| // SPDX-License-Identifier: BSD-2-Clause |
| /* |
| * Copyright (c) 2016, Linaro Limited |
| * Copyright (c) 2014, STMicroelectronics International N.V. |
| */ |
| |
| #include <platform_config.h> |
| |
| #include <arm.h> |
| #include <assert.h> |
| #include <io.h> |
| #include <keep.h> |
| #include <kernel/asan.h> |
| #include <kernel/linker.h> |
| #include <kernel/lockdep.h> |
| #include <kernel/misc.h> |
| #include <kernel/panic.h> |
| #include <kernel/spinlock.h> |
| #include <kernel/tee_ta_manager.h> |
| #include <kernel/thread_defs.h> |
| #include <kernel/thread.h> |
| #include <kernel/virtualization.h> |
| #include <mm/core_memprot.h> |
| #include <mm/mobj.h> |
| #include <mm/tee_mm.h> |
| #include <mm/tee_mmu.h> |
| #include <mm/tee_pager.h> |
| #include <smccc.h> |
| #include <sm/sm.h> |
| #include <trace.h> |
| #include <util.h> |
| |
| #include "thread_private.h" |
| |
| #ifdef CFG_WITH_ARM_TRUSTED_FW |
| #define STACK_TMP_OFFS 0 |
| #else |
| #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE |
| #endif |
| |
| |
| #ifdef ARM32 |
| #ifdef CFG_CORE_SANITIZE_KADDRESS |
| #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) |
| #else |
| #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) |
| #endif |
| #define STACK_THREAD_SIZE 8192 |
| |
| #if defined(CFG_CORE_SANITIZE_KADDRESS) || defined(__clang__) |
| #define STACK_ABT_SIZE 3072 |
| #else |
| #define STACK_ABT_SIZE 2048 |
| #endif |
| |
| #endif /*ARM32*/ |
| |
| #ifdef ARM64 |
| #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) |
| #define STACK_THREAD_SIZE 8192 |
| |
| #if TRACE_LEVEL > 0 |
| #define STACK_ABT_SIZE 3072 |
| #else |
| #define STACK_ABT_SIZE 1024 |
| #endif |
| #endif /*ARM64*/ |
| |
| struct thread_ctx threads[CFG_NUM_THREADS]; |
| |
| struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss; |
| |
| #ifdef CFG_WITH_STACK_CANARIES |
| #ifdef ARM32 |
| #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) |
| #endif |
| #ifdef ARM64 |
| #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) |
| #endif |
| #define START_CANARY_VALUE 0xdededede |
| #define END_CANARY_VALUE 0xabababab |
| #define GET_START_CANARY(name, stack_num) name[stack_num][0] |
| #define GET_END_CANARY(name, stack_num) \ |
| name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] |
| #else |
| #define STACK_CANARY_SIZE 0 |
| #endif |
| |
| #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ |
| linkage uint32_t name[num_stacks] \ |
| [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ |
| sizeof(uint32_t)] \ |
| __attribute__((section(".nozi_stack." # name), \ |
| aligned(STACK_ALIGNMENT))) |
| |
| #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) |
| |
| #define GET_STACK(stack) \ |
| ((vaddr_t)(stack) + STACK_SIZE(stack)) |
| |
| DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); |
| DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); |
| #ifndef CFG_WITH_PAGER |
| DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); |
| #endif |
| |
| const void *stack_tmp_export __section(".identity_map.stack_tmp_export") = |
| (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - |
| (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); |
| const uint32_t stack_tmp_stride __section(".identity_map.stack_tmp_stride") = |
| sizeof(stack_tmp[0]); |
| |
| /* |
| * These stack setup info are required by secondary boot cores before they |
| * each locally enable the pager (the mmu). Hence kept in pager sections. |
| */ |
| KEEP_PAGER(stack_tmp_export); |
| KEEP_PAGER(stack_tmp_stride); |
| |
| thread_pm_handler_t thread_cpu_on_handler_ptr __nex_bss; |
| thread_pm_handler_t thread_cpu_off_handler_ptr __nex_bss; |
| thread_pm_handler_t thread_cpu_suspend_handler_ptr __nex_bss; |
| thread_pm_handler_t thread_cpu_resume_handler_ptr __nex_bss; |
| thread_pm_handler_t thread_system_off_handler_ptr __nex_bss; |
| thread_pm_handler_t thread_system_reset_handler_ptr __nex_bss; |
| |
| #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 |
| static vaddr_t thread_user_kcode_va __nex_bss; |
| long thread_user_kcode_offset __nex_bss; |
| static size_t thread_user_kcode_size __nex_bss; |
| #endif |
| |
| #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ |
| defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) |
| long thread_user_kdata_sp_offset __nex_bss; |
| static uint8_t thread_user_kdata_page[ |
| ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] |
| __aligned(SMALL_PAGE_SIZE) |
| #ifndef CFG_VIRTUALIZATION |
| __section(".nozi.kdata_page"); |
| #else |
| __section(".nex_nozi.kdata_page"); |
| #endif |
| #endif |
| |
| static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK; |
| |
| static void init_canaries(void) |
| { |
| #ifdef CFG_WITH_STACK_CANARIES |
| size_t n; |
| #define INIT_CANARY(name) \ |
