blob: 1794a39d8f96fcd0bbb7b521b4c5832fc6e5b3e5 [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/*
* Copyright (c) 2016, Linaro Limited
* Copyright (c) 2014, STMicroelectronics International N.V.
*/
#include <platform_config.h>
#include <arm.h>
#include <assert.h>
#include <io.h>
#include <keep.h>
#include <kernel/asan.h>
#include <kernel/linker.h>
#include <kernel/lockdep.h>
#include <kernel/misc.h>
#include <kernel/panic.h>
#include <kernel/spinlock.h>
#include <kernel/tee_ta_manager.h>
#include <kernel/thread_defs.h>
#include <kernel/thread.h>
#include <kernel/virtualization.h>
#include <mm/core_memprot.h>
#include <mm/mobj.h>
#include <mm/tee_mm.h>
#include <mm/tee_mmu.h>
#include <mm/tee_pager.h>
#include <smccc.h>
#include <sm/sm.h>
#include <trace.h>
#include <util.h>
#include "thread_private.h"
#ifdef CFG_WITH_ARM_TRUSTED_FW
#define STACK_TMP_OFFS 0
#else
#define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE
#endif
#ifdef ARM32
#ifdef CFG_CORE_SANITIZE_KADDRESS
#define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS)
#else
#define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS)
#endif
#define STACK_THREAD_SIZE 8192
#if defined(CFG_CORE_SANITIZE_KADDRESS) || defined(__clang__)
#define STACK_ABT_SIZE 3072
#else
#define STACK_ABT_SIZE 2048
#endif
#endif /*ARM32*/
#ifdef ARM64
#define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS)
#define STACK_THREAD_SIZE 8192
#if TRACE_LEVEL > 0
#define STACK_ABT_SIZE 3072
#else
#define STACK_ABT_SIZE 1024
#endif
#endif /*ARM64*/
struct thread_ctx threads[CFG_NUM_THREADS];
struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss;
#ifdef CFG_WITH_STACK_CANARIES
#ifdef ARM32
#define STACK_CANARY_SIZE (4 * sizeof(uint32_t))
#endif
#ifdef ARM64
#define STACK_CANARY_SIZE (8 * sizeof(uint32_t))
#endif
#define START_CANARY_VALUE 0xdededede
#define END_CANARY_VALUE 0xabababab
#define GET_START_CANARY(name, stack_num) name[stack_num][0]
#define GET_END_CANARY(name, stack_num) \
name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
#else
#define STACK_CANARY_SIZE 0
#endif
#define DECLARE_STACK(name, num_stacks, stack_size, linkage) \
linkage uint32_t name[num_stacks] \
[ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
sizeof(uint32_t)] \
__attribute__((section(".nozi_stack." # name), \
aligned(STACK_ALIGNMENT)))
#define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2)
#define GET_STACK(stack) \
((vaddr_t)(stack) + STACK_SIZE(stack))
DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static);
DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static);
#ifndef CFG_WITH_PAGER
DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static);
#endif
const void *stack_tmp_export __section(".identity_map.stack_tmp_export") =
(uint8_t *)stack_tmp + sizeof(stack_tmp[0]) -
(STACK_TMP_OFFS + STACK_CANARY_SIZE / 2);
const uint32_t stack_tmp_stride __section(".identity_map.stack_tmp_stride") =
sizeof(stack_tmp[0]);
/*
* These stack setup info are required by secondary boot cores before they
* each locally enable the pager (the mmu). Hence kept in pager sections.
