blob: 24c28976791502c946d4569ca109c537171fe323 [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/*
* Copyright 2015-2019 Linaro Limited
* Copyright 2013-2014 Andrew Turner.
* Copyright 2013-2014 Ian Lepore.
* Copyright 2013-2014 Rui Paulo.
* Copyright 2013 Eitan Adler.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <trace.h>
#include <types_ext.h>
#include <util.h>
#include <sys/queue.h>
#include "ta_elf.h"
#include "unwind.h"
/* The register names */
#define FP 11
#define SP 13
#define LR 14
#define PC 15
/*
* Definitions for the instruction interpreter.
*
* The ARM EABI specifies how to perform the frame unwinding in the
* Exception Handling ABI for the ARM Architecture document. To perform
* the unwind we need to know the initial frame pointer, stack pointer,
* link register and program counter. We then find the entry within the
* index table that points to the function the program counter is within.
* This gives us either a list of three instructions to process, a 31-bit
* relative offset to a table of instructions, or a value telling us
* we can't unwind any further.
*
* When we have the instructions to process we need to decode them
* following table 4 in section 9.3. This describes a collection of bit
* patterns to encode that steps to take to update the stack pointer and
* link register to the correct values at the start of the function.
*/
/* A special case when we are unable to unwind past this function */
#define EXIDX_CANTUNWIND 1
/*
* Entry types.
* These are the only entry types that have been seen in the kernel.
*/
#define ENTRY_MASK 0xff000000
#define ENTRY_ARM_SU16 0x80000000
#define ENTRY_ARM_LU16 0x81000000
/* Instruction masks. */
#define INSN_VSP_MASK 0xc0
#define INSN_VSP_SIZE_MASK 0x3f
#define INSN_STD_MASK 0xf0
#define INSN_STD_DATA_MASK 0x0f
#define INSN_POP_TYPE_MASK 0x08
#define INSN_POP_COUNT_MASK 0x07
#define INSN_VSP_LARGE_INC_MASK 0xff
/* Instruction definitions */
#define INSN_VSP_INC 0x00
#define INSN_VSP_DEC 0x40
#define INSN_POP_MASKED 0x80
#define INSN_VSP_REG 0x90
#define INSN_POP_COUNT 0xa0
#define INSN_FINISH 0xb0
#define INSN_POP_REGS 0xb1
#define INSN_VSP_LARGE_INC 0xb2
/* An item in the exception index table */
struct unwind_idx {
uint32_t offset;
uint32_t insn;
};
static bool copy_in(void *dst, const void *src, size_t n)
{
memcpy(dst, src, n);
return true;
}
/* Expand a 31-bit signed value to a 32-bit signed value */
static int32_t expand_prel31(uint32_t prel31)
{
return prel31 | SHIFT_U32(prel31 & BIT32(30), 1);
}
static bool find_exidx(vaddr_t addr, vaddr_t *idx_start, vaddr_t *idx_end)
{
struct segment *seg = NULL;
struct ta_elf *elf = NULL;
vaddr_t a = 0;
TAILQ_FOREACH(elf, &main_elf_queue, link) {
if (addr < elf->load_addr)
continue;
a = addr - elf->load_addr;
TAILQ_FOREACH(seg, &elf->segs, link) {
if (a < seg->vaddr)
continue;
if (a - seg->vaddr < seg->filesz) {
*idx_start = elf->exidx_start + elf->load_addr;
*idx_end = elf->exidx_start + elf->load_addr +
elf->exidx_size;
return true;
}
}
}
return false;
}
/*
* Perform a binary search of the index table to find the function
* with the largest address that doesn't exceed addr.
*/
static struct unwind_idx *find_index(uint32_t addr)
{
vaddr_t idx_start, idx_end;
unsigned int min, mid, max;
struct unwind_idx *start;
struct unwind_idx *item;
int32_t prel31_addr;
vaddr_t func_addr;
if (!find_exidx(addr, &idx_start, &idx_end))
return NULL;
start = (struct unwind_idx *)idx_start;
min = 0;
max = (idx_end - idx_start) / sizeof(struct unwind_idx);
while (min != max) {
mid = min + (max - min + 1) / 2;
item = &start[mid];
prel31_addr = expand_prel31(item->offset);
func_addr = (vaddr_t)&item->offset + prel31_addr;
if (func_addr <= addr)
min = mid;
else
max = mid - 1;
}
return &start[min];
}
/* Reads the next byte from the instruction list */
static bool unwind_exec_read_byte(struct unwind_state_arm32 *state,
uint32_t *ret_insn)
{
uint32_t insn;
if (!copy_in(&insn, (void *)state->insn, sizeof(insn)))
return false;
/* Read the unwind instruction */
*ret_insn = (insn >> (state->byte * 8)) & 0xff;
/* Update the location of the next instruction */
if (state->byte == 0) {
state->byte = 3;
state->insn += sizeof(uint32_t);
state->entries--;
} else
state->byte--;
return true;
}
static bool pop_vsp(uint32_t *reg, vaddr_t *vsp, vaddr_t stack,
size_t stack_size)
{
if (*vsp < stack)
return false;
if (*vsp + sizeof(*reg) > stack + stack_size)
return false;
if (!copy_in(reg, (void *)*vsp, sizeof(*reg)))
return false;
(*vsp) += sizeof(*reg);
return true;
}
/* Executes the next instruction on the list */
static bool unwind_exec_insn(struct unwind_state_arm32 *state, vaddr_t stack,