| for (n = 0; n < ARRAY_SIZE(name); n++) { \ |
| uint32_t *start_canary = &GET_START_CANARY(name, n); \ |
| uint32_t *end_canary = &GET_END_CANARY(name, n); \ |
| \ |
| *start_canary = START_CANARY_VALUE; \ |
| *end_canary = END_CANARY_VALUE; \ |
| DMSG("#Stack canaries for %s[%zu] with top at %p", \ |
| #name, n, (void *)(end_canary - 1)); \ |
| DMSG("watch *%p", (void *)end_canary); \ |
| } |
| |
| INIT_CANARY(stack_tmp); |
| INIT_CANARY(stack_abt); |
| #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) |
| INIT_CANARY(stack_thread); |
| #endif |
| #endif/*CFG_WITH_STACK_CANARIES*/ |
| } |
| |
| #define CANARY_DIED(stack, loc, n) \ |
| do { \ |
| EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ |
| panic(); \ |
| } while (0) |
| |
| void thread_check_canaries(void) |
| { |
| #ifdef CFG_WITH_STACK_CANARIES |
| size_t n; |
| |
| for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { |
| if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) |
| CANARY_DIED(stack_tmp, start, n); |
| if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) |
| CANARY_DIED(stack_tmp, end, n); |
| } |
| |
| for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { |
| if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) |
| CANARY_DIED(stack_abt, start, n); |
| if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) |
| CANARY_DIED(stack_abt, end, n); |
| |
| } |
| #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) |
| for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { |
| if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) |
| CANARY_DIED(stack_thread, start, n); |
| if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) |
| CANARY_DIED(stack_thread, end, n); |
| } |
| #endif |
| #endif/*CFG_WITH_STACK_CANARIES*/ |
| } |
| |
| void thread_lock_global(void) |
| { |
| cpu_spin_lock(&thread_global_lock); |
| } |
| |
| void thread_unlock_global(void) |
| { |
| cpu_spin_unlock(&thread_global_lock); |
| } |
| |
| #ifdef ARM32 |
| uint32_t thread_get_exceptions(void) |
| { |
| uint32_t cpsr = read_cpsr(); |
| |
| return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; |
| } |
| |
| void thread_set_exceptions(uint32_t exceptions) |
| { |
| uint32_t cpsr = read_cpsr(); |
| |
| /* Foreign interrupts must not be unmasked while holding a spinlock */ |
| if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) |
| assert_have_no_spinlock(); |
| |
| cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); |
| cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); |
| write_cpsr(cpsr); |
| } |
| #endif /*ARM32*/ |
| |
| #ifdef ARM64 |
| uint32_t thread_get_exceptions(void) |
| { |
| uint32_t daif = read_daif(); |
| |
| return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; |
| } |
| |
| void thread_set_exceptions(uint32_t exceptions) |
| { |
| uint32_t daif = read_daif(); |
| |
| /* Foreign interrupts must not be unmasked while holding a spinlock */ |
| if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) |
| assert_have_no_spinlock(); |
| |
| daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); |
| daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); |
| write_daif(daif); |
| } |
| #endif /*ARM64*/ |
| |
| uint32_t thread_mask_exceptions(uint32_t exceptions) |
| { |
| uint32_t state = thread_get_exceptions(); |
| |
| thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); |
| return state; |
| } |
| |
| void thread_unmask_exceptions(uint32_t state) |
| { |
| thread_set_exceptions(state & THREAD_EXCP_ALL); |
| } |
| |
| |
| struct thread_core_local *thread_get_core_local(void) |
| { |
| uint32_t cpu_id = get_core_pos(); |
| |
| /* |
| * Foreign interrupts must be disabled before playing with core_local |
| * since we otherwise may be rescheduled to a different core in the |
| * middle of this function. |
| */ |
| assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); |
| |
| assert(cpu_id < CFG_TEE_CORE_NB_CORE); |
| return &thread_core_local[cpu_id]; |
| } |
| |
| static void thread_lazy_save_ns_vfp(void) |
| { |
| #ifdef CFG_WITH_VFP |
| struct thread_ctx *thr = threads + thread_get_id(); |
| |
| thr->vfp_state.ns_saved = false; |
| vfp_lazy_save_state_init(&thr->vfp_state.ns); |
| #endif /*CFG_WITH_VFP*/ |
| } |
| |
| static void thread_lazy_restore_ns_vfp(void) |
| { |
| #ifdef CFG_WITH_VFP |
| struct thread_ctx *thr = threads + thread_get_id(); |
| struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; |
| |
| assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); |
| |
| if (tuv && tuv->lazy_saved && !tuv->saved) { |
| vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); |
| tuv->saved = true; |
| } |
| |
| vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); |
| thr->vfp_state.ns_saved = false; |
| #endif /*CFG_WITH_VFP*/ |
| } |
| |
| #ifdef ARM32 |