*/
KEEP_PAGER(stack_tmp_export);
KEEP_PAGER(stack_tmp_stride);
thread_pm_handler_t thread_cpu_on_handler_ptr __nex_bss;
thread_pm_handler_t thread_cpu_off_handler_ptr __nex_bss;
thread_pm_handler_t thread_cpu_suspend_handler_ptr __nex_bss;
thread_pm_handler_t thread_cpu_resume_handler_ptr __nex_bss;
thread_pm_handler_t thread_system_off_handler_ptr __nex_bss;
thread_pm_handler_t thread_system_reset_handler_ptr __nex_bss;
#ifdef CFG_CORE_UNMAP_CORE_AT_EL0
static vaddr_t thread_user_kcode_va __nex_bss;
long thread_user_kcode_offset __nex_bss;
static size_t thread_user_kcode_size __nex_bss;
#endif
#if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
long thread_user_kdata_sp_offset __nex_bss;
static uint8_t thread_user_kdata_page[
ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)]
__aligned(SMALL_PAGE_SIZE)
#ifndef CFG_VIRTUALIZATION
__section(".nozi.kdata_page");
#else
__section(".nex_nozi.kdata_page");
#endif
#endif
static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK;
static void init_canaries(void)
{
#ifdef CFG_WITH_STACK_CANARIES
size_t n;
#define INIT_CANARY(name) \
for (n = 0; n < ARRAY_SIZE(name); n++) { \
uint32_t *start_canary = &GET_START_CANARY(name, n); \
uint32_t *end_canary = &GET_END_CANARY(name, n); \
\
*start_canary = START_CANARY_VALUE; \
*end_canary = END_CANARY_VALUE; \
DMSG("#Stack canaries for %s[%zu] with top at %p", \
#name, n, (void *)(end_canary - 1)); \
DMSG("watch *%p", (void *)end_canary); \
}
INIT_CANARY(stack_tmp);
INIT_CANARY(stack_abt);
#if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION)
INIT_CANARY(stack_thread);
#endif
#endif/*CFG_WITH_STACK_CANARIES*/
}
#define CANARY_DIED(stack, loc, n) \
do { \
EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \
panic(); \
} while (0)
void thread_check_canaries(void)
{
#ifdef CFG_WITH_STACK_CANARIES
size_t n;
for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE)
CANARY_DIED(stack_tmp, start, n);
if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE)
CANARY_DIED(stack_tmp, end, n);
}
for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE)
CANARY_DIED(stack_abt, start, n);
if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE)
CANARY_DIED(stack_abt, end, n);
}
#if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION)
for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE)
CANARY_DIED(stack_thread, start, n);
if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE)
CANARY_DIED(stack_thread, end, n);
}
#endif
#endif/*CFG_WITH_STACK_CANARIES*/
}
void thread_lock_global(void)
{
cpu_spin_lock(&thread_global_lock);
}
void thread_unlock_global(void)
{
cpu_spin_unlock(&thread_global_lock);
}
#ifdef ARM32
uint32_t thread_get_exceptions(void)
{
uint32_t cpsr = read_cpsr();
return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
}
void thread_set_exceptions(uint32_t exceptions)
{
uint32_t cpsr = read_cpsr();
/* Foreign interrupts must not be unmasked while holding a spinlock */
if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
assert_have_no_spinlock();
cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
write_cpsr(cpsr);
}
#endif /*ARM32*/
#ifdef ARM64
uint32_t thread_get_exceptions(void)
{
uint32_t daif = read_daif();
return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
}
void thread_set_exceptions(uint32_t exceptions)
{
uint32_t daif = read_daif();
/* Foreign interrupts must not be unmasked while holding a spinlock */
if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
assert_have_no_spinlock();
daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
write_daif(daif);
}
#endif /*ARM64*/
uint32_t thread_mask_exceptions(uint32_t exceptions)
{
uint32_t state = thread_get_exceptions();
thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
return state;
}
void thread_unmask_exceptions(uint32_t state)
{
thread_set_exceptions(state & THREAD_EXCP_ALL);
}
struct thread_core_local *thread_get_core_local(void)
{
uint32_t cpu_id = get_core_pos();
/*
* Foreign interrupts must be disabled before playing with core_local
* since we otherwise may be rescheduled to a different core in the
* middle of this function.