size_t stack_size)
{
uint32_t insn;
vaddr_t vsp = state->registers[SP];
int update_vsp = 0;
/* Read the next instruction */
if (!unwind_exec_read_byte(state, &insn))
return false;
if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
uint32_t mask;
unsigned int reg;
/* Load the mask */
if (!unwind_exec_read_byte(state, &mask))
return false;
mask |= (insn & INSN_STD_DATA_MASK) << 8;
/* We have a refuse to unwind instruction */
if (mask == 0)
return false;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
if (mask & 1) {
if (!pop_vsp(&state->registers[reg], &vsp,
stack, stack_size))
return false;
state->update_mask |= 1 << reg;
/* If we have updated SP kep its value */
if (reg == SP)
update_vsp = 0;
}
}
} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
((insn & INSN_STD_DATA_MASK) != 13) &&
((insn & INSN_STD_DATA_MASK) != 15)) {
/* sp = register */
state->registers[SP] =
state->registers[insn & INSN_STD_DATA_MASK];
} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
unsigned int count, reg;
/* Read how many registers to load */
count = insn & INSN_POP_COUNT_MASK;
/* Update sp */
update_vsp = 1;
/* Pop the registers */
for (reg = 4; reg <= 4 + count; reg++) {
if (!pop_vsp(&state->registers[reg], &vsp,
stack, stack_size))
return false;
state->update_mask |= 1 << reg;
}
/* Check if we are in the pop r14 version */
if ((insn & INSN_POP_TYPE_MASK) != 0) {
if (!pop_vsp(&state->registers[14], &vsp,
stack, stack_size))
return false;
}
} else if (insn == INSN_FINISH) {
/* Stop processing */
state->entries = 0;
} else if (insn == INSN_POP_REGS) {
uint32_t mask;
unsigned int reg;
if (!unwind_exec_read_byte(state, &mask))
return false;
if (mask == 0 || (mask & 0xf0) != 0)
return false;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
if (mask & 1) {
if (!pop_vsp(&state->registers[reg], &vsp,
stack, stack_size))
return false;
state->update_mask |= 1 << reg;
}
}
} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
uint32_t uleb128;
/* Read the increment value */
if (!unwind_exec_read_byte(state, &uleb128))
return false;
state->registers[SP] += 0x204 + (uleb128 << 2);
} else {
/* We hit a new instruction that needs to be implemented */
DMSG("Unhandled instruction %.2x", insn);
return false;
}
if (update_vsp)
state->registers[SP] = vsp;
return true;
}
/* Performs the unwind of a function */
static bool unwind_tab(struct unwind_state_arm32 *state, vaddr_t stack,
size_t stack_size)
{
uint32_t entry;
uint32_t insn;
/* Set PC to a known value */
state->registers[PC] = 0;
if (!copy_in(&insn, (void *)state->insn, sizeof(insn))) {
DMSG("Bad insn addr %p", (void *)state->insn);
return true;
}
/* Read the personality */
entry = insn & ENTRY_MASK;
if (entry == ENTRY_ARM_SU16) {
state->byte = 2;
state->entries = 1;
} else if (entry == ENTRY_ARM_LU16) {
state->byte = 1;
state->entries = ((insn >> 16) & 0xFF) + 1;
} else {
DMSG("Unknown entry: %x", entry);
return true;
}
while (state->entries > 0) {
if (!unwind_exec_insn(state, stack, stack_size))
return true;
}
/*
* The program counter was not updated, load it from the link register.
*/
if (state->registers[PC] == 0) {
state->registers[PC] = state->registers[LR];
/*
* If the program counter changed, flag it in the update mask.
*/
if (state->start_pc != state->registers[PC])
state->update_mask |= 1 << PC;
}
return false;
}
/*
* Unwind a 32-bit stack.
* (.ARM.exidx section).
* @stack, @stack_size: the bottom of the stack and its size, respectively.
*/
static bool unwind_stack_arm32(struct unwind_state_arm32 *state,
vaddr_t stack, size_t stack_size)
{
struct unwind_idx *index;
bool finished;
/* Reset the mask of updated registers */
state->update_mask = 0;
/* The pc value is correct and will be overwritten, save it */
state->start_pc = state->registers[PC];
/* Find the item to run */
index = find_index(state->start_pc);
if (!index)
return false;
finished = false;
if (index->insn != EXIDX_CANTUNWIND) {
if (index->insn & (1U << 31)) {
/* The data is within the instruction */
state->insn = (vaddr_t)&index->insn;
} else {
/* A prel31 offset to the unwind table */
state->insn = (vaddr_t)&index->insn +
expand_prel31(index->insn);
}
/* Run the unwind function */
finished = unwind_tab(state, stack, stack_size);
}
/* This is the top of the stack, finish */
if (index->insn == EXIDX_CANTUNWIND)
finished = true;
return !finished;
}
void print_stack_arm32(struct unwind_state_arm32 *state,
vaddr_t stack, size_t stack_size)
{
trace_printf_helper_raw(TRACE_ERROR, true, "Call stack:");
do {
trace_printf_helper_raw(TRACE_ERROR, true, " 0x%08" PRIx32,
state->registers[PC]);
} while (unwind_stack_arm32(state, stack, stack_size));
}