blob: f8ce6fe29ee91a380a292261b05adbacf7472203 [file] [log] [blame]
/*
* Copyright (C) 2018 Marvell International Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
#include <common/debug.h>
#ifdef USE_CCI
#include <drivers/arm/cci.h>
#endif
#include <lib/psci/psci.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>
#include <a3700_pm.h>
#include <arch_helpers.h>
#include <armada_common.h>
#include <dram_win.h>
#include <io_addr_dec.h>
#include <mvebu.h>
#include <mvebu_def.h>
#include <marvell_plat_priv.h>
#include <plat_marvell.h>
/* Warm reset register */
#define MVEBU_WARM_RESET_REG (MVEBU_NB_REGS_BASE + 0x840)
#define MVEBU_WARM_RESET_MAGIC 0x1D1E
/* North Bridge GPIO1 SEL register */
#define MVEBU_NB_GPIO1_SEL_REG (MVEBU_NB_REGS_BASE + 0x830)
#define MVEBU_NB_GPIO1_UART1_SEL BIT(19)
#define MVEBU_NB_GPIO1_GPIO_25_26_EN BIT(17)
#define MVEBU_NB_GPIO1_GPIO_19_EN BIT(14)
#define MVEBU_NB_GPIO1_GPIO_18_EN BIT(13)
/* CPU 1 reset register */
#define MVEBU_CPU_1_RESET_VECTOR (MVEBU_REGS_BASE + 0x14044)
#define MVEBU_CPU_1_RESET_REG (MVEBU_REGS_BASE + 0xD00C)
#define MVEBU_CPU_1_RESET_BIT 31
/* IRQ register */
#define MVEBU_NB_IRQ_STATUS_1_REG (MVEBU_NB_SB_IRQ_REG_BASE)
#define MVEBU_NB_IRQ_STATUS_2_REG (MVEBU_NB_SB_IRQ_REG_BASE + \
0x10)
#define MVEBU_NB_IRQ_MASK_2_REG (MVEBU_NB_SB_IRQ_REG_BASE + \
0x18)
#define MVEBU_SB_IRQ_STATUS_1_REG (MVEBU_NB_SB_IRQ_REG_BASE + \
0x40)
#define MVEBU_SB_IRQ_STATUS_2_REG (MVEBU_NB_SB_IRQ_REG_BASE + \
0x50)
#define MVEBU_NB_GPIO_IRQ_MASK_1_REG (MVEBU_NB_SB_IRQ_REG_BASE + \
0xC8)
#define MVEBU_NB_GPIO_IRQ_MASK_2_REG (MVEBU_NB_SB_IRQ_REG_BASE + \
0xD8)
#define MVEBU_SB_GPIO_IRQ_MASK_REG (MVEBU_NB_SB_IRQ_REG_BASE + \
0xE8)
#define MVEBU_NB_GPIO_IRQ_EN_LOW_REG (MVEBU_NB_GPIO_IRQ_REG_BASE)
#define MVEBU_NB_GPIO_IRQ_EN_HIGH_REG (MVEBU_NB_GPIO_IRQ_REG_BASE + \
0x04)
#define MVEBU_NB_GPIO_IRQ_STATUS_LOW_REG (MVEBU_NB_GPIO_IRQ_REG_BASE + \
0x10)
#define MVEBU_NB_GPIO_IRQ_STATUS_HIGH_REG (MVEBU_NB_GPIO_IRQ_REG_BASE + \
0x14)
#define MVEBU_NB_GPIO_IRQ_WK_LOW_REG (MVEBU_NB_GPIO_IRQ_REG_BASE + \
0x18)
#define MVEBU_NB_GPIO_IRQ_WK_HIGH_REG (MVEBU_NB_GPIO_IRQ_REG_BASE + \
0x1C)
#define MVEBU_SB_GPIO_IRQ_EN_REG (MVEBU_SB_GPIO_IRQ_REG_BASE)
#define MVEBU_SB_GPIO_IRQ_STATUS_REG (MVEBU_SB_GPIO_IRQ_REG_BASE + \
0x10)
#define MVEBU_SB_GPIO_IRQ_WK_REG (MVEBU_SB_GPIO_IRQ_REG_BASE + \
0x18)
/* PMU registers */
#define MVEBU_PM_NB_PWR_CTRL_REG (MVEBU_PMSU_REG_BASE)
#define MVEBU_PM_PWR_DN_CNT_SEL BIT(28)
#define MVEBU_PM_SB_PWR_DWN BIT(4)
#define MVEBU_PM_INTERFACE_IDLE BIT(0)
#define MVEBU_PM_NB_CPU_PWR_CTRL_REG (MVEBU_PMSU_REG_BASE + 0x4)
#define MVEBU_PM_L2_FLUSH_EN BIT(22)
#define MVEBU_PM_NB_PWR_OPTION_REG (MVEBU_PMSU_REG_BASE + 0x8)
#define MVEBU_PM_DDR_SR_EN BIT(29)
#define MVEBU_PM_DDR_CLK_DIS_EN BIT(28)
#define MVEBU_PM_WARM_RESET_EN BIT(27)
#define MVEBU_PM_DDRPHY_PWRDWN_EN BIT(23)
#define MVEBU_PM_DDRPHY_PAD_PWRDWN_EN BIT(22)
#define MVEBU_PM_OSC_OFF_EN BIT(21)