| static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1, |
| uint32_t a2, uint32_t a3) |
| { |
| thread->regs.pc = (uint32_t)thread_std_smc_entry; |
| |
| /* |
| * Stdcalls starts in SVC mode with masked foreign interrupts, masked |
| * Asynchronous abort and unmasked native interrupts. |
| */ |
| thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; |
| thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | |
| (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); |
| /* Enable thumb mode if it's a thumb instruction */ |
| if (thread->regs.pc & 1) |
| thread->regs.cpsr |= CPSR_T; |
| /* Reinitialize stack pointer */ |
| thread->regs.svc_sp = thread->stack_va_end; |
| |
| /* |
| * Copy arguments into context. This will make the |
| * arguments appear in r0-r7 when thread is started. |
| */ |
| thread->regs.r0 = a0; |
| thread->regs.r1 = a1; |
| thread->regs.r2 = a2; |
| thread->regs.r3 = a3; |
| thread->regs.r4 = 0; |
| thread->regs.r5 = 0; |
| thread->regs.r6 = 0; |
| thread->regs.r7 = 0; |
| } |
| #endif /*ARM32*/ |
| |
| #ifdef ARM64 |
| static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1, |
| uint32_t a2, uint32_t a3) |
| { |
| thread->regs.pc = (uint64_t)thread_std_smc_entry; |
| |
| /* |
| * Stdcalls starts in SVC mode with masked foreign interrupts, masked |
| * Asynchronous abort and unmasked native interrupts. |
| */ |
| thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, |
| THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); |
| /* Reinitialize stack pointer */ |
| thread->regs.sp = thread->stack_va_end; |
| |
| /* |
| * Copy arguments into context. This will make the |
| * arguments appear in x0-x7 when thread is started. |
| */ |
| thread->regs.x[0] = a0; |
| thread->regs.x[1] = a1; |
| thread->regs.x[2] = a2; |
| thread->regs.x[3] = a3; |
| thread->regs.x[4] = 0; |
| thread->regs.x[5] = 0; |
| thread->regs.x[6] = 0; |
| thread->regs.x[7] = 0; |
| |
| /* Set up frame pointer as per the Aarch64 AAPCS */ |
| thread->regs.x[29] = 0; |
| } |
| #endif /*ARM64*/ |
| |
| void thread_init_boot_thread(void) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| |
| thread_init_threads(); |
| |
| l->curr_thread = 0; |
| threads[0].state = THREAD_STATE_ACTIVE; |
| } |
| |
| void thread_clr_boot_thread(void) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| |
| assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); |
| assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); |
| threads[l->curr_thread].state = THREAD_STATE_FREE; |
| l->curr_thread = -1; |
| } |
| |
| void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) |
| { |
| size_t n; |
| struct thread_core_local *l = thread_get_core_local(); |
| bool found_thread = false; |
| |
| assert(l->curr_thread == -1); |
| |
| thread_lock_global(); |
| |
| for (n = 0; n < CFG_NUM_THREADS; n++) { |
| if (threads[n].state == THREAD_STATE_FREE) { |
| threads[n].state = THREAD_STATE_ACTIVE; |
| found_thread = true; |
| break; |
| } |
| } |
| |
| thread_unlock_global(); |
| |
| if (!found_thread) |
| return; |
| |
| l->curr_thread = n; |
| |
| threads[n].flags = 0; |
| init_regs(threads + n, a0, a1, a2, a3); |
| |
| thread_lazy_save_ns_vfp(); |
| thread_resume(&threads[n].regs); |
| /*NOTREACHED*/ |
| panic(); |
| } |
| |
| #ifdef ARM32 |
| static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0, |
| uint32_t a1, uint32_t a2, uint32_t a3) |
| { |
| /* |
| * Update returned values from RPC, values will appear in |
| * r0-r3 when thread is resumed. |
| */ |
| regs->r0 = a0; |
| regs->r1 = a1; |
| regs->r2 = a2; |
| regs->r3 = a3; |
| } |
| #endif /*ARM32*/ |
| |
| #ifdef ARM64 |
| static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0, |
| uint32_t a1, uint32_t a2, uint32_t a3) |
| { |
| /* |
| * Update returned values from RPC, values will appear in |
| * x0-x3 when thread is resumed. |
| */ |
| regs->x[0] = a0; |
| regs->x[1] = a1; |
| regs->x[2] = a2; |
| regs->x[3] = a3; |
| } |
| #endif /*ARM64*/ |
| |
| #ifdef ARM32 |
| static bool is_from_user(uint32_t cpsr) |
| { |
| return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; |
| } |
| #endif |
| |
| #ifdef ARM64 |
| static bool is_from_user(uint32_t cpsr) |
| { |
| if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) |
| return true; |
| if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == |
| SPSR_64_MODE_EL0) |
| return true; |
| return false; |
| } |
| #endif |
| |
| #ifdef CFG_SYSCALL_FTRACE |
| static void __noprof ftrace_suspend(void) |
| { |
| struct tee_ta_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack); |
| |
| if (!s) |
| return; |
| |
| if (s->fbuf) |
| s->fbuf->syscall_trace_suspended = true; |
| } |
| |
| static void __noprof ftrace_resume(void) |
| { |
| struct tee_ta_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack); |