*/
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
assert(cpu_id < CFG_TEE_CORE_NB_CORE);
return &thread_core_local[cpu_id];
}
static void thread_lazy_save_ns_vfp(void)
{
#ifdef CFG_WITH_VFP
struct thread_ctx *thr = threads + thread_get_id();
thr->vfp_state.ns_saved = false;
vfp_lazy_save_state_init(&thr->vfp_state.ns);
#endif /*CFG_WITH_VFP*/
}
static void thread_lazy_restore_ns_vfp(void)
{
#ifdef CFG_WITH_VFP
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
if (tuv && tuv->lazy_saved && !tuv->saved) {
vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
tuv->saved = true;
}
vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
thr->vfp_state.ns_saved = false;
#endif /*CFG_WITH_VFP*/
}
#ifdef ARM32
static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3)
{
thread->regs.pc = (uint32_t)thread_std_smc_entry;
/*
* Stdcalls starts in SVC mode with masked foreign interrupts, masked
* Asynchronous abort and unmasked native interrupts.
*/
thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
(THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
/* Enable thumb mode if it's a thumb instruction */
if (thread->regs.pc & 1)
thread->regs.cpsr |= CPSR_T;
/* Reinitialize stack pointer */
thread->regs.svc_sp = thread->stack_va_end;
/*
* Copy arguments into context. This will make the
* arguments appear in r0-r7 when thread is started.
*/
thread->regs.r0 = a0;
thread->regs.r1 = a1;
thread->regs.r2 = a2;
thread->regs.r3 = a3;
thread->regs.r4 = 0;
thread->regs.r5 = 0;
thread->regs.r6 = 0;
thread->regs.r7 = 0;
}
#endif /*ARM32*/
#ifdef ARM64
static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3)
{
thread->regs.pc = (uint64_t)thread_std_smc_entry;
/*
* Stdcalls starts in SVC mode with masked foreign interrupts, masked
* Asynchronous abort and unmasked native interrupts.
*/
thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
/* Reinitialize stack pointer */
thread->regs.sp = thread->stack_va_end;
/*
* Copy arguments into context. This will make the
* arguments appear in x0-x7 when thread is started.
*/
thread->regs.x[0] = a0;
thread->regs.x[1] = a1;
thread->regs.x[2] = a2;
thread->regs.x[3] = a3;
thread->regs.x[4] = 0;
thread->regs.x[5] = 0;
thread->regs.x[6] = 0;
thread->regs.x[7] = 0;
/* Set up frame pointer as per the Aarch64 AAPCS */
thread->regs.x[29] = 0;
}
#endif /*ARM64*/
void thread_init_boot_thread(void)
{
struct thread_core_local *l = thread_get_core_local();
thread_init_threads();
l->curr_thread = 0;
threads[0].state = THREAD_STATE_ACTIVE;
}
void thread_clr_boot_thread(void)
{
struct thread_core_local *l = thread_get_core_local();
assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
threads[l->curr_thread].state = THREAD_STATE_FREE;
l->curr_thread = -1;
}
void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3)
{
size_t n;
struct thread_core_local *l = thread_get_core_local();
bool found_thread = false;
assert(l->curr_thread == -1);
thread_lock_global();
for (n = 0; n < CFG_NUM_THREADS; n++) {
if (threads[n].state == THREAD_STATE_FREE) {
threads[n].state = THREAD_STATE_ACTIVE;
found_thread = true;
break;
}
}
thread_unlock_global();
if (!found_thread)
return;
l->curr_thread = n;
threads[n].flags = 0;
init_regs(threads + n, a0, a1, a2, a3);
thread_lazy_save_ns_vfp();
thread_resume(&threads[n].regs);
/*NOTREACHED*/
panic();
}
#ifdef ARM32
static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
uint32_t a1, uint32_t a2, uint32_t a3)
{
/*
* Update returned values from RPC, values will appear in
* r0-r3 when thread is resumed.
*/
regs->r0 = a0;
regs->r1 = a1;
regs->r2 = a2;
regs->r3 = a3;
}
#endif /*ARM32*/
#ifdef ARM64
static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
uint32_t a1, uint32_t a2, uint32_t a3)
{
/*
* Update returned values from RPC, values will appear in
* x0-x3 when thread is resumed.