#define MVEBU_PM_TBG_OFF_EN BIT(20)
#define MVEBU_PM_CPU_VDDV_OFF_EN BIT(19)
#define MVEBU_PM_AVS_DISABLE_MODE BIT(14)
#define MVEBU_PM_AVS_VDD2_MODE BIT(13)
#define MVEBU_PM_AVS_HOLD_MODE BIT(12)
#define MVEBU_PM_L2_SRAM_LKG_PD_EN BIT(8)
#define MVEBU_PM_EIP_SRAM_LKG_PD_EN BIT(7)
#define MVEBU_PM_DDRMC_SRAM_LKG_PD_EN BIT(6)
#define MVEBU_PM_MCI_SRAM_LKG_PD_EN BIT(5)
#define MVEBU_PM_MMC_SRAM_LKG_PD_EN BIT(4)
#define MVEBU_PM_SATA_SRAM_LKG_PD_EN BIT(3)
#define MVEBU_PM_DMA_SRAM_LKG_PD_EN BIT(2)
#define MVEBU_PM_SEC_SRAM_LKG_PD_EN BIT(1)
#define MVEBU_PM_CPU_SRAM_LKG_PD_EN BIT(0)
#define MVEBU_PM_NB_SRAM_LKG_PD_EN (MVEBU_PM_L2_SRAM_LKG_PD_EN |\
MVEBU_PM_EIP_SRAM_LKG_PD_EN | MVEBU_PM_DDRMC_SRAM_LKG_PD_EN |\
MVEBU_PM_MCI_SRAM_LKG_PD_EN | MVEBU_PM_MMC_SRAM_LKG_PD_EN |\
MVEBU_PM_SATA_SRAM_LKG_PD_EN | MVEBU_PM_DMA_SRAM_LKG_PD_EN |\
MVEBU_PM_SEC_SRAM_LKG_PD_EN | MVEBU_PM_CPU_SRAM_LKG_PD_EN)
#define MVEBU_PM_NB_PWR_DEBUG_REG (MVEBU_PMSU_REG_BASE + 0xC)
#define MVEBU_PM_NB_FORCE_CLK_ON BIT(30)
#define MVEBU_PM_IGNORE_CM3_SLEEP BIT(21)
#define MVEBU_PM_IGNORE_CM3_DEEP BIT(20)
#define MVEBU_PM_NB_WAKE_UP_EN_REG (MVEBU_PMSU_REG_BASE + 0x2C)
#define MVEBU_PM_SB_WKP_NB_EN BIT(31)
#define MVEBU_PM_NB_GPIO_WKP_EN BIT(27)
#define MVEBU_PM_SOC_TIMER_WKP_EN BIT(26)
#define MVEBU_PM_UART_WKP_EN BIT(25)
#define MVEBU_PM_UART2_WKP_EN BIT(19)
#define MVEBU_PM_CPU_TIMER_WKP_EN BIT(17)
#define MVEBU_PM_NB_WKP_EN BIT(16)
#define MVEBU_PM_CORE1_FIQ_IRQ_WKP_EN BIT(13)
#define MVEBU_PM_CORE0_FIQ_IRQ_WKP_EN BIT(12)
#define MVEBU_PM_CPU_0_PWR_CTRL_REG (MVEBU_PMSU_REG_BASE + 0x34)
#define MVEBU_PM_CPU_1_PWR_CTRL_REG (MVEBU_PMSU_REG_BASE + 0x38)
#define MVEBU_PM_CORE_SOC_PD BIT(2)
#define MVEBU_PM_CORE_PROC_PD BIT(1)
#define MVEBU_PM_CORE_PD BIT(0)
#define MVEBU_PM_CORE_1_RETURN_ADDR_REG (MVEBU_PMSU_REG_BASE + 0x44)
#define MVEBU_PM_CPU_VDD_OFF_INFO_1_REG (MVEBU_PMSU_REG_BASE + 0x48)
#define MVEBU_PM_CPU_VDD_OFF_INFO_2_REG (MVEBU_PMSU_REG_BASE + 0x4C)
#define MVEBU_PM_LOW_POWER_STATE BIT(0)
#define MVEBU_PM_CPU_WAKE_UP_CONF_REG (MVEBU_PMSU_REG_BASE + 0x54)
#define MVEBU_PM_CORE1_WAKEUP BIT(13)
#define MVEBU_PM_CORE0_WAKEUP BIT(12)
#define MVEBU_PM_WAIT_DDR_RDY_VALUE (0x15)
#define MVEBU_PM_SB_CPU_PWR_CTRL_REG (MVEBU_SB_WAKEUP_REG_BASE)
#define MVEBU_PM_SB_PM_START BIT(0)
#define MVEBU_PM_SB_PWR_OPTION_REG (MVEBU_SB_WAKEUP_REG_BASE + 0x4)
#define MVEBU_PM_SDIO_PHY_PDWN_EN BIT(17)
#define MVEBU_PM_SB_VDDV_OFF_EN BIT(16)
#define MVEBU_PM_EBM_SRAM_LKG_PD_EN BIT(11)
#define MVEBU_PM_PCIE_SRAM_LKG_PD_EN BIT(10)
#define MVEBU_PM_GBE1_TX_SRAM_LKG_PD_EN BIT(9)
#define MVEBU_PM_GBE1_RX_SRAM_LKG_PD_EN BIT(8)
#define MVEBU_PM_GBE1_MIB_SRAM_LKG_PD_EN BIT(7)
#define MVEBU_PM_GBE0_TX_SRAM_LKG_PD_EN BIT(6)
#define MVEBU_PM_GBE0_RX_SRAM_LKG_PD_EN BIT(5)
#define MVEBU_PM_GBE0_MIB_SRAM_LKG_PD_EN BIT(4)
#define MVEBU_PM_SDIO_SRAM_LKG_PD_EN BIT(3)
#define MVEBU_PM_USB2_SRAM_LKG_PD_EN BIT(2)