| |
| if (!s) |
| return; |
| |
| if (s->fbuf) |
| s->fbuf->syscall_trace_suspended = false; |
| } |
| #else |
| static void __noprof ftrace_suspend(void) |
| { |
| } |
| |
| static void __noprof ftrace_resume(void) |
| { |
| } |
| #endif |
| |
| static bool is_user_mode(struct thread_ctx_regs *regs) |
| { |
| return is_from_user((uint32_t)regs->cpsr); |
| } |
| |
| void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1, |
| uint32_t a2, uint32_t a3) |
| { |
| size_t n = thread_id; |
| struct thread_core_local *l = thread_get_core_local(); |
| bool found_thread = false; |
| |
| assert(l->curr_thread == -1); |
| |
| thread_lock_global(); |
| |
| if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) { |
| threads[n].state = THREAD_STATE_ACTIVE; |
| found_thread = true; |
| } |
| |
| thread_unlock_global(); |
| |
| if (!found_thread) |
| return; |
| |
| l->curr_thread = n; |
| |
| if (threads[n].have_user_map) { |
| core_mmu_set_user_map(&threads[n].user_map); |
| if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR) |
| tee_ta_ftrace_update_times_resume(); |
| } |
| |
| if (is_user_mode(&threads[n].regs)) |
| tee_ta_update_session_utime_resume(); |
| |
| /* |
| * Return from RPC to request service of a foreign interrupt must not |
| * get parameters from non-secure world. |
| */ |
| if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { |
| copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3); |
| threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; |
| } |
| |
| thread_lazy_save_ns_vfp(); |
| |
| if (threads[n].have_user_map) |
| ftrace_resume(); |
| |
| thread_resume(&threads[n].regs); |
| /*NOTREACHED*/ |
| panic(); |
| } |
| |
| void *thread_get_tmp_sp(void) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| |
| return (void *)l->tmp_stack_va_end; |
| } |
| |
| #ifdef ARM64 |
| vaddr_t thread_get_saved_thread_sp(void) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| int ct = l->curr_thread; |
| |
| assert(ct != -1); |
| return threads[ct].kern_sp; |
| } |
| #endif /*ARM64*/ |
| |
| vaddr_t thread_stack_start(void) |
| { |
| struct thread_ctx *thr; |
| int ct = thread_get_id_may_fail(); |
| |
| if (ct == -1) |
| return 0; |
| |
| thr = threads + ct; |
| return thr->stack_va_end - STACK_THREAD_SIZE; |
| } |
| |
| size_t thread_stack_size(void) |
| { |
| return STACK_THREAD_SIZE; |
| } |
| |
| bool thread_is_from_abort_mode(void) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| |
| return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; |
| } |
| |
| #ifdef ARM32 |
| bool thread_is_in_normal_mode(void) |
| { |
| return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; |
| } |
| #endif |
| |
| #ifdef ARM64 |
| bool thread_is_in_normal_mode(void) |
| { |
| uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); |
| struct thread_core_local *l = thread_get_core_local(); |
| bool ret; |
| |
| /* If any bit in l->flags is set we're handling some exception. */ |
| ret = !l->flags; |
| thread_unmask_exceptions(exceptions); |
| |
| return ret; |
| } |
| #endif |
| |
| void thread_state_free(void) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| int ct = l->curr_thread; |
| |
| assert(ct != -1); |
| |
| thread_lazy_restore_ns_vfp(); |
| tee_pager_release_phys( |
| (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), |
| STACK_THREAD_SIZE); |
| |
| thread_lock_global(); |
| |
| assert(threads[ct].state == THREAD_STATE_ACTIVE); |
| threads[ct].state = THREAD_STATE_FREE; |
| threads[ct].flags = 0; |
| l->curr_thread = -1; |
| |
| #ifdef CFG_VIRTUALIZATION |
| virt_unset_guest(); |
| #endif |
| thread_unlock_global(); |
| } |
| |
| #ifdef CFG_WITH_PAGER |
| static void release_unused_kernel_stack(struct thread_ctx *thr, |
| uint32_t cpsr __maybe_unused) |
| { |
| #ifdef ARM64 |
| /* |
| * If we're from user mode then thr->regs.sp is the saved user |
| * stack pointer and thr->kern_sp holds the last kernel stack |
| * pointer. But if we're from kernel mode then thr->kern_sp isn't |
| * up to date so we need to read from thr->regs.sp instead. |
| */ |
| vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; |
| #else |
| vaddr_t sp = thr->regs.svc_sp; |
| #endif |
| vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; |
| size_t len = sp - base; |
| |
| tee_pager_release_phys((void *)base, len); |
| } |
| #else |
| static void release_unused_kernel_stack(struct thread_ctx *thr __unused, |
| uint32_t cpsr __unused) |
| { |
| } |
| #endif |
| |
| int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| int ct = l->curr_thread; |
| |
| assert(ct != -1); |
| |
| if (core_mmu_user_mapping_is_active()) |
| ftrace_suspend(); |
| |
| thread_check_canaries(); |
| |
| release_unused_kernel_stack(threads + ct, cpsr); |
| |
| if (is_from_user(cpsr)) { |
