSB;
NOTICE("BL31: PMIC: Detected AXP803 on RSB.\n");
if (fdt)
setup_axp803_rails(fdt);
break;
default:
NOTICE("BL31: PMIC: No support for Allwinner %x SoC.\n", socid);
return -ENODEV;
}
return 0;
}
void __dead2 sunxi_power_down(void)
{
switch (pmic) {
case GENERIC_H5:
/* Turn off as many peripherals and clocks as we can. */
sunxi_turn_off_soc(SUNXI_SOC_H5);
/* Turn off the pin controller now. */
mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
break;
case GENERIC_A64:
/* Turn off as many peripherals and clocks as we can. */
sunxi_turn_off_soc(SUNXI_SOC_A64);
/* Turn off the pin controller now. */
mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
break;
case REF_DESIGN_H5:
sunxi_turn_off_soc(SUNXI_SOC_H5);
/*
* Switch PL pins to power off the board:
* - PL5 (VCC_IO) -> high
* - PL8 (PWR-STB = CPU power supply) -> low
* - PL9 (PWR-DRAM) ->low
* - PL10 (power LED) -> low
* Note: Clearing PL8 will reset the board, so keep it up.
*/
sunxi_set_gpio_out('L', 5, 1);
sunxi_set_gpio_out('L', 9, 0);
sunxi_set_gpio_out('L', 10, 0);
/* Turn off pin controller now. */
mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
break;
case AXP803_RSB:
/* (Re-)init RSB in case the rich OS has disabled it. */
sunxi_init_platform_r_twi(SUNXI_SOC_A64, true);
rsb_init();
/* Set "power disable control" bit */
axp_setbits(0x32, BIT(7));
break;
default:
break;
}
udelay(1000);
ERROR("PSCI: Cannot turn off system, halting.\n");
wfi();
panic();
}