#define MVEBU_PM_USB3_H_SRAM_LKG_PD_EN BIT(1)
#define MVEBU_PM_SB_SRAM_LKG_PD_EN (MVEBU_PM_EBM_SRAM_LKG_PD_EN |\
MVEBU_PM_PCIE_SRAM_LKG_PD_EN | MVEBU_PM_GBE1_TX_SRAM_LKG_PD_EN |\
MVEBU_PM_GBE1_RX_SRAM_LKG_PD_EN | MVEBU_PM_GBE1_MIB_SRAM_LKG_PD_EN |\
MVEBU_PM_GBE0_TX_SRAM_LKG_PD_EN | MVEBU_PM_GBE0_RX_SRAM_LKG_PD_EN |\
MVEBU_PM_GBE0_MIB_SRAM_LKG_PD_EN | MVEBU_PM_SDIO_SRAM_LKG_PD_EN |\
MVEBU_PM_USB2_SRAM_LKG_PD_EN | MVEBU_PM_USB3_H_SRAM_LKG_PD_EN)
#define MVEBU_PM_SB_WK_EN_REG (MVEBU_SB_WAKEUP_REG_BASE + 0x10)
#define MVEBU_PM_SB_GPIO_WKP_EN BIT(24)
#define MVEBU_PM_SB_WKP_EN BIT(20)
/* DRAM registers */
#define MVEBU_DRAM_STATS_CH0_REG (MVEBU_DRAM_REG_BASE + 0x4)
#define MVEBU_DRAM_WCP_EMPTY BIT(19)
#define MVEBU_DRAM_CMD_0_REG (MVEBU_DRAM_REG_BASE + 0x20)
#define MVEBU_DRAM_CH0_CMD0 BIT(28)
#define MVEBU_DRAM_CS_CMD0 BIT(24)
#define MVEBU_DRAM_WCB_DRAIN_REQ BIT(1)
#define MVEBU_DRAM_PWR_CTRL_REG (MVEBU_DRAM_REG_BASE + 0x54)
#define MVEBU_DRAM_PHY_CLK_GATING_EN BIT(1)
#define MVEBU_DRAM_PHY_AUTO_AC_OFF_EN BIT(0)
/* AVS registers */
#define MVEBU_AVS_CTRL_2_REG (MVEBU_AVS_REG_BASE + 0x8)
#define MVEBU_LOW_VDD_MODE_EN BIT(6)
/* Clock registers */
#define MVEBU_NB_CLOCK_SEL_REG (MVEBU_NB_REGS_BASE + 0x10)
#define MVEBU_A53_CPU_CLK_SEL BIT(15)
/* North Bridge Step-Down Registers */
#define MVEBU_NB_STEP_DOWN_INT_EN_REG MVEBU_NB_STEP_DOWN_REG_BASE
#define MVEBU_NB_GPIO_INT_WAKE_WCPU_CLK BIT(8)
#define MVEBU_NB_GPIO_18 18
#define MVEBU_NB_GPIO_19 19
#define MVEBU_NB_GPIO_25 25
#define MVEBU_NB_GPIO_26 26
typedef int (*wake_up_src_func)(union pm_wake_up_src_data *);
struct wake_up_src_func_map {
enum pm_wake_up_src_type type;
wake_up_src_func func;
};
void marvell_psci_arch_init(int die_index)
{
}
static void a3700_pm_ack_irq(void)
{
uint32_t reg;
reg = mmio_read_32(MVEBU_NB_IRQ_STATUS_1_REG);
if (reg)
mmio_write_32(MVEBU_NB_IRQ_STATUS_1_REG, reg);
reg = mmio_read_32(MVEBU_NB_IRQ_STATUS_2_REG);
if (reg)
mmio_write_32(MVEBU_NB_IRQ_STATUS_2_REG, reg);
reg = mmio_read_32(MVEBU_SB_IRQ_STATUS_1_REG);
if (reg)
mmio_write_32(MVEBU_SB_IRQ_STATUS_1_REG, reg);
reg = mmio_read_32(MVEBU_SB_IRQ_STATUS_2_REG);
if (reg)
mmio_write_32(MVEBU_SB_IRQ_STATUS_2_REG, reg);
reg = mmio_read_32(MVEBU_NB_GPIO_IRQ_STATUS_LOW_REG);
if (reg)
mmio_write_32(MVEBU_NB_GPIO_IRQ_STATUS_LOW_REG, reg);
reg = mmio_read_32(MVEBU_NB_GPIO_IRQ_STATUS_HIGH_REG);
if (reg)
mmio_write_32(MVEBU_NB_GPIO_IRQ_STATUS_HIGH_REG, reg);
reg = mmio_read_32(MVEBU_SB_GPIO_IRQ_STATUS_REG);
if (reg)
mmio_write_32(MVEBU_SB_GPIO_IRQ_STATUS_REG, reg);
}
/*****************************************************************************
* A3700 handler called to check the validity of the power state
* parameter.
*****************************************************************************
*/
int a3700_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
ERROR("%s needs to be implemented\n", __func__);
panic();
}
/*****************************************************************************