| thread_user_save_vfp(); |
| tee_ta_update_session_utime_suspend(); |
| tee_ta_gprof_sample_pc(pc); |
| } |
| thread_lazy_restore_ns_vfp(); |
| |
| thread_lock_global(); |
| |
| assert(threads[ct].state == THREAD_STATE_ACTIVE); |
| threads[ct].flags |= flags; |
| threads[ct].regs.cpsr = cpsr; |
| threads[ct].regs.pc = pc; |
| threads[ct].state = THREAD_STATE_SUSPENDED; |
| |
| threads[ct].have_user_map = core_mmu_user_mapping_is_active(); |
| if (threads[ct].have_user_map) { |
| if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR) |
| tee_ta_ftrace_update_times_suspend(); |
| core_mmu_get_user_map(&threads[ct].user_map); |
| core_mmu_set_user_map(NULL); |
| } |
| |
| l->curr_thread = -1; |
| |
| #ifdef CFG_VIRTUALIZATION |
| virt_unset_guest(); |
| #endif |
| |
| thread_unlock_global(); |
| |
| return ct; |
| } |
| |
| #ifdef ARM32 |
| static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) |
| { |
| l->tmp_stack_va_end = sp; |
| thread_set_irq_sp(sp); |
| thread_set_fiq_sp(sp); |
| } |
| |
| static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) |
| { |
| l->abt_stack_va_end = sp; |
| thread_set_abt_sp((vaddr_t)l); |
| thread_set_und_sp((vaddr_t)l); |
| } |
| #endif /*ARM32*/ |
| |
| #ifdef ARM64 |
| static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) |
| { |
| /* |
| * We're already using the tmp stack when this function is called |
| * so there's no need to assign it to any stack pointer. However, |
| * we'll need to restore it at different times so store it here. |
| */ |
| l->tmp_stack_va_end = sp; |
| } |
| |
| static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) |
| { |
| l->abt_stack_va_end = sp; |
| } |
| #endif /*ARM64*/ |
| |
| bool thread_init_stack(uint32_t thread_id, vaddr_t sp) |
| { |
| if (thread_id >= CFG_NUM_THREADS) |
| return false; |
| threads[thread_id].stack_va_end = sp; |
| return true; |
| } |
| |
| int thread_get_id_may_fail(void) |
| { |
| /* |
| * thread_get_core_local() requires foreign interrupts to be disabled |
| */ |
| uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); |
| struct thread_core_local *l = thread_get_core_local(); |
| int ct = l->curr_thread; |
| |
| thread_unmask_exceptions(exceptions); |
| return ct; |
| } |
| |
| int thread_get_id(void) |
| { |
| int ct = thread_get_id_may_fail(); |
| |
| assert(ct >= 0 && ct < CFG_NUM_THREADS); |
| return ct; |
| } |
| |
| static void init_handlers(const struct thread_handlers *handlers) |
| { |
| thread_cpu_on_handler_ptr = handlers->cpu_on; |
| thread_cpu_off_handler_ptr = handlers->cpu_off; |
| thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; |
| thread_cpu_resume_handler_ptr = handlers->cpu_resume; |
| thread_system_off_handler_ptr = handlers->system_off; |
| thread_system_reset_handler_ptr = handlers->system_reset; |
| } |
| |
| #ifdef CFG_WITH_PAGER |
| static void init_thread_stacks(void) |
| { |
| size_t n = 0; |
| |
| /* |
| * Allocate virtual memory for thread stacks. |
| */ |
| for (n = 0; n < CFG_NUM_THREADS; n++) { |
| tee_mm_entry_t *mm = NULL; |
| vaddr_t sp = 0; |
| size_t num_pages = 0; |
| struct fobj *fobj = NULL; |
| |
| /* Find vmem for thread stack and its protection gap */ |
| mm = tee_mm_alloc(&tee_mm_vcore, |
| SMALL_PAGE_SIZE + STACK_THREAD_SIZE); |
| assert(mm); |
| |
| /* Claim eventual physical page */ |
| tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), |
| true); |
| |
| num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1; |
| fobj = fobj_locked_paged_alloc(num_pages); |
| |
| /* Add the area to the pager */ |
| tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, |
| PAGER_AREA_TYPE_LOCK, fobj); |
| fobj_put(fobj); |
| |
| /* init effective stack */ |
| sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); |
| asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); |
| if (!thread_init_stack(n, sp)) |
| panic("init stack failed"); |
| } |
| } |
| #else |
| static void init_thread_stacks(void) |
| { |
| size_t n; |
| |
| /* Assign the thread stacks */ |
| for (n = 0; n < CFG_NUM_THREADS; n++) { |
| if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) |
| panic("thread_init_stack failed"); |
| } |
| } |
| #endif /*CFG_WITH_PAGER*/ |
| |
| static void init_user_kcode(void) |
| { |
| #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 |
| vaddr_t v = (vaddr_t)thread_excp_vect; |
| vaddr_t ve = (vaddr_t)thread_excp_vect_end; |
| |
| thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); |
| ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); |
| thread_user_kcode_size = ve - thread_user_kcode_va; |
| |
| core_mmu_get_user_va_range(&v, NULL); |
| thread_user_kcode_offset = thread_user_kcode_va - v; |
| |
| #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) |
| /* |
| * When transitioning to EL0 subtract SP with this much to point to |
