blob: cc978a11297de92e1b75cf5d296b188b7eb6e574 [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/*
* This LTC implementation was adapted from:
* http://www.ecrypt.eu.org/stream/e2-sosemanuk.html
*/
/*
* SOSEMANUK reference implementation.
*
* This code is supposed to run on any conforming C implementation (C90
* or later).
*
* (c) 2005 X-CRYPT project. This software is provided 'as-is', without
* any express or implied warranty. In no event will the authors be held
* liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to no restriction.
*
* Technical remarks and questions can be addressed to
* <thomas.pornin@cryptolog.com>
*/
#include "tomcrypt_private.h"
#ifdef LTC_SOSEMANUK
/* ======================================================================== */
/*
* We want (and sometimes need) to perform explicit truncations to 32 bits.
*/
#define T32(x) ((x) & (ulong32)0xFFFFFFFF)
/*
* Some of our functions will be tagged as "inline" to help the compiler
* optimize things. We use "inline" only if the compiler is advanced
* enough to understand it; C99 compilers, and pre-C99 versions of gcc,
* understand enough "inline" for our purposes.
*/
/* ======================================================================== */
/*
* Serpent S-boxes, implemented in bitslice mode. These circuits have
* been published by Dag Arne Osvik ("Speeding up Serpent", published in
* the 3rd AES Candidate Conference) and work on five 32-bit registers:
* the four inputs, and a fifth scratch register. There are meant to be
* quite fast on Pentium-class processors. These are not the fastest
* published, but they are "fast enough" and they are unencumbered as
* far as intellectual property is concerned (note: these are rewritten
* from the article itself, and hence are not covered by the GPL on
* Dag's code, which was not used here).
*
* The output bits are permuted. Here is the correspondance:
* S0: 1420
* S1: 2031
* S2: 2314
* S3: 1234
* S4: 1403
* S5: 1302
* S6: 0142
* S7: 4310
* (for instance, the output of S0 is in "r1, r4, r2, r0").
*/
#define S0(r0, r1, r2, r3, r4) do { \
r3 ^= r0; r4 = r1; \
r1 &= r3; r4 ^= r2; \
r1 ^= r0; r0 |= r3; \
r0 ^= r4; r4 ^= r3; \
r3 ^= r2; r2 |= r1; \
r2 ^= r4; r4 = ~r4; \
r4 |= r1; r1 ^= r3; \
r1 ^= r4; r3 |= r0; \
r1 ^= r3; r4 ^= r3; \
} while (0)
#define S1(r0, r1, r2, r3, r4) do { \
r0 = ~r0; r2 = ~r2; \
r4 = r0; r0 &= r1; \
r2 ^= r0; r0 |= r3; \
r3 ^= r2; r1 ^= r0; \
r0 ^= r4; r4 |= r1; \
r1 ^= r3; r2 |= r0; \
r2 &= r4; r0 ^= r1; \