*/
regs->x[0] = a0;
regs->x[1] = a1;
regs->x[2] = a2;
regs->x[3] = a3;
}
#endif /*ARM64*/
#ifdef ARM32
static bool is_from_user(uint32_t cpsr)
{
return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
}
#endif
#ifdef ARM64
static bool is_from_user(uint32_t cpsr)
{
if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
return true;
if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
SPSR_64_MODE_EL0)
return true;
return false;
}
#endif
#ifdef CFG_SYSCALL_FTRACE
static void __noprof ftrace_suspend(void)
{
struct tee_ta_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
if (!s)
return;
if (s->fbuf)
s->fbuf->syscall_trace_suspended = true;
}
static void __noprof ftrace_resume(void)
{
struct tee_ta_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
if (!s)
return;
if (s->fbuf)
s->fbuf->syscall_trace_suspended = false;
}
#else
static void __noprof ftrace_suspend(void)
{
}
static void __noprof ftrace_resume(void)
{
}
#endif
static bool is_user_mode(struct thread_ctx_regs *regs)
{
return is_from_user((uint32_t)regs->cpsr);
}
void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3)
{
size_t n = thread_id;
struct thread_core_local *l = thread_get_core_local();
bool found_thread = false;
assert(l->curr_thread == -1);
thread_lock_global();
if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
threads[n].state = THREAD_STATE_ACTIVE;
found_thread = true;
}
thread_unlock_global();
if (!found_thread)
return;
l->curr_thread = n;
if (threads[n].have_user_map) {
core_mmu_set_user_map(&threads[n].user_map);
if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
tee_ta_ftrace_update_times_resume();
}
if (is_user_mode(&threads[n].regs))
tee_ta_update_session_utime_resume();
/*
* Return from RPC to request service of a foreign interrupt must not
* get parameters from non-secure world.
*/
if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
}
thread_lazy_save_ns_vfp();
if (threads[n].have_user_map)
ftrace_resume();
thread_resume(&threads[n].regs);
/*NOTREACHED*/
panic();
}
void *thread_get_tmp_sp(void)
{
struct thread_core_local *l = thread_get_core_local();
return (void *)l->tmp_stack_va_end;
}
#ifdef ARM64
vaddr_t thread_get_saved_thread_sp(void)
{
struct thread_core_local *l = thread_get_core_local();
int ct = l->curr_thread;
assert(ct != -1);
return threads[ct].kern_sp;
}
#endif /*ARM64*/
vaddr_t thread_stack_start(void)
{
struct thread_ctx *thr;
int ct = thread_get_id_may_fail();
if (ct == -1)
return 0;
thr = threads + ct;
return thr->stack_va_end - STACK_THREAD_SIZE;
}
size_t thread_stack_size(void)
{
return STACK_THREAD_SIZE;
}
bool thread_is_from_abort_mode(void)
{
struct thread_core_local *l = thread_get_core_local();
return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT;
}
#ifdef ARM32
bool thread_is_in_normal_mode(void)
{
return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
}
#endif
#ifdef ARM64
bool thread_is_in_normal_mode(void)
{
uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
struct thread_core_local *l = thread_get_core_local();
bool ret;
/* If any bit in l->flags is set we're handling some exception. */
ret = !l->flags;
thread_unmask_exceptions(exceptions);
return ret;
}
#endif
void thread_state_free(void)
{
struct thread_core_local *l = thread_get_core_local();
int ct = l->curr_thread;
assert(ct != -1);
thread_lazy_restore_ns_vfp();
tee_pager_release_phys(
(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
STACK_THREAD_SIZE);
thread_lock_global();
assert(threads[ct].state == THREAD_STATE_ACTIVE);
threads[ct].state = THREAD_STATE_FREE;
threads[ct].flags = 0;
l->curr_thread = -1;
#ifdef CFG_VIRTUALIZATION
virt_unset_guest();
#endif
thread_unlock_global();
}
#ifdef CFG_WITH_PAGER
static void release_unused_kernel_stack(struct thread_ctx *thr,
uint32_t cpsr __maybe_unused)
{
#ifdef ARM64
/*
* If we're from user mode then thr->regs.sp is the saved user
* stack pointer and thr->kern_sp holds the last kernel stack
* pointer. But if we're from kernel mode then thr->kern_sp isn't
* up to date so we need to read from thr->regs.sp instead.