| * this special kdata page instead. SP is restored by add this much |
| * while transitioning back to EL1. |
| */ |
| v += thread_user_kcode_size; |
| thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; |
| #endif |
| #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ |
| } |
| |
| void thread_init_threads(void) |
| { |
| size_t n; |
| |
| init_thread_stacks(); |
| pgt_init(); |
| |
| mutex_lockdep_init(); |
| |
| for (n = 0; n < CFG_NUM_THREADS; n++) { |
| TAILQ_INIT(&threads[n].tsd.sess_stack); |
| SLIST_INIT(&threads[n].tsd.pgt_cache); |
| } |
| |
| for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) |
| thread_core_local[n].curr_thread = -1; |
| } |
| |
| void thread_init_primary(const struct thread_handlers *handlers) |
| { |
| init_handlers(handlers); |
| |
| /* Initialize canaries around the stacks */ |
| init_canaries(); |
| |
| init_user_kcode(); |
| } |
| |
| static void init_sec_mon(size_t pos __maybe_unused) |
| { |
| #if !defined(CFG_WITH_ARM_TRUSTED_FW) |
| /* Initialize secure monitor */ |
| sm_init(GET_STACK(stack_tmp[pos])); |
| #endif |
| } |
| |
| static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) |
| { |
| return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; |
| } |
| |
| static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) |
| { |
| return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & |
| MIDR_PRIMARY_PART_NUM_MASK; |
| } |
| |
| #ifdef ARM64 |
| static bool probe_workaround_available(void) |
| { |
| int32_t r; |
| |
| r = thread_smc(SMCCC_VERSION, 0, 0, 0); |
| if (r < 0) |
| return false; |
| if (r < 0x10001) /* compare with version 1.1 */ |
| return false; |
| |
| /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ |
| r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); |
| return r >= 0; |
| } |
| |
| static vaddr_t __maybe_unused select_vector(vaddr_t a) |
| { |
| if (probe_workaround_available()) { |
| DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", |
| SMCCC_ARCH_WORKAROUND_1); |
| DMSG("SMC Workaround for CVE-2017-5715 used"); |
| return a; |
| } |
| |
| DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", |
| SMCCC_ARCH_WORKAROUND_1); |
| DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); |
| return (vaddr_t)thread_excp_vect; |
| } |
| #else |
| static vaddr_t __maybe_unused select_vector(vaddr_t a) |
| { |
| return a; |
| } |
| #endif |
| |
| static vaddr_t get_excp_vect(void) |
| { |
| #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC |
| uint32_t midr = read_midr(); |
| |
| if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) |
| return (vaddr_t)thread_excp_vect; |
| |
| switch (get_midr_primary_part(midr)) { |
| #ifdef ARM32 |
| case CORTEX_A8_PART_NUM: |
| case CORTEX_A9_PART_NUM: |
| case CORTEX_A17_PART_NUM: |
| #endif |
| case CORTEX_A57_PART_NUM: |
| case CORTEX_A72_PART_NUM: |
| case CORTEX_A73_PART_NUM: |
| case CORTEX_A75_PART_NUM: |
| return select_vector((vaddr_t)thread_excp_vect_workaround); |
| #ifdef ARM32 |
| case CORTEX_A15_PART_NUM: |
| return select_vector((vaddr_t)thread_excp_vect_workaround_a15); |
| #endif |
| default: |
| return (vaddr_t)thread_excp_vect; |
| } |
| #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ |
| |
| return (vaddr_t)thread_excp_vect; |
| } |
| |
| void thread_init_per_cpu(void) |
| { |
| size_t pos = get_core_pos(); |
| struct thread_core_local *l = thread_get_core_local(); |
| |
| init_sec_mon(pos); |
| |
| set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); |
| set_abt_stack(l, GET_STACK(stack_abt[pos])); |
| |
| thread_init_vbar(get_excp_vect()); |
| |
| #ifdef CFG_FTRACE_SUPPORT |
| /* |
| * Enable accesses to frequency register and physical counter |
| * register in EL0/PL0 required for timestamping during |
| * function tracing. |
| */ |
| write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN); |
| #endif |
| } |
| |
| struct thread_specific_data *thread_get_tsd(void) |
| { |
| return &threads[thread_get_id()].tsd; |
| } |
| |
| struct thread_ctx_regs *thread_get_ctx_regs(void) |
| { |
| struct thread_core_local *l = thread_get_core_local(); |
| |
| assert(l->curr_thread != -1); |
| return &threads[l->curr_thread].regs; |
| } |
| |
| void thread_set_foreign_intr(bool enable) |
| { |
| /* thread_get_core_local() requires foreign interrupts to be disabled */ |
| uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); |
| struct thread_core_local *l; |
| |
| l = thread_get_core_local(); |
| |
| assert(l->curr_thread != -1); |
| |
| if (enable) { |
| threads[l->curr_thread].flags |= |
| THREAD_FLAGS_FOREIGN_INTR_ENABLE; |
| thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); |
| } else { |
| /* |
| * No need to disable foreign interrupts here since they're |
| * already disabled above. |
| */ |