r1 &= r2; \
r1 ^= r0; r0 &= r2; \
r0 ^= r4; \
} while (0)
#define S2(r0, r1, r2, r3, r4) do { \
r4 = r0; r0 &= r2; \
r0 ^= r3; r2 ^= r1; \
r2 ^= r0; r3 |= r4; \
r3 ^= r1; r4 ^= r2; \
r1 = r3; r3 |= r4; \
r3 ^= r0; r0 &= r1; \
r4 ^= r0; r1 ^= r3; \
r1 ^= r4; r4 = ~r4; \
} while (0)
#define S3(r0, r1, r2, r3, r4) do { \
r4 = r0; r0 |= r3; \
r3 ^= r1; r1 &= r4; \
r4 ^= r2; r2 ^= r3; \
r3 &= r0; r4 |= r1; \
r3 ^= r4; r0 ^= r1; \
r4 &= r0; r1 ^= r3; \
r4 ^= r2; r1 |= r0; \
r1 ^= r2; r0 ^= r3; \
r2 = r1; r1 |= r3; \
r1 ^= r0; \
} while (0)
#define S4(r0, r1, r2, r3, r4) do { \
r1 ^= r3; r3 = ~r3; \
r2 ^= r3; r3 ^= r0; \
r4 = r1; r1 &= r3; \
r1 ^= r2; r4 ^= r3; \
r0 ^= r4; r2 &= r4; \
r2 ^= r0; r0 &= r1; \
r3 ^= r0; r4 |= r1; \
r4 ^= r0; r0 |= r3; \
r0 ^= r2; r2 &= r3; \
r0 = ~r0; r4 ^= r2; \
} while (0)
#define S5(r0, r1, r2, r3, r4) do { \
r0 ^= r1; r1 ^= r3; \
r3 = ~r3; r4 = r1; \
r1 &= r0; r2 ^= r3; \
r1 ^= r2; r2 |= r4; \
r4 ^= r3; r3 &= r1; \
r3 ^= r0; r4 ^= r1; \
r4 ^= r2; r2 ^= r0; \
r0 &= r3; r2 = ~r2; \
r0 ^= r4; r4 |= r3; \
r2 ^= r4; \
} while (0)
#define S6(r0, r1, r2, r3, r4) do { \
r2 = ~r2; r4 = r3; \
r3 &= r0; r0 ^= r4; \
r3 ^= r2; r2 |= r4; \
r1 ^= r3; r2 ^= r0; \
r0 |= r1; r2 ^= r1; \
r4 ^= r0; r0 |= r3; \
r0 ^= r2; r4 ^= r3; \
r4 ^= r0; r3 = ~r3; \
r2 &= r4; \
r2 ^= r3; \
} while (0)
#define S7(r0, r1, r2, r3, r4) do { \
r4 = r1; r1 |= r2; \
r1 ^= r3; r4 ^= r2; \
r2 ^= r1; r3 |= r4; \
r3 &= r0; r4 ^= r2; \
r3 ^= r1; r1 |= r4; \
r1 ^= r0; r0 |= r4; \
r0 ^= r2; r1 ^= r4; \
r2 ^= r1; r1 &= r0; \
r1 ^= r4; r2 = ~r2; \
r2 |= r0; \
r4 ^= r2; \
} while (0)
/*
* The Serpent linear transform.
*/
#define SERPENT_LT(x0, x1, x2, x3) do { \
x0 = ROLc(x0, 13); \
x2 = ROLc(x2, 3); \
x1 = x1 ^ x0 ^ x2; \
x3 = x3 ^ x2 ^ T32(x0 << 3); \
x1 = ROLc(x1, 1); \
x3 = ROLc(x3, 7); \
x0 = x0 ^ x1 ^ x3; \
x2 = x2 ^ x3 ^ T32(x1 << 7); \
x0 = ROLc(x0, 5); \
x2 = ROLc(x2, 22); \
} while (0)
/* ======================================================================== */
/*
* Initialize Sosemanuk's state by providing a key. The key is an array of
* 1 to 32 bytes.
* @param st The Sosemanuk state
* @param key Key
* @param keylen Length of key in bytes
* @return CRYPT_OK on success
*/
int sosemanuk_setup(sosemanuk_state *st, const unsigned char *key, unsigned long keylen)
{
/*
* This key schedule is actually a truncated Serpent key schedule.
* The key-derived words (w_i) are computed within the eight
* local variables w0 to w7, which are reused again and again.