*/
vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp;
#else
vaddr_t sp = thr->regs.svc_sp;
#endif
vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
size_t len = sp - base;
tee_pager_release_phys((void *)base, len);
}
#else
static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
uint32_t cpsr __unused)
{
}
#endif
int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
{
struct thread_core_local *l = thread_get_core_local();
int ct = l->curr_thread;
assert(ct != -1);
if (core_mmu_user_mapping_is_active())
ftrace_suspend();
thread_check_canaries();
release_unused_kernel_stack(threads + ct, cpsr);
if (is_from_user(cpsr)) {
thread_user_save_vfp();
tee_ta_update_session_utime_suspend();
tee_ta_gprof_sample_pc(pc);
}
thread_lazy_restore_ns_vfp();
thread_lock_global();
assert(threads[ct].state == THREAD_STATE_ACTIVE);
threads[ct].flags |= flags;
threads[ct].regs.cpsr = cpsr;
threads[ct].regs.pc = pc;
threads[ct].state = THREAD_STATE_SUSPENDED;
threads[ct].have_user_map = core_mmu_user_mapping_is_active();
if (threads[ct].have_user_map) {
if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
tee_ta_ftrace_update_times_suspend();
core_mmu_get_user_map(&threads[ct].user_map);
core_mmu_set_user_map(NULL);
}
l->curr_thread = -1;
#ifdef CFG_VIRTUALIZATION
virt_unset_guest();
#endif
thread_unlock_global();
return ct;
}
#ifdef ARM32
static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
{
l->tmp_stack_va_end = sp;
thread_set_irq_sp(sp);
thread_set_fiq_sp(sp);
}
static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
{
l->abt_stack_va_end = sp;
thread_set_abt_sp((vaddr_t)l);
thread_set_und_sp((vaddr_t)l);
}
#endif /*ARM32*/
#ifdef ARM64
static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
{
/*
* We're already using the tmp stack when this function is called
* so there's no need to assign it to any stack pointer. However,
* we'll need to restore it at different times so store it here.
*/
l->tmp_stack_va_end = sp;
}
static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
{
l->abt_stack_va_end = sp;
}
#endif /*ARM64*/
bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
{
if (thread_id >= CFG_NUM_THREADS)
return false;
threads[thread_id].stack_va_end = sp;
return true;
}
int thread_get_id_may_fail(void)
{
/*
* thread_get_core_local() requires foreign interrupts to be disabled
*/
uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
struct thread_core_local *l = thread_get_core_local();
int ct = l->curr_thread;
thread_unmask_exceptions(exceptions);
return ct;
}
int thread_get_id(void)
{
int ct = thread_get_id_may_fail();
assert(ct >= 0 && ct < CFG_NUM_THREADS);
return ct;
}
static void init_handlers(const struct thread_handlers *handlers)
{
thread_cpu_on_handler_ptr = handlers->cpu_on;
thread_cpu_off_handler_ptr = handlers->cpu_off;
thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
thread_cpu_resume_handler_ptr = handlers->cpu_resume;
thread_system_off_handler_ptr = handlers->system_off;
thread_system_reset_handler_ptr = handlers->system_reset;
}
#ifdef CFG_WITH_PAGER
static void init_thread_stacks(void)
{
size_t n = 0;
/*
* Allocate virtual memory for thread stacks.
