blob: 4ae55fcc7f8abe1dfe1f34282f4f10fb1cdabc44 [file] [log] [blame]
/*
* Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <errno.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/st/stm32mp1_ddr.h>
#include <drivers/st/stm32mp1_ddr_helpers.h>
#include <drivers/st/stm32mp1_ram.h>
#include <lib/mmio.h>
#define DDR_PATTERN 0xAAAAAAAAU
#define DDR_ANTIPATTERN 0x55555555U
static struct ddr_info ddr_priv_data;
int stm32mp1_ddr_clk_enable(struct ddr_info *priv, uint32_t mem_speed)
{
unsigned long ddrphy_clk, ddr_clk, mem_speed_hz;
ddr_enable_clock();
ddrphy_clk = stm32mp_clk_get_rate(DDRPHYC);
VERBOSE("DDR: mem_speed (%d kHz), RCC %ld kHz\n",
mem_speed, ddrphy_clk / 1000U);
mem_speed_hz = mem_speed * 1000U;
/* Max 10% frequency delta */
if (ddrphy_clk > mem_speed_hz) {
ddr_clk = ddrphy_clk - mem_speed_hz;
} else {
ddr_clk = mem_speed_hz - ddrphy_clk;
}
if (ddr_clk > (mem_speed_hz / 10)) {
ERROR("DDR expected freq %d kHz, current is %ld kHz\n",
mem_speed, ddrphy_clk / 1000U);
return -1;
}
return 0;
}
/*******************************************************************************
* This function tests the DDR data bus wiring.
* This is inspired from the Data Bus Test algorithm written by Michael Barr
* in "Programming Embedded Systems in C and C++" book.
* resources.oreilly.com/examples/9781565923546/blob/master/Chapter6/
* File: memtest.c - This source code belongs to Public Domain.
* Returns 0 if success, and address value else.
******************************************************************************/
static uint32_t ddr_test_data_bus(void)
{
uint32_t pattern;
for (pattern = 1U; pattern != 0U; pattern <<= 1) {
mmio_write_32(STM32MP_DDR_BASE, pattern);
if (mmio_read_32(STM32MP_DDR_BASE) != pattern) {
return (uint32_t)STM32MP_DDR_BASE;
}
}
return 0;
}
/*******************************************************************************
* This function tests the DDR address bus wiring.
* This is inspired from the Data Bus Test algorithm written by Michael Barr
* in "Programming Embedded Systems in C and C++" book.
* resources.oreilly.com/examples/9781565923546/blob/master/Chapter6/
* File: memtest.c - This source code belongs to Public Domain.
* Returns 0 if success, and address value else.
******************************************************************************/
static uint32_t ddr_test_addr_bus(void)
{
uint64_t addressmask = (ddr_priv_data.info.size - 1U);
uint64_t offset;
uint64_t testoffset = 0;
/* Write the default pattern at each of the power-of-two offsets. */
for (offset = sizeof(uint32_t); (offset & addressmask) != 0U;
offset <<= 1) {
mmio_write_32(STM32MP_DDR_BASE + (uint32_t)offset,
DDR_PATTERN);
}
/* Check for address bits stuck high. */
mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset,
DDR_ANTIPATTERN);
for (offset = sizeof(uint32_t); (offset & addressmask) != 0U;
offset <<= 1) {
if (mmio_read_32(STM32MP_DDR_BASE + (uint32_t)offset) !=
DDR_PATTERN) {
return (uint32_t)(STM32MP_DDR_BASE + offset);
}
}
mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset, DDR_PATTERN);
/* Check for address bits stuck low or shorted. */
for (testoffset = sizeof(uint32_t); (testoffset & addressmask) != 0U;
testoffset <<= 1) {
mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset,
DDR_ANTIPATTERN);
if (mmio_read_32(STM32MP_DDR_BASE) != DDR_PATTERN) {
return STM32MP_DDR_BASE;
}
for (offset = sizeof(uint32_t); (offset & addressmask) != 0U;
offset <<= 1) {
if ((mmio_read_32(STM32MP_DDR_BASE +
(uint32_t)offset) != DDR_PATTERN) &&
(offset != testoffset)) {
return (uint32_t)(STM32MP_DDR_BASE + offset);
}
}
mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset,
DDR_PATTERN);
}
return 0;
}
/*******************************************************************************
* This function checks the DDR size. It has to be run with Data Cache off.
* This test is run before data have been put in DDR, and is only done for
* cold boot. The DDR data can then be overwritten, and it is not useful to
* restore its content.
* Returns DDR computed size.