*/
#define SKS(S, o0, o1, o2, o3, d0, d1, d2, d3) do { \
ulong32 r0, r1, r2, r3, r4; \
r0 = w ## o0; \
r1 = w ## o1; \
r2 = w ## o2; \
r3 = w ## o3; \
S(r0, r1, r2, r3, r4); \
st->kc[i ++] = r ## d0; \
st->kc[i ++] = r ## d1; \
st->kc[i ++] = r ## d2; \
st->kc[i ++] = r ## d3; \
} while (0)
#define SKS0 SKS(S0, 4, 5, 6, 7, 1, 4, 2, 0)
#define SKS1 SKS(S1, 0, 1, 2, 3, 2, 0, 3, 1)
#define SKS2 SKS(S2, 4, 5, 6, 7, 2, 3, 1, 4)
#define SKS3 SKS(S3, 0, 1, 2, 3, 1, 2, 3, 4)
#define SKS4 SKS(S4, 4, 5, 6, 7, 1, 4, 0, 3)
#define SKS5 SKS(S5, 0, 1, 2, 3, 1, 3, 0, 2)
#define SKS6 SKS(S6, 4, 5, 6, 7, 0, 1, 4, 2)
#define SKS7 SKS(S7, 0, 1, 2, 3, 4, 3, 1, 0)
#define WUP(wi, wi5, wi3, wi1, cc) do { \
ulong32 tt = (wi) ^ (wi5) ^ (wi3) \
^ (wi1) ^ (0x9E3779B9 ^ (ulong32)(cc)); \
(wi) = ROLc(tt, 11); \
} while (0)
#define WUP0(cc) do { \
WUP(w0, w3, w5, w7, cc); \
WUP(w1, w4, w6, w0, cc + 1); \
WUP(w2, w5, w7, w1, cc + 2); \
WUP(w3, w6, w0, w2, cc + 3); \
} while (0)
#define WUP1(cc) do { \
WUP(w4, w7, w1, w3, cc); \
WUP(w5, w0, w2, w4, cc + 1); \
WUP(w6, w1, w3, w5, cc + 2); \
WUP(w7, w2, w4, w6, cc + 3); \
} while (0)
unsigned char wbuf[32];
ulong32 w0, w1, w2, w3, w4, w5, w6, w7;
int i = 0;
LTC_ARGCHK(st != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(keylen > 0 && keylen <= 32);
/*
* The key is copied into the wbuf[] buffer and padded to 256 bits
* as described in the Serpent specification.
*/
XMEMCPY(wbuf, key, keylen);
if (keylen < 32) {
wbuf[keylen] = 0x01;
if (keylen < 31) {
XMEMSET(wbuf + keylen + 1, 0, 31 - keylen);
}
}
LOAD32L(w0, wbuf);
LOAD32L(w1, wbuf + 4);
LOAD32L(w2, wbuf + 8);
LOAD32L(w3, wbuf + 12);
LOAD32L(w4, wbuf + 16);
LOAD32L(w5, wbuf + 20);
LOAD32L(w6, wbuf + 24);
LOAD32L(w7, wbuf + 28);
WUP0(0); SKS3;
WUP1(4); SKS2;
WUP0(8); SKS1;
WUP1(12); SKS0;
WUP0(16); SKS7;
WUP1(20); SKS6;
WUP0(24); SKS5;
WUP1(28); SKS4;
WUP0(32); SKS3;
WUP1(36); SKS2;
WUP0(40); SKS1;
WUP1(44); SKS0;
WUP0(48); SKS7;
WUP1(52); SKS6;
WUP0(56); SKS5;
WUP1(60); SKS4;
WUP0(64); SKS3;
WUP1(68); SKS2;
WUP0(72); SKS1;
WUP1(76); SKS0;
WUP0(80); SKS7;
WUP1(84); SKS6;
WUP0(88); SKS5;
WUP1(92); SKS4;
WUP0(96); SKS3;
#undef SKS
#undef SKS0
#undef SKS1
#undef SKS2
#undef SKS3
#undef SKS4
#undef SKS5
#undef SKS6
#undef SKS7
#undef WUP
#undef WUP0
#undef WUP1
return CRYPT_OK;
}
/*
* Initialization continues by setting the IV. The IV length is up to 16 bytes.
* If "ivlen" is 0 (no IV), then the "iv" parameter can be NULL. If multiple
* encryptions/decryptions are to be performed with the same key and
* sosemanuk_done() has not been called, only sosemanuk_setiv() need be called
* to set the state.
* @param st The Sosemanuk state
* @param iv Initialization vector
* @param ivlen Length of iv in bytes
* @return CRYPT_OK on success
*/
int sosemanuk_setiv(sosemanuk_state *st, const unsigned char *iv, unsigned long ivlen)
{
/*
* The Serpent key addition step.
*/
#define KA(zc, x0, x1, x2, x3) do { \
x0 ^= st->kc[(zc)]; \
x1 ^= st->kc[(zc) + 1]; \
x2 ^= st->kc[(zc) + 2]; \
x3 ^= st->kc[(zc) + 3]; \
} while (0)
/*
* One Serpent round.
* zc = current subkey counter
* S = S-box macro for this round
* i0 to i4 = input register numbers (the fifth is a scratch register)
* o0 to o3 = output register numbers
*/
#define FSS(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3) do { \
KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
} while (0)
/*
* Last Serpent round. Contrary to the "true" Serpent, we keep
* the linear transformation for that last round.