| threads[l->curr_thread].flags &= |
| ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; |
| } |
| } |
| |
| void thread_restore_foreign_intr(void) |
| { |
| /* thread_get_core_local() requires foreign interrupts to be disabled */ |
| uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); |
| struct thread_core_local *l; |
| |
| l = thread_get_core_local(); |
| |
| assert(l->curr_thread != -1); |
| |
| if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) |
| thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); |
| } |
| |
| #ifdef CFG_WITH_VFP |
| uint32_t thread_kernel_enable_vfp(void) |
| { |
| uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); |
| struct thread_ctx *thr = threads + thread_get_id(); |
| struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; |
| |
| assert(!vfp_is_enabled()); |
| |
| if (!thr->vfp_state.ns_saved) { |
| vfp_lazy_save_state_final(&thr->vfp_state.ns, |
| true /*force_save*/); |
| thr->vfp_state.ns_saved = true; |
| } else if (thr->vfp_state.sec_lazy_saved && |
| !thr->vfp_state.sec_saved) { |
| /* |
| * This happens when we're handling an abort while the |
| * thread was using the VFP state. |
| */ |
| vfp_lazy_save_state_final(&thr->vfp_state.sec, |
| false /*!force_save*/); |
| thr->vfp_state.sec_saved = true; |
| } else if (tuv && tuv->lazy_saved && !tuv->saved) { |
| /* |
| * This can happen either during syscall or abort |
| * processing (while processing a syscall). |
| */ |
| vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); |
| tuv->saved = true; |
| } |
| |
| vfp_enable(); |
| return exceptions; |
| } |
| |
| void thread_kernel_disable_vfp(uint32_t state) |
| { |
| uint32_t exceptions; |
| |
| assert(vfp_is_enabled()); |
| |
| vfp_disable(); |
| exceptions = thread_get_exceptions(); |
| assert(exceptions & THREAD_EXCP_FOREIGN_INTR); |
| exceptions &= ~THREAD_EXCP_FOREIGN_INTR; |
| exceptions |= state & THREAD_EXCP_FOREIGN_INTR; |
| thread_set_exceptions(exceptions); |
| } |
| |
| void thread_kernel_save_vfp(void) |
| { |
| struct thread_ctx *thr = threads + thread_get_id(); |
| |
| assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); |
| if (vfp_is_enabled()) { |
| vfp_lazy_save_state_init(&thr->vfp_state.sec); |
| thr->vfp_state.sec_lazy_saved = true; |
| } |
| } |
| |
| void thread_kernel_restore_vfp(void) |
| { |
| struct thread_ctx *thr = threads + thread_get_id(); |
| |
| assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); |
| assert(!vfp_is_enabled()); |
| if (thr->vfp_state.sec_lazy_saved) { |
| vfp_lazy_restore_state(&thr->vfp_state.sec, |
| thr->vfp_state.sec_saved); |
| thr->vfp_state.sec_saved = false; |
| thr->vfp_state.sec_lazy_saved = false; |
| } |
| } |
| |
| void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) |
| { |
| struct thread_ctx *thr = threads + thread_get_id(); |
| struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; |
| |
| assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); |
| assert(!vfp_is_enabled()); |
| |
| if (!thr->vfp_state.ns_saved) { |
| vfp_lazy_save_state_final(&thr->vfp_state.ns, |
| true /*force_save*/); |
| thr->vfp_state.ns_saved = true; |
| } else if (tuv && uvfp != tuv) { |
| if (tuv->lazy_saved && !tuv->saved) { |
| vfp_lazy_save_state_final(&tuv->vfp, |
| false /*!force_save*/); |
| tuv->saved = true; |
| } |
| } |
| |
| if (uvfp->lazy_saved) |
| vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); |
| uvfp->lazy_saved = false; |
| uvfp->saved = false; |
| |
| thr->vfp_state.uvfp = uvfp; |
| vfp_enable(); |
| } |
| |
| void thread_user_save_vfp(void) |
| { |
| struct thread_ctx *thr = threads + thread_get_id(); |
| struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; |
| |
| assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); |
| if (!vfp_is_enabled()) |
| return; |
| |
| assert(tuv && !tuv->lazy_saved && !tuv->saved); |
| vfp_lazy_save_state_init(&tuv->vfp); |
| tuv->lazy_saved = true; |
| } |
| |
| void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) |
| { |
| struct thread_ctx *thr = threads + thread_get_id(); |
| |
| if (uvfp == thr->vfp_state.uvfp) |
| thr->vfp_state.uvfp = NULL; |
| uvfp->lazy_saved = false; |
| uvfp->saved = false; |
| } |
| #endif /*CFG_WITH_VFP*/ |
| |
| #ifdef ARM32 |
| static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) |
| { |
| uint32_t s; |
| |
| if (!is_32bit) |
| return false; |
| |
| s = read_spsr(); |
| s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); |
| s |= CPSR_MODE_USR; |
| if (entry_func & 1) |
| s |= CPSR_T; |
| *spsr = s; |
| return true; |
| } |
| #endif |
| |
| #ifdef ARM64 |
| static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) |
| { |
| uint32_t s; |
| |
| if (is_32bit) { |
| s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); |