* A3700 handler called when a CPU is about to enter standby.
*****************************************************************************
*/
void a3700_cpu_standby(plat_local_state_t cpu_state)
{
ERROR("%s needs to be implemented\n", __func__);
panic();
}
/*****************************************************************************
* A3700 handler called when a power domain is about to be turned on. The
* mpidr determines the CPU to be turned on.
*****************************************************************************
*/
int a3700_pwr_domain_on(u_register_t mpidr)
{
/* Set barrier */
dsbsy();
/* Set the cpu start address to BL1 entry point */
mmio_write_32(MVEBU_CPU_1_RESET_VECTOR,
PLAT_MARVELL_CPU_ENTRY_ADDR >> 2);
/* Get the cpu out of reset */
mmio_clrbits_32(MVEBU_CPU_1_RESET_REG, BIT(MVEBU_CPU_1_RESET_BIT));
mmio_setbits_32(MVEBU_CPU_1_RESET_REG, BIT(MVEBU_CPU_1_RESET_BIT));
return 0;
}
/*****************************************************************************
* A3700 handler called to validate the entry point.
*****************************************************************************
*/
int a3700_validate_ns_entrypoint(uintptr_t entrypoint)
{
return PSCI_E_SUCCESS;
}
/*****************************************************************************
* A3700 handler called when a power domain is about to be turned off. The
* target_state encodes the power state that each level should transition to.
*****************************************************************************
*/
void a3700_pwr_domain_off(const psci_power_state_t *target_state)
{
/* Prevent interrupts from spuriously waking up this cpu */
plat_marvell_gic_cpuif_disable();
/* Core can not be powered down with pending IRQ,
* acknowledge all the pending IRQ
*/
a3700_pm_ack_irq();
}
static void a3700_set_gen_pwr_off_option(void)
{
/* Enable L2 flush -> processor state-machine option */
mmio_setbits_32(MVEBU_PM_NB_CPU_PWR_CTRL_REG, MVEBU_PM_L2_FLUSH_EN);
/*
* North bridge cannot be VDD off (always ON).
* The NB state machine support low power mode by its state machine.
* This bit MUST be set for north bridge power down, e.g.,
* OSC input cutoff(NOT TEST), SRAM power down, PMIC, etc.
* It is not related to CPU VDD OFF!!
*/
mmio_clrbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_CPU_VDDV_OFF_EN);
/*
* MUST: Switch CPU/AXI clock to OSC
* NB state machine clock is always connected to OSC (slow clock).
* But Core0/1/processor state machine's clock are connected to AXI
* clock. Now, AXI clock takes the TBG as clock source.
* If using AXI clock, Core0/1/processor state machine may much faster
* than NB state machine. It will cause problem in this case if cores
* are released before north bridge gets ready.
*/
mmio_clrbits_32(MVEBU_NB_CLOCK_SEL_REG, MVEBU_A53_CPU_CLK_SEL);
/*
* These register bits will trigger north bridge
* power-down state machine regardless CM3 status.