******************************************************************************/
static uint32_t ddr_check_size(void)
{
uint32_t offset = sizeof(uint32_t);
mmio_write_32(STM32MP_DDR_BASE, DDR_PATTERN);
while (offset < STM32MP_DDR_MAX_SIZE) {
mmio_write_32(STM32MP_DDR_BASE + offset, DDR_ANTIPATTERN);
dsb();
if (mmio_read_32(STM32MP_DDR_BASE) != DDR_PATTERN) {
break;
}
offset <<= 1;
}
INFO("Memory size = 0x%x (%d MB)\n", offset, offset / (1024U * 1024U));
return offset;
}
static int stm32mp1_ddr_setup(void)
{
struct ddr_info *priv = &ddr_priv_data;
int ret;
struct stm32mp1_ddr_config config;
int node, len;
uint32_t uret, idx;
void *fdt;
#define PARAM(x, y) \
{ \
.name = x, \
.offset = offsetof(struct stm32mp1_ddr_config, y), \
.size = sizeof(config.y) / sizeof(uint32_t) \
}
#define CTL_PARAM(x) PARAM("st,ctl-"#x, c_##x)
#define PHY_PARAM(x) PARAM("st,phy-"#x, p_##x)
const struct {
const char *name; /* Name in DT */
const uint32_t offset; /* Offset in config struct */
const uint32_t size; /* Size of parameters */
} param[] = {
CTL_PARAM(reg),
CTL_PARAM(timing),
CTL_PARAM(map),
CTL_PARAM(perf),
PHY_PARAM(reg),
PHY_PARAM(timing),
PHY_PARAM(cal)
};
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_DDR_COMPAT);
if (node < 0) {
ERROR("%s: Cannot read DDR node in DT\n", __func__);
return -EINVAL;
}
config.info.speed = fdt_read_uint32_default(node, "st,mem-speed", 0);
if (!config.info.speed) {
VERBOSE("%s: no st,mem-speed\n", __func__);
return -EINVAL;
}
config.info.size = fdt_read_uint32_default(node, "st,mem-size", 0);
if (!config.info.size) {
VERBOSE("%s: no st,mem-size\n", __func__);
return -EINVAL;
}
config.info.name = fdt_getprop(fdt, node, "st,mem-name", &len);
if (config.info.name == NULL) {
VERBOSE("%s: no st,mem-name\n", __func__);
return -EINVAL;
}
INFO("RAM: %s\n", config.info.name);
for (idx = 0; idx < ARRAY_SIZE(param); idx++) {
ret = fdt_read_uint32_array(node, param[idx].name,
(void *)((uintptr_t)&config +
param[idx].offset),
param[idx].size);
VERBOSE("%s: %s[0x%x] = %d\n", __func__,
param[idx].name, param[idx].size, ret);
if (ret != 0) {
ERROR("%s: Cannot read %s\n",
__func__, param[idx].name);
return -EINVAL;
}
}
/* Disable axidcg clock gating during init */
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN);
stm32mp1_ddr_init(priv, &config);
/* Enable axidcg clock gating */
mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN);
priv->info.size = config.info.size;
VERBOSE("%s : ram size(%x, %x)\n", __func__,
(uint32_t)priv->info.base, (uint32_t)priv->info.size);
write_sctlr(read_sctlr() & ~SCTLR_C_BIT);
dcsw_op_all(DC_OP_CISW);
uret = ddr_test_data_bus();
if (uret != 0U) {
ERROR("DDR data bus test: can't access memory @ 0x%x\n",
uret);
panic();
}
uret = ddr_test_addr_bus();
if (uret != 0U) {
ERROR("DDR addr bus test: can't access memory @ 0x%x\n",
uret);
panic();
}
uret = ddr_check_size();
if (uret < config.info.size) {
ERROR("DDR size: 0x%x does not match DT config: 0x%x\n",
uret, config.info.size);
panic();
}
write_sctlr(read_sctlr() | SCTLR_C_BIT);
return 0;
}
int stm32mp1_ddr_probe(void)
{
struct ddr_info *priv = &ddr_priv_data;
VERBOSE("STM32MP DDR probe\n");
priv->ctl = (struct stm32mp1_ddrctl *)stm32mp_ddrctrl_base();
priv->phy = (struct stm32mp1_ddrphy *)stm32mp_ddrphyc_base();
priv->pwr = stm32mp_pwr_base();
priv->rcc = stm32mp_rcc_base();
priv->info.base = STM32MP_DDR_BASE;
priv->info.size = 0;
return stm32mp1_ddr_setup();
}