*/
#define FSF(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3) do { \
KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
KA(zc + 4, r ## o0, r ## o1, r ## o2, r ## o3); \
} while (0)
ulong32 r0, r1, r2, r3, r4;
unsigned char ivtmp[16] = {0};
LTC_ARGCHK(st != NULL);
LTC_ARGCHK(ivlen <= 16);
LTC_ARGCHK(iv != NULL || ivlen == 0);
if (ivlen > 0) XMEMCPY(ivtmp, iv, ivlen);
/*
* Decode IV into four 32-bit words (little-endian).
*/
LOAD32L(r0, ivtmp);
LOAD32L(r1, ivtmp + 4);
LOAD32L(r2, ivtmp + 8);
LOAD32L(r3, ivtmp + 12);
/*
* Encrypt IV with Serpent24. Some values are extracted from the
* output of the twelfth, eighteenth and twenty-fourth rounds.
*/
FSS(0, S0, 0, 1, 2, 3, 4, 1, 4, 2, 0);
FSS(4, S1, 1, 4, 2, 0, 3, 2, 1, 0, 4);
FSS(8, S2, 2, 1, 0, 4, 3, 0, 4, 1, 3);
FSS(12, S3, 0, 4, 1, 3, 2, 4, 1, 3, 2);
FSS(16, S4, 4, 1, 3, 2, 0, 1, 0, 4, 2);
FSS(20, S5, 1, 0, 4, 2, 3, 0, 2, 1, 4);
FSS(24, S6, 0, 2, 1, 4, 3, 0, 2, 3, 1);
FSS(28, S7, 0, 2, 3, 1, 4, 4, 1, 2, 0);
FSS(32, S0, 4, 1, 2, 0, 3, 1, 3, 2, 4);
FSS(36, S1, 1, 3, 2, 4, 0, 2, 1, 4, 3);
FSS(40, S2, 2, 1, 4, 3, 0, 4, 3, 1, 0);
FSS(44, S3, 4, 3, 1, 0, 2, 3, 1, 0, 2);
st->s09 = r3;
st->s08 = r1;
st->s07 = r0;
st->s06 = r2;
FSS(48, S4, 3, 1, 0, 2, 4, 1, 4, 3, 2);
FSS(52, S5, 1, 4, 3, 2, 0, 4, 2, 1, 3);
FSS(56, S6, 4, 2, 1, 3, 0, 4, 2, 0, 1);
FSS(60, S7, 4, 2, 0, 1, 3, 3, 1, 2, 4);
FSS(64, S0, 3, 1, 2, 4, 0, 1, 0, 2, 3);
FSS(68, S1, 1, 0, 2, 3, 4, 2, 1, 3, 0);
st->r1 = r2;
st->s04 = r1;
st->r2 = r3;
st->s05 = r0;
FSS(72, S2, 2, 1, 3, 0, 4, 3, 0, 1, 4);
FSS(76, S3, 3, 0, 1, 4, 2, 0, 1, 4, 2);
FSS(80, S4, 0, 1, 4, 2, 3, 1, 3, 0, 2);
FSS(84, S5, 1, 3, 0, 2, 4, 3, 2, 1, 0);
FSS(88, S6, 3, 2, 1, 0, 4, 3, 2, 4, 1);
FSF(92, S7, 3, 2, 4, 1, 0, 0, 1, 2, 3);
st->s03 = r0;
st->s02 = r1;
st->s01 = r2;
st->s00 = r3;
st->ptr = sizeof(st->buf);
#undef KA
#undef FSS
#undef FSF
return CRYPT_OK;
}
/*
* Multiplication by alpha: alpha * x = T32(x << 8) ^ mul_a[x >> 24]
*/
static const ulong32 mul_a[] = {
0x00000000, 0xE19FCF13, 0x6B973726, 0x8A08F835,
0xD6876E4C, 0x3718A15F, 0xBD10596A, 0x5C8F9679,
0x05A7DC98, 0xE438138B, 0x6E30EBBE, 0x8FAF24AD,