*/
mmio_setbits_32(MVEBU_PM_NB_PWR_DEBUG_REG, MVEBU_PM_IGNORE_CM3_SLEEP);
mmio_setbits_32(MVEBU_PM_NB_PWR_DEBUG_REG, MVEBU_PM_IGNORE_CM3_DEEP);
/*
* SRAM => controlled by north bridge state machine.
* Core VDD OFF is not related to CPU SRAM power down.
*/
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_NB_SRAM_LKG_PD_EN);
/*
* Idle AXI interface in order to get L2_WFI
* L2 WFI is only asserted after CORE-0 and CORE-1 WFI asserted.
* (only both core-0/1in WFI, L2 WFI will be issued by CORE.)
* Once L2 WFI asserted, this bit is used for signalling assertion
* to AXI IO masters.
*/
mmio_setbits_32(MVEBU_PM_NB_PWR_CTRL_REG, MVEBU_PM_INTERFACE_IDLE);
/* Enable core0 and core1 VDD_OFF */
mmio_setbits_32(MVEBU_PM_CPU_0_PWR_CTRL_REG, MVEBU_PM_CORE_PD);
mmio_setbits_32(MVEBU_PM_CPU_1_PWR_CTRL_REG, MVEBU_PM_CORE_PD);
/* Enable North bridge power down -
* Both Cores MUST enable this bit to power down north bridge!
*/
mmio_setbits_32(MVEBU_PM_CPU_0_PWR_CTRL_REG, MVEBU_PM_CORE_SOC_PD);
mmio_setbits_32(MVEBU_PM_CPU_1_PWR_CTRL_REG, MVEBU_PM_CORE_SOC_PD);
/* CA53 (processor domain) power down */
mmio_setbits_32(MVEBU_PM_CPU_0_PWR_CTRL_REG, MVEBU_PM_CORE_PROC_PD);
mmio_setbits_32(MVEBU_PM_CPU_1_PWR_CTRL_REG, MVEBU_PM_CORE_PROC_PD);
}
static void a3700_en_ddr_self_refresh(void)
{
/*
* Both count is 16 bits and configurable. By default, osc stb cnt
* is 0xFFF for lower 12 bits.
* Thus, powerdown count is smaller than osc count.
* This count is used for exiting DDR SR mode on wakeup event.
* The powerdown count also has impact on the following
* state changes: idle -> count-down -> ... (power-down, vdd off, etc)
* Here, make stable counter shorter
* Use power down count value instead of osc_stb_cnt to speed up
* DDR self refresh exit
*/
mmio_setbits_32(MVEBU_PM_NB_PWR_CTRL_REG, MVEBU_PM_PWR_DN_CNT_SEL);
/*
* Enable DDR SR mode => controlled by north bridge state machine
* Therefore, we must powerdown north bridge to trigger the DDR SR
* mode switching.
*/
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_DDR_SR_EN);
/* Disable DDR clock, otherwise DDR will not enter into SR mode. */
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_DDR_CLK_DIS_EN);
/* Power down DDR PHY (PAD) */
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_DDRPHY_PWRDWN_EN);
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG,
MVEBU_PM_DDRPHY_PAD_PWRDWN_EN);
/* Set wait time for DDR ready in ROM code */
mmio_write_32(MVEBU_PM_CPU_VDD_OFF_INFO_1_REG,
MVEBU_PM_WAIT_DDR_RDY_VALUE);
/* DDR flush write buffer - mandatory */
mmio_write_32(MVEBU_DRAM_CMD_0_REG, MVEBU_DRAM_CH0_CMD0 |
MVEBU_DRAM_CS_CMD0 | MVEBU_DRAM_WCB_DRAIN_REQ);
while ((mmio_read_32(MVEBU_DRAM_STATS_CH0_REG) &
MVEBU_DRAM_WCP_EMPTY) != MVEBU_DRAM_WCP_EMPTY)
;
/* Trigger PHY reset after ddr out of self refresh =>
* supply reset pulse for DDR phy after wake up
*/
mmio_setbits_32(MVEBU_DRAM_PWR_CTRL_REG, MVEBU_DRAM_PHY_CLK_GATING_EN |
MVEBU_DRAM_PHY_AUTO_AC_OFF_EN);
}
static void a3700_pwr_dn_avs(void)
{
/*
* AVS power down - controlled by north bridge statemachine
* Enable AVS power down by clear the AVS disable bit.
*/
mmio_clrbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_AVS_DISABLE_MODE);
/*
* Should set BIT[12:13] to powerdown AVS.
* 1. Enable AVS VDD2 mode
* 2. After power down AVS, we must hold AVS output voltage.
* 3. We can choose the lower VDD for AVS power down.
