blob: 9e9dddc4d0b02e0d182051ce160e904cd99f2dc6 [file] [log] [blame]
/*
* Copyright (c) 2017-2019, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <errno.h>
#include <libfdt.h>
#include <platform_def.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32_i2c.h>
#include <drivers/st/stm32mp_pmic.h>
#include <drivers/st/stpmic1.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#define STPMIC1_LDO12356_OUTPUT_MASK (uint8_t)(GENMASK(6, 2))
#define STPMIC1_LDO12356_OUTPUT_SHIFT 2
#define STPMIC1_LDO3_MODE (uint8_t)(BIT(7))
#define STPMIC1_LDO3_DDR_SEL 31U
#define STPMIC1_LDO3_1800000 (9U << STPMIC1_LDO12356_OUTPUT_SHIFT)
#define STPMIC1_BUCK_OUTPUT_SHIFT 2
#define STPMIC1_BUCK3_1V8 (39U << STPMIC1_BUCK_OUTPUT_SHIFT)
#define STPMIC1_DEFAULT_START_UP_DELAY_MS 1
static struct i2c_handle_s i2c_handle;
static uint32_t pmic_i2c_addr;
static int dt_get_pmic_node(void *fdt)
{
return fdt_node_offset_by_compatible(fdt, -1, "st,stpmic1");
}
int dt_pmic_status(void)
{
int node;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = dt_get_pmic_node(fdt);
if (node <= 0) {
return -FDT_ERR_NOTFOUND;
}
return fdt_get_status(node);
}
/*
* Get PMIC and its I2C bus configuration from the device tree.
* Return 0 on success, negative on error, 1 if no PMIC node is found.
*/
static int dt_pmic_i2c_config(struct dt_node_info *i2c_info,
struct stm32_i2c_init_s *init)
{
int pmic_node, i2c_node;
void *fdt;
const fdt32_t *cuint;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
pmic_node = dt_get_pmic_node(fdt);
if (pmic_node < 0) {
return 1;
}
cuint = fdt_getprop(fdt, pmic_node, "reg", NULL);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
pmic_i2c_addr = fdt32_to_cpu(*cuint) << 1;
if (pmic_i2c_addr > UINT16_MAX) {
return -EINVAL;
}
i2c_node = fdt_parent_offset(fdt, pmic_node);
if (i2c_node < 0) {
return -FDT_ERR_NOTFOUND;
}
dt_fill_device_info(i2c_info, i2c_node);
if (i2c_info->base == 0U) {
return -FDT_ERR_NOTFOUND;
}
return stm32_i2c_get_setup_from_fdt(fdt, i2c_node, init);
}
int dt_pmic_configure_boot_on_regulators(void)
{
int pmic_node, regulators_node, regulator_node;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
pmic_node = dt_get_pmic_node(fdt);
if (pmic_node < 0) {
return -FDT_ERR_NOTFOUND;
}
regulators_node = fdt_subnode_offset(fdt, pmic_node, "regulators");
fdt_for_each_subnode(regulator_node, fdt, regulators_node) {
const fdt32_t *cuint;
const char *node_name = fdt_get_name(fdt, regulator_node, NULL);
uint16_t voltage;
int status;
#if defined(IMAGE_BL2)
if ((fdt_getprop(fdt, regulator_node, "regulator-boot-on",
NULL) == NULL) &&
(fdt_getprop(fdt, regulator_node, "regulator-always-on",
NULL) == NULL)) {
#else
if (fdt_getprop(fdt, regulator_node, "regulator-boot-on",
NULL) == NULL) {
#endif
continue;
}
if (fdt_getprop(fdt, regulator_node, "regulator-pull-down",
NULL) != NULL) {
status = stpmic1_regulator_pull_down_set(node_name);
if (status != 0) {
return status;
}
}
if (fdt_getprop(fdt, regulator_node, "st,mask-reset",
NULL) != NULL) {
status = stpmic1_regulator_mask_reset_set(node_name);
if (status != 0) {
return status;
}
}
cuint = fdt_getprop(fdt, regulator_node,
"regulator-min-microvolt", NULL);
if (cuint == NULL) {
continue;
}
/* DT uses microvolts, whereas driver awaits millivolts */
voltage = (uint16_t)(fdt32_to_cpu(*cuint) / 1000U);
status = stpmic1_regulator_voltage_set(node_name, voltage);
if (status != 0) {
return status;
}
if (stpmic1_is_regulator_enabled(node_name) == 0U) {
status = stpmic1_regulator_enable(node_name);
if (status != 0) {
return status;
}
}
}
return 0;
}
bool initialize_pmic_i2c(void)
{
int ret;
struct dt_node_info i2c_info;