*/
for (n = 0; n < CFG_NUM_THREADS; n++) {
tee_mm_entry_t *mm = NULL;
vaddr_t sp = 0;
size_t num_pages = 0;
struct fobj *fobj = NULL;
/* Find vmem for thread stack and its protection gap */
mm = tee_mm_alloc(&tee_mm_vcore,
SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
assert(mm);
/* Claim eventual physical page */
tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
true);
num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1;
fobj = fobj_locked_paged_alloc(num_pages);
/* Add the area to the pager */
tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE,
PAGER_AREA_TYPE_LOCK, fobj);
fobj_put(fobj);
/* init effective stack */
sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp);
if (!thread_init_stack(n, sp))
panic("init stack failed");
}
}
#else
static void init_thread_stacks(void)
{
size_t n;
/* Assign the thread stacks */
for (n = 0; n < CFG_NUM_THREADS; n++) {
if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
panic("thread_init_stack failed");
}
}
#endif /*CFG_WITH_PAGER*/
static void init_user_kcode(void)
{
#ifdef CFG_CORE_UNMAP_CORE_AT_EL0
vaddr_t v = (vaddr_t)thread_excp_vect;
vaddr_t ve = (vaddr_t)thread_excp_vect_end;
thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
thread_user_kcode_size = ve - thread_user_kcode_va;
core_mmu_get_user_va_range(&v, NULL);
thread_user_kcode_offset = thread_user_kcode_va - v;
#if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
/*
* When transitioning to EL0 subtract SP with this much to point to
* this special kdata page instead. SP is restored by add this much
* while transitioning back to EL1.
*/
v += thread_user_kcode_size;
thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
#endif
#endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
}
void thread_init_threads(void)
{
size_t n;
init_thread_stacks();
pgt_init();
mutex_lockdep_init();
for (n = 0; n < CFG_NUM_THREADS; n++) {
TAILQ_INIT(&threads[n].tsd.sess_stack);
SLIST_INIT(&threads[n].tsd.pgt_cache);
}
for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
thread_core_local[n].curr_thread = -1;
}
void thread_init_primary(const struct thread_handlers *handlers)
{
init_handlers(handlers);
/* Initialize canaries around the stacks */
init_canaries();
init_user_kcode();
}
static void init_sec_mon(size_t pos __maybe_unused)
{
#if !defined(CFG_WITH_ARM_TRUSTED_FW)
/* Initialize secure monitor */
sm_init(GET_STACK(stack_tmp[pos]));
#endif
}
static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
{
return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
}
static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
{
return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
MIDR_PRIMARY_PART_NUM_MASK;
}
#ifdef ARM64
static bool probe_workaround_available(void)
{
int32_t r;
r = thread_smc(SMCCC_VERSION, 0, 0, 0);
if (r < 0)
return false;
if (r < 0x10001) /* compare with version 1.1 */
return false;
/* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0);
return r >= 0;
}
static vaddr_t __maybe_unused select_vector(vaddr_t a)
{
if (probe_workaround_available()) {
DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
SMCCC_ARCH_WORKAROUND_1);
DMSG("SMC Workaround for CVE-2017-5715 used");
return a;
}
DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
SMCCC_ARCH_WORKAROUND_1);
DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
return (vaddr_t)thread_excp_vect;
}
#else
static vaddr_t __maybe_unused select_vector(vaddr_t a)
{
return a;
}
#endif
static vaddr_t get_excp_vect(void)
{
#ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
uint32_t midr = read_midr();
if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
return (vaddr_t)thread_excp_vect;
switch (get_midr_primary_part(midr)) {
#ifdef ARM32
case CORTEX_A8_PART_NUM:
case CORTEX_A9_PART_NUM:
case CORTEX_A17_PART_NUM:
#endif
case CORTEX_A57_PART_NUM:
case CORTEX_A72_PART_NUM:
case CORTEX_A73_PART_NUM:
case CORTEX_A75_PART_NUM:
return select_vector((vaddr_t)thread_excp_vect_workaround);
#ifdef ARM32
case CORTEX_A15_PART_NUM:
return select_vector((vaddr_t)thread_excp_vect_workaround_a15);
#endif
default:
return (vaddr_t)thread_excp_vect;
}
#endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
return (vaddr_t)thread_excp_vect;
}
void thread_init_per_cpu(void)
{
size_t pos = get_core_pos();
struct thread_core_local *l = thread_get_core_local();
init_sec_mon(pos);
set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS);
set_abt_stack(l, GET_STACK(stack_abt[pos]));
thread_init_vbar(get_excp_vect());
#ifdef CFG_FTRACE_SUPPORT
/*
* Enable accesses to frequency register and physical counter
* register in EL0/PL0 required for timestamping during
* function tracing.