*/
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_AVS_VDD2_MODE);
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_AVS_HOLD_MODE);
/* Enable low VDD mode, AVS will set CPU to lowest core VDD 747mV */
mmio_setbits_32(MVEBU_AVS_CTRL_2_REG, MVEBU_LOW_VDD_MODE_EN);
}
static void a3700_pwr_dn_tbg(void)
{
/* Power down TBG */
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_TBG_OFF_EN);
}
static void a3700_pwr_dn_sb(void)
{
/* Enable south bridge power down option */
mmio_setbits_32(MVEBU_PM_NB_PWR_CTRL_REG, MVEBU_PM_SB_PWR_DWN);
/* Enable SDIO_PHY_PWRDWN */
mmio_setbits_32(MVEBU_PM_SB_PWR_OPTION_REG, MVEBU_PM_SDIO_PHY_PDWN_EN);
/* Enable SRAM LRM on SB */
mmio_setbits_32(MVEBU_PM_SB_PWR_OPTION_REG, MVEBU_PM_SB_SRAM_LKG_PD_EN);
/* Enable SB Power Off */
mmio_setbits_32(MVEBU_PM_SB_PWR_OPTION_REG, MVEBU_PM_SB_VDDV_OFF_EN);
/* Kick off South Bridge Power Off */
mmio_setbits_32(MVEBU_PM_SB_CPU_PWR_CTRL_REG, MVEBU_PM_SB_PM_START);
}
static void a3700_set_pwr_off_option(void)
{
/* Set general power off option */
a3700_set_gen_pwr_off_option();
/* Enable DDR self refresh in low power mode */
a3700_en_ddr_self_refresh();
/* Power down AVS */
a3700_pwr_dn_avs();
/* Power down TBG */
a3700_pwr_dn_tbg();
/* Power down south bridge, pay attention south bridge setting
* should be done before
*/
a3700_pwr_dn_sb();
}
static void a3700_set_wake_up_option(void)
{
/*
* Enable the wakeup event for NB SOC => north-bridge
* state-machine enablement on wake-up event
*/
mmio_setbits_32(MVEBU_PM_NB_WAKE_UP_EN_REG, MVEBU_PM_NB_WKP_EN);
/* Enable both core0 and core1 wakeup on demand */
mmio_setbits_32(MVEBU_PM_CPU_WAKE_UP_CONF_REG,
MVEBU_PM_CORE1_WAKEUP | MVEBU_PM_CORE0_WAKEUP);
/* Enable warm reset in low power mode */
mmio_setbits_32(MVEBU_PM_NB_PWR_OPTION_REG, MVEBU_PM_WARM_RESET_EN);
}
static void a3700_pm_en_nb_gpio(uint32_t gpio)
{
/* For GPIO1 interrupt -- North bridge only */
if (gpio >= 32) {
/* GPIO int mask */
mmio_clrbits_32(MVEBU_NB_GPIO_IRQ_MASK_2_REG, BIT(gpio - 32));
/* NB_CPU_WAKE-up ENABLE GPIO int */
mmio_setbits_32(MVEBU_NB_GPIO_IRQ_EN_HIGH_REG, BIT(gpio - 32));
} else {
/* GPIO int mask */
mmio_clrbits_32(MVEBU_NB_GPIO_IRQ_MASK_1_REG, BIT(gpio));
/* NB_CPU_WAKE-up ENABLE GPIO int */
mmio_setbits_32(MVEBU_NB_GPIO_IRQ_EN_LOW_REG, BIT(gpio));
}
mmio_setbits_32(MVEBU_NB_STEP_DOWN_INT_EN_REG,
MVEBU_NB_GPIO_INT_WAKE_WCPU_CLK);
/* Enable using GPIO as wakeup event
* (actually not only for north bridge)
*/
mmio_setbits_32(MVEBU_PM_NB_WAKE_UP_EN_REG, MVEBU_PM_NB_GPIO_WKP_EN |
MVEBU_PM_NB_WKP_EN | MVEBU_PM_CORE1_FIQ_IRQ_WKP_EN |
MVEBU_PM_CORE0_FIQ_IRQ_WKP_EN);
}
static void a3700_pm_en_sb_gpio(uint32_t gpio)
{
/* Enable using GPIO as wakeup event */
mmio_setbits_32(MVEBU_PM_NB_WAKE_UP_EN_REG, MVEBU_PM_SB_WKP_NB_EN |
MVEBU_PM_NB_WKP_EN | MVEBU_PM_CORE1_FIQ_IRQ_WKP_EN |
MVEBU_PM_CORE0_FIQ_IRQ_WKP_EN);
/* SB GPIO Wake UP | South Bridge Wake Up Enable */
mmio_setbits_32(MVEBU_PM_SB_WK_EN_REG, MVEBU_PM_SB_GPIO_WKP_EN |
MVEBU_PM_SB_GPIO_WKP_EN);
/* GPIO int mask */
mmio_clrbits_32(MVEBU_SB_GPIO_IRQ_MASK_REG, BIT(gpio));
/* NB_CPU_WAKE-up ENABLE GPIO int */
mmio_setbits_32(MVEBU_SB_GPIO_IRQ_EN_REG, BIT(gpio));
}
int a3700_pm_src_gpio(union pm_wake_up_src_data *src_data)
{
if (src_data->gpio_data.bank_num == 0)
/* North Bridge GPIO */
a3700_pm_en_nb_gpio(src_data->gpio_data.gpio_num);
else
a3700_pm_en_sb_gpio(src_data->gpio_data.gpio_num);