| s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; |
| s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; |
| } else { |
| s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); |
| } |
| |
| *spsr = s; |
| return true; |
| } |
| #endif |
| |
| static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0, |
| unsigned long a1, unsigned long a2, unsigned long a3, |
| unsigned long user_sp, unsigned long entry_func, |
| uint32_t spsr) |
| { |
| /* |
| * First clear all registers to avoid leaking information from |
| * other TAs or even the Core itself. |
| */ |
| *regs = (struct thread_ctx_regs){ }; |
| #ifdef ARM32 |
| regs->r0 = a0; |
| regs->r1 = a1; |
| regs->r2 = a2; |
| regs->r3 = a3; |
| regs->usr_sp = user_sp; |
| regs->pc = entry_func; |
| regs->cpsr = spsr; |
| #endif |
| #ifdef ARM64 |
| regs->x[0] = a0; |
| regs->x[1] = a1; |
| regs->x[2] = a2; |
| regs->x[3] = a3; |
| regs->sp = user_sp; |
| regs->pc = entry_func; |
| regs->cpsr = spsr; |
| regs->x[13] = user_sp; /* Used when running TA in Aarch32 */ |
| regs->sp = user_sp; /* Used when running TA in Aarch64 */ |
| /* Set frame pointer (user stack can't be unwound past this point) */ |
| regs->x[29] = 0; |
| #endif |
| } |
| |
| uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, |
| unsigned long a2, unsigned long a3, unsigned long user_sp, |
| unsigned long entry_func, bool is_32bit, |
| uint32_t *exit_status0, uint32_t *exit_status1) |
| { |
| uint32_t spsr = 0; |
| uint32_t exceptions = 0; |
| uint32_t rc = 0; |
| struct thread_ctx_regs *regs = NULL; |
| |
| tee_ta_update_session_utime_resume(); |
| |
| if (!get_spsr(is_32bit, entry_func, &spsr)) { |
| *exit_status0 = 1; /* panic */ |
| *exit_status1 = 0xbadbadba; |
| return 0; |
| } |
| |
| exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); |
| /* |
| * We're using the per thread location of saved context registers |
| * for temporary storage. Now that exceptions are masked they will |
| * not be used for any thing else until they are eventually |
| * unmasked when user mode has been entered. |
| */ |
| regs = thread_get_ctx_regs(); |
| set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr); |
| rc = __thread_enter_user_mode(regs, exit_status0, exit_status1); |
| thread_unmask_exceptions(exceptions); |
| return rc; |
| } |
| |
| #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 |
| void thread_get_user_kcode(struct mobj **mobj, size_t *offset, |
| vaddr_t *va, size_t *sz) |
| { |
| core_mmu_get_user_va_range(va, NULL); |
| *mobj = mobj_tee_ram; |
| *offset = thread_user_kcode_va - VCORE_START_VA; |
| *sz = thread_user_kcode_size; |
| } |
| #endif |
| |
| #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ |
| defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) |
| void thread_get_user_kdata(struct mobj **mobj, size_t *offset, |
| vaddr_t *va, size_t *sz) |
| { |
| vaddr_t v; |
| |
| core_mmu_get_user_va_range(&v, NULL); |
| *va = v + thread_user_kcode_size; |
| *mobj = mobj_tee_ram; |
| *offset = (vaddr_t)thread_user_kdata_page - VCORE_START_VA; |
| *sz = sizeof(thread_user_kdata_page); |
| } |
| #endif |
| |
| static void setup_unwind_user_mode(struct thread_svc_regs *regs) |
| { |
| #ifdef ARM32 |
| regs->lr = (uintptr_t)thread_unwind_user_mode; |
| regs->spsr = read_cpsr(); |
| #endif |
| #ifdef ARM64 |
| regs->elr = (uintptr_t)thread_unwind_user_mode; |
| regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0); |
| regs->spsr |= read_daif(); |
| /* |
| * Regs is the value of stack pointer before calling the SVC |
| * handler. By the addition matches for the reserved space at the |
| * beginning of el0_sync_svc(). This prepares the stack when |
| * returning to thread_unwind_user_mode instead of a normal |
| * exception return. |
| */ |
| regs->sp_el0 = (uint64_t)(regs + 1); |
| #endif |
| } |
| |
| /* |
| * Note: this function is weak just to make it possible to exclude it from |
| * the unpaged area. |
| */ |
| void __weak thread_svc_handler(struct thread_svc_regs *regs) |
| { |
| struct tee_ta_session *sess = NULL; |
| uint32_t state = 0; |
| |
| /* Enable native interrupts */ |
| state = thread_get_exceptions(); |
| thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR); |
| |
| thread_user_save_vfp(); |
| |
| /* TA has just entered kernel mode */ |
| tee_ta_update_session_utime_suspend(); |
| |
| /* Restore foreign interrupts which are disabled on exception entry */ |
| thread_restore_foreign_intr(); |
| |
| tee_ta_get_current_session(&sess); |
| assert(sess && sess->ctx->ops && sess->ctx->ops->handle_svc); |
| if (sess->ctx->ops->handle_svc(regs)) { |
| /* We're about to switch back to user mode */ |
| tee_ta_update_session_utime_resume(); |
| } else { |
| /* We're returning from __thread_enter_user_mode() */ |
| setup_unwind_user_mode(regs); |
| } |
| } |