*/
write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
#endif
}
struct thread_specific_data *thread_get_tsd(void)
{
return &threads[thread_get_id()].tsd;
}
struct thread_ctx_regs *thread_get_ctx_regs(void)
{
struct thread_core_local *l = thread_get_core_local();
assert(l->curr_thread != -1);
return &threads[l->curr_thread].regs;
}
void thread_set_foreign_intr(bool enable)
{
/* thread_get_core_local() requires foreign interrupts to be disabled */
uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
struct thread_core_local *l;
l = thread_get_core_local();
assert(l->curr_thread != -1);
if (enable) {
threads[l->curr_thread].flags |=
THREAD_FLAGS_FOREIGN_INTR_ENABLE;
thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
} else {
/*
* No need to disable foreign interrupts here since they're
* already disabled above.
*/
threads[l->curr_thread].flags &=
~THREAD_FLAGS_FOREIGN_INTR_ENABLE;
}
}
void thread_restore_foreign_intr(void)
{
/* thread_get_core_local() requires foreign interrupts to be disabled */
uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
struct thread_core_local *l;
l = thread_get_core_local();
assert(l->curr_thread != -1);
if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE)
thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
}
#ifdef CFG_WITH_VFP
uint32_t thread_kernel_enable_vfp(void)
{
uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(!vfp_is_enabled());
if (!thr->vfp_state.ns_saved) {
vfp_lazy_save_state_final(&thr->vfp_state.ns,
true /*force_save*/);
thr->vfp_state.ns_saved = true;
} else if (thr->vfp_state.sec_lazy_saved &&
!thr->vfp_state.sec_saved) {
/*
* This happens when we're handling an abort while the
* thread was using the VFP state.
*/
vfp_lazy_save_state_final(&thr->vfp_state.sec,
false /*!force_save*/);
thr->vfp_state.sec_saved = true;
} else if (tuv && tuv->lazy_saved && !tuv->saved) {
/*
* This can happen either during syscall or abort
* processing (while processing a syscall).
*/
vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
tuv->saved = true;
}
vfp_enable();
return exceptions;
}
void thread_kernel_disable_vfp(uint32_t state)
{
uint32_t exceptions;
assert(vfp_is_enabled());
vfp_disable();
exceptions = thread_get_exceptions();
assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
thread_set_exceptions(exceptions);
}
void thread_kernel_save_vfp(void)
{
struct thread_ctx *thr = threads + thread_get_id();
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
if (vfp_is_enabled()) {
vfp_lazy_save_state_init(&thr->vfp_state.sec);
thr->vfp_state.sec_lazy_saved = true;
}
}
void thread_kernel_restore_vfp(void)
{
struct thread_ctx *thr = threads + thread_get_id();
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
assert(!vfp_is_enabled());
if (thr->vfp_state.sec_lazy_saved) {
vfp_lazy_restore_state(&thr->vfp_state.sec,
thr->vfp_state.sec_saved);
thr->vfp_state.sec_saved = false;
thr->vfp_state.sec_lazy_saved = false;
}
}
void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
{
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
assert(!vfp_is_enabled());
if (!thr->vfp_state.ns_saved) {
vfp_lazy_save_state_final(&thr->vfp_state.ns,
true /*force_save*/);
thr->vfp_state.ns_saved = true;
} else if (tuv && uvfp != tuv) {
if (tuv->lazy_saved && !tuv->saved) {
vfp_lazy_save_state_final(&tuv->vfp,
false /*!force_save*/);
tuv->saved = true;
}
}
if (uvfp->lazy_saved)
vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