return 0;
}
int a3700_pm_src_uart1(union pm_wake_up_src_data *src_data)
{
/* Clear Uart1 select */
mmio_clrbits_32(MVEBU_NB_GPIO1_SEL_REG, MVEBU_NB_GPIO1_UART1_SEL);
/* set pin 19 gpio usage*/
mmio_setbits_32(MVEBU_NB_GPIO1_SEL_REG, MVEBU_NB_GPIO1_GPIO_19_EN);
/* Enable gpio wake-up*/
a3700_pm_en_nb_gpio(MVEBU_NB_GPIO_19);
/* set pin 18 gpio usage*/
mmio_setbits_32(MVEBU_NB_GPIO1_SEL_REG, MVEBU_NB_GPIO1_GPIO_18_EN);
/* Enable gpio wake-up*/
a3700_pm_en_nb_gpio(MVEBU_NB_GPIO_18);
return 0;
}
int a3700_pm_src_uart0(union pm_wake_up_src_data *src_data)
{
/* set pin 25/26 gpio usage*/
mmio_setbits_32(MVEBU_NB_GPIO1_SEL_REG, MVEBU_NB_GPIO1_GPIO_25_26_EN);
/* Enable gpio wake-up*/
a3700_pm_en_nb_gpio(MVEBU_NB_GPIO_25);
/* Enable gpio wake-up*/
a3700_pm_en_nb_gpio(MVEBU_NB_GPIO_26);
return 0;
}
struct wake_up_src_func_map src_func_table[WAKE_UP_SRC_MAX] = {
{WAKE_UP_SRC_GPIO, a3700_pm_src_gpio},
{WAKE_UP_SRC_UART1, a3700_pm_src_uart1},
{WAKE_UP_SRC_UART0, a3700_pm_src_uart0},
/* FOLLOWING SRC NOT SUPPORTED YET */
{WAKE_UP_SRC_TIMER, NULL}
};
static wake_up_src_func a3700_get_wake_up_src_func(
enum pm_wake_up_src_type type)
{
uint32_t loop;
for (loop = 0; loop < WAKE_UP_SRC_MAX; loop++) {
if (src_func_table[loop].type == type)
return src_func_table[loop].func;
}
return NULL;
}
static void a3700_set_wake_up_source(void)
{
struct pm_wake_up_src_config *wake_up_src;
uint32_t loop;
wake_up_src_func src_func = NULL;
wake_up_src = mv_wake_up_src_config_get();
for (loop = 0; loop < wake_up_src->wake_up_src_num; loop++) {
src_func = a3700_get_wake_up_src_func(
wake_up_src->wake_up_src[loop].wake_up_src_type);
if (src_func)
src_func(
&(wake_up_src->wake_up_src[loop].wake_up_data));
}
}
static void a3700_pm_save_lp_flag(void)
{
/* Save the flag for enter the low power mode */
mmio_setbits_32(MVEBU_PM_CPU_VDD_OFF_INFO_2_REG,
MVEBU_PM_LOW_POWER_STATE);
}
static void a3700_pm_clear_lp_flag(void)
{
/* Clear the flag for enter the low power mode */
mmio_clrbits_32(MVEBU_PM_CPU_VDD_OFF_INFO_2_REG,
MVEBU_PM_LOW_POWER_STATE);
}
static uint32_t a3700_pm_get_lp_flag(void)
{
/* Get the flag for enter the low power mode */
return mmio_read_32(MVEBU_PM_CPU_VDD_OFF_INFO_2_REG) &
MVEBU_PM_LOW_POWER_STATE;
}
/*****************************************************************************
* A3700 handler called when a power domain is about to be suspended. The
* target_state encodes the power state that each level should transition to.
*****************************************************************************
*/
void a3700_pwr_domain_suspend(const psci_power_state_t *target_state)
{
/* Prevent interrupts from spuriously waking up this cpu */
plat_marvell_gic_cpuif_disable();
/* Save IRQ states */
plat_marvell_gic_irq_save();
/* Set wake up options */
a3700_set_wake_up_option();
/* Set wake up sources */
a3700_set_wake_up_source();
/* SoC can not be powered down with pending IRQ,
* acknowledge all the pending IRQ
*/
a3700_pm_ack_irq();
/* Set power off options */
a3700_set_pwr_off_option();
/* Save the flag for enter the low power mode */
a3700_pm_save_lp_flag();
isb();
}
/*****************************************************************************
* A3700 handler called when a power domain has just been powered on after
* being turned off earlier. The target_state encodes the low power state that
* each level has woken up from.