struct i2c_handle_s *i2c = &i2c_handle;
struct stm32_i2c_init_s i2c_init;
ret = dt_pmic_i2c_config(&i2c_info, &i2c_init);
if (ret < 0) {
ERROR("I2C configuration failed %d\n", ret);
panic();
}
if (ret != 0) {
return false;
}
/* Initialize PMIC I2C */
i2c->i2c_base_addr = i2c_info.base;
i2c->dt_status = i2c_info.status;
i2c->clock = i2c_info.clock;
i2c_init.own_address1 = pmic_i2c_addr;
i2c_init.addressing_mode = I2C_ADDRESSINGMODE_7BIT;
i2c_init.dual_address_mode = I2C_DUALADDRESS_DISABLE;
i2c_init.own_address2 = 0;
i2c_init.own_address2_masks = I2C_OAR2_OA2NOMASK;
i2c_init.general_call_mode = I2C_GENERALCALL_DISABLE;
i2c_init.no_stretch_mode = I2C_NOSTRETCH_DISABLE;
i2c_init.analog_filter = 1;
i2c_init.digital_filter_coef = 0;
ret = stm32_i2c_init(i2c, &i2c_init);
if (ret != 0) {
ERROR("Cannot initialize I2C %x (%d)\n",
i2c->i2c_base_addr, ret);
panic();
}
if (!stm32_i2c_is_device_ready(i2c, pmic_i2c_addr, 1,
I2C_TIMEOUT_BUSY_MS)) {
ERROR("I2C device not ready\n");
panic();
}
stpmic1_bind_i2c(i2c, (uint16_t)pmic_i2c_addr);
return true;
}
void initialize_pmic(void)
{
unsigned long pmic_version;
if (!initialize_pmic_i2c()) {
VERBOSE("No PMIC\n");
return;
}
if (stpmic1_get_version(&pmic_version) != 0) {
ERROR("Failed to access PMIC\n");
panic();
}
INFO("PMIC version = 0x%02lx\n", pmic_version);
stpmic1_dump_regulators();
#if defined(IMAGE_BL2)
if (dt_pmic_configure_boot_on_regulators() != 0) {
panic();
};
#endif
}
int pmic_ddr_power_init(enum ddr_type ddr_type)
{
bool buck3_at_1v8 = false;
uint8_t read_val;
int status;
switch (ddr_type) {
case STM32MP_DDR3:
/* Set LDO3 to sync mode */
status = stpmic1_register_read(LDO3_CONTROL_REG, &read_val);
if (status != 0) {
return status;
}
read_val &= ~STPMIC1_LDO3_MODE;
read_val &= ~STPMIC1_LDO12356_OUTPUT_MASK;
read_val |= STPMIC1_LDO3_DDR_SEL <<
STPMIC1_LDO12356_OUTPUT_SHIFT;
status = stpmic1_register_write(LDO3_CONTROL_REG, read_val);
if (status != 0) {
return status;
}
status = stpmic1_regulator_voltage_set("buck2", 1350);
if (status != 0) {
return status;
}
status = stpmic1_regulator_enable("buck2");
if (status != 0) {
return status;
}
mdelay(STPMIC1_DEFAULT_START_UP_DELAY_MS);
status = stpmic1_regulator_enable("vref_ddr");
if (status != 0) {
return status;
}
mdelay(STPMIC1_DEFAULT_START_UP_DELAY_MS);
status = stpmic1_regulator_enable("ldo3");
if (status != 0) {
return status;
}
mdelay(STPMIC1_DEFAULT_START_UP_DELAY_MS);
break;
case STM32MP_LPDDR2:
case STM32MP_LPDDR3:
/*
* Set LDO3 to 1.8V
* Set LDO3 to bypass mode if BUCK3 = 1.8V
* Set LDO3 to normal mode if BUCK3 != 1.8V
*/
status = stpmic1_register_read(BUCK3_CONTROL_REG, &read_val);
if (status != 0) {
return status;
}
if ((read_val & STPMIC1_BUCK3_1V8) == STPMIC1_BUCK3_1V8) {
buck3_at_1v8 = true;
}
status = stpmic1_register_read(LDO3_CONTROL_REG, &read_val);
if (status != 0) {
return status;
}
read_val &= ~STPMIC1_LDO3_MODE;
read_val &= ~STPMIC1_LDO12356_OUTPUT_MASK;
read_val |= STPMIC1_LDO3_1800000;
if (buck3_at_1v8) {
read_val |= STPMIC1_LDO3_MODE;
}
status = stpmic1_register_write(LDO3_CONTROL_REG, read_val);
if (status != 0) {
return status;
}
status = stpmic1_regulator_voltage_set("buck2", 1200);
if (status != 0) {
return status;
}
status = stpmic1_regulator_enable("ldo3");
if (status != 0) {
return status;
}
mdelay(STPMIC1_DEFAULT_START_UP_DELAY_MS);
status = stpmic1_regulator_enable("buck2");
if (status != 0) {
return status;
}
mdelay(STPMIC1_DEFAULT_START_UP_DELAY_MS);
status = stpmic1_regulator_enable("vref_ddr");
if (status != 0) {
return status;
}
mdelay(STPMIC1_DEFAULT_START_UP_DELAY_MS);
break;
default:
break;
};
return 0;
}