uvfp->lazy_saved = false;
uvfp->saved = false;
thr->vfp_state.uvfp = uvfp;
vfp_enable();
}
void thread_user_save_vfp(void)
{
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
if (!vfp_is_enabled())
return;
assert(tuv && !tuv->lazy_saved && !tuv->saved);
vfp_lazy_save_state_init(&tuv->vfp);
tuv->lazy_saved = true;
}
void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp)
{
struct thread_ctx *thr = threads + thread_get_id();
if (uvfp == thr->vfp_state.uvfp)
thr->vfp_state.uvfp = NULL;
uvfp->lazy_saved = false;
uvfp->saved = false;
}
#endif /*CFG_WITH_VFP*/
#ifdef ARM32
static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
{
uint32_t s;
if (!is_32bit)
return false;
s = read_spsr();
s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
s |= CPSR_MODE_USR;
if (entry_func & 1)
s |= CPSR_T;
*spsr = s;
return true;
}
#endif
#ifdef ARM64
static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
{
uint32_t s;
if (is_32bit) {
s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
} else {
s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
}
*spsr = s;
return true;
}
#endif
static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
unsigned long a1, unsigned long a2, unsigned long a3,
unsigned long user_sp, unsigned long entry_func,
uint32_t spsr)
{
/*
* First clear all registers to avoid leaking information from
* other TAs or even the Core itself.
*/
*regs = (struct thread_ctx_regs){ };
#ifdef ARM32
regs->r0 = a0;
regs->r1 = a1;
regs->r2 = a2;
regs->r3 = a3;
regs->usr_sp = user_sp;
regs->pc = entry_func;
regs->cpsr = spsr;
#endif
#ifdef ARM64
regs->x[0] = a0;
regs->x[1] = a1;
regs->x[2] = a2;
regs->x[3] = a3;
regs->sp = user_sp;
regs->pc = entry_func;
regs->cpsr = spsr;
regs->x[13] = user_sp; /* Used when running TA in Aarch32 */
regs->sp = user_sp; /* Used when running TA in Aarch64 */
/* Set frame pointer (user stack can't be unwound past this point) */
regs->x[29] = 0;
#endif
}
uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
unsigned long a2, unsigned long a3, unsigned long user_sp,
unsigned long entry_func, bool is_32bit,
uint32_t *exit_status0, uint32_t *exit_status1)
{
uint32_t spsr = 0;
uint32_t exceptions = 0;
uint32_t rc = 0;
struct thread_ctx_regs *regs = NULL;
tee_ta_update_session_utime_resume();
if (!get_spsr(is_32bit, entry_func, &spsr)) {
*exit_status0 = 1; /* panic */
*exit_status1 = 0xbadbadba;
return 0;
}
exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
/*
* We're using the per thread location of saved context registers
* for temporary storage. Now that exceptions are masked they will
* not be used for any thing else until they are eventually
* unmasked when user mode has been entered.
*/
regs = thread_get_ctx_regs();
set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr);
rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
thread_unmask_exceptions(exceptions);
return rc;
}
#ifdef CFG_CORE_UNMAP_CORE_AT_EL0
void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
vaddr_t *va, size_t *sz)
{
core_mmu_get_user_va_range(va, NULL);
*mobj = mobj_tee_ram;
*offset = thread_user_kcode_va - VCORE_START_VA;
*sz = thread_user_kcode_size;
}
#endif
#if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
vaddr_t *va, size_t *sz)
{
vaddr_t v;
core_mmu_get_user_va_range(&v, NULL);
*va = v + thread_user_kcode_size;
*mobj = mobj_tee_ram;
*offset = (vaddr_t)thread_user_kdata_page - VCORE_START_VA;
*sz = sizeof(thread_user_kdata_page);
}
#endif