*****************************************************************************
*/
void a3700_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
/* arch specific configuration */
marvell_psci_arch_init(0);
/* Per-CPU interrupt initialization */
plat_marvell_gic_pcpu_init();
plat_marvell_gic_cpuif_enable();
/* Restore the per-cpu IRQ state */
if (a3700_pm_get_lp_flag())
plat_marvell_gic_irq_pcpu_restore();
}
/*****************************************************************************
* A3700 handler called when a power domain has just been powered on after
* having been suspended earlier. The target_state encodes the low power state
* that each level has woken up from.
* TODO: At the moment we reuse the on finisher and reinitialize the secure
* context. Need to implement a separate suspend finisher.
*****************************************************************************
*/
void a3700_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
{
struct dec_win_config *io_dec_map;
uint32_t dec_win_num;
struct dram_win_map dram_wins_map;
/* arch specific configuration */
marvell_psci_arch_init(0);
/* Interrupt initialization */
plat_marvell_gic_init();
/* Restore IRQ states */
plat_marvell_gic_irq_restore();
/*
* Initialize CCI for this cluster after resume from suspend state.
* No need for locks as no other CPU is active.
*/
plat_marvell_interconnect_init();
/*
* Enable CCI coherency for the primary CPU's cluster.
* Platform specific PSCI code will enable coherency for other
* clusters.
*/
plat_marvell_interconnect_enter_coherency();
/* CPU address decoder windows initialization. */
cpu_wins_init();
/* fetch CPU-DRAM window mapping information by reading
* CPU-DRAM decode windows (only the enabled ones)
*/
dram_win_map_build(&dram_wins_map);
/* Get IO address decoder windows */
if (marvell_get_io_dec_win_conf(&io_dec_map, &dec_win_num)) {
printf("No IO address decoder windows configurations found!\n");
return;
}
/* IO address decoder init */
if (init_io_addr_dec(&dram_wins_map, io_dec_map, dec_win_num)) {
printf("IO address decoder windows initialization failed!\n");
return;
}
/* Clear low power mode flag */
a3700_pm_clear_lp_flag();
}
/*****************************************************************************
* This handler is called by the PSCI implementation during the `SYSTEM_SUSPEND
* call to get the `power_state` parameter. This allows the platform to encode
* the appropriate State-ID field within the `power_state` parameter which can
* be utilized in `pwr_domain_suspend()` to suspend to system affinity level.
*****************************************************************************
*/
void a3700_get_sys_suspend_power_state(psci_power_state_t *req_state)
{
/* lower affinities use PLAT_MAX_OFF_STATE */
for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++)
req_state->pwr_domain_state[i] = PLAT_MAX_OFF_STATE;
}
/*****************************************************************************
* A3700 handlers to shutdown/reboot the system
*****************************************************************************
*/
static void __dead2 a3700_system_off(void)
{
ERROR("%s needs to be implemented\n", __func__);
panic();
}
/*****************************************************************************
* A3700 handlers to reset the system
*****************************************************************************
*/
static void __dead2 a3700_system_reset(void)
{
/* Clean the mailbox magic number to let it as act like cold boot */
mmio_write_32(PLAT_MARVELL_MAILBOX_BASE, 0x0);
dsbsy();
/* Flush data cache if the mail box shared RAM is cached */
#if PLAT_MARVELL_SHARED_RAM_CACHED
flush_dcache_range((uintptr_t)PLAT_MARVELL_MAILBOX_BASE,
2 * sizeof(uint64_t));
#endif
/* Trigger the warm reset */
mmio_write_32(MVEBU_WARM_RESET_REG, MVEBU_WARM_RESET_MAGIC);
/* Shouldn't get to this point */
panic();
}
/*****************************************************************************
* Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
* platform layer will take care of registering the handlers with PSCI.
*****************************************************************************
*/
const plat_psci_ops_t plat_arm_psci_pm_ops = {
.cpu_standby = a3700_cpu_standby,
.pwr_domain_on = a3700_pwr_domain_on,
.pwr_domain_off = a3700_pwr_domain_off,
.pwr_domain_suspend = a3700_pwr_domain_suspend,
.pwr_domain_on_finish = a3700_pwr_domain_on_finish,
.pwr_domain_suspend_finish = a3700_pwr_domain_suspend_finish,
.get_sys_suspend_power_state = a3700_get_sys_suspend_power_state,
.system_off = a3700_system_off,
.system_reset = a3700_system_reset,
.validate_power_state = a3700_validate_power_state,
.validate_ns_entrypoint = a3700_validate_ns_entrypoint
};