0xD320B2D4, 0x32BF7DC7, 0xB8B785F2, 0x59284AE1,
0x0AE71199, 0xEB78DE8A, 0x617026BF, 0x80EFE9AC,
0xDC607FD5, 0x3DFFB0C6, 0xB7F748F3, 0x566887E0,
0x0F40CD01, 0xEEDF0212, 0x64D7FA27, 0x85483534,
0xD9C7A34D, 0x38586C5E, 0xB250946B, 0x53CF5B78,
0x1467229B, 0xF5F8ED88, 0x7FF015BD, 0x9E6FDAAE,
0xC2E04CD7, 0x237F83C4, 0xA9777BF1, 0x48E8B4E2,
0x11C0FE03, 0xF05F3110, 0x7A57C925, 0x9BC80636,
0xC747904F, 0x26D85F5C, 0xACD0A769, 0x4D4F687A,
0x1E803302, 0xFF1FFC11, 0x75170424, 0x9488CB37,
0xC8075D4E, 0x2998925D, 0xA3906A68, 0x420FA57B,
0x1B27EF9A, 0xFAB82089, 0x70B0D8BC, 0x912F17AF,
0xCDA081D6, 0x2C3F4EC5, 0xA637B6F0, 0x47A879E3,
0x28CE449F, 0xC9518B8C, 0x435973B9, 0xA2C6BCAA,
0xFE492AD3, 0x1FD6E5C0, 0x95DE1DF5, 0x7441D2E6,
0x2D699807, 0xCCF65714, 0x46FEAF21, 0xA7616032,
0xFBEEF64B, 0x1A713958, 0x9079C16D, 0x71E60E7E,
0x22295506, 0xC3B69A15, 0x49BE6220, 0xA821AD33,
0xF4AE3B4A, 0x1531F459, 0x9F390C6C, 0x7EA6C37F,
0x278E899E, 0xC611468D, 0x4C19BEB8, 0xAD8671AB,
0xF109E7D2, 0x109628C1, 0x9A9ED0F4, 0x7B011FE7,
0x3CA96604, 0xDD36A917, 0x573E5122, 0xB6A19E31,
0xEA2E0848, 0x0BB1C75B, 0x81B93F6E, 0x6026F07D,
0x390EBA9C, 0xD891758F, 0x52998DBA, 0xB30642A9,
0xEF89D4D0, 0x0E161BC3, 0x841EE3F6, 0x65812CE5,
0x364E779D, 0xD7D1B88E, 0x5DD940BB, 0xBC468FA8,
0xE0C919D1, 0x0156D6C2, 0x8B5E2EF7, 0x6AC1E1E4,
0x33E9AB05, 0xD2766416, 0x587E9C23, 0xB9E15330,
0xE56EC549, 0x04F10A5A, 0x8EF9F26F, 0x6F663D7C,
0x50358897, 0xB1AA4784, 0x3BA2BFB1, 0xDA3D70A2,
0x86B2E6DB, 0x672D29C8, 0xED25D1FD, 0x0CBA1EEE,
0x5592540F, 0xB40D9B1C, 0x3E056329, 0xDF9AAC3A,
0x83153A43, 0x628AF550, 0xE8820D65, 0x091DC276,
0x5AD2990E, 0xBB4D561D, 0x3145AE28, 0xD0DA613B,
0x8C55F742, 0x6DCA3851, 0xE7C2C064, 0x065D0F77,
0x5F754596, 0xBEEA8A85, 0x34E272B0, 0xD57DBDA3,
0x89F22BDA, 0x686DE4C9, 0xE2651CFC, 0x03FAD3EF,
0x4452AA0C, 0xA5CD651F, 0x2FC59D2A, 0xCE5A5239,
0x92D5C440, 0x734A0B53, 0xF942F366, 0x18DD3C75,
0x41F57694, 0xA06AB987, 0x2A6241B2, 0xCBFD8EA1,
0x977218D8, 0x76EDD7CB, 0xFCE52FFE, 0x1D7AE0ED,
0x4EB5BB95, 0xAF2A7486, 0x25228CB3, 0xC4BD43A0,
0x9832D5D9, 0x79AD1ACA, 0xF3A5E2FF, 0x123A2DEC,
0x4B12670D, 0xAA8DA81E, 0x2085502B, 0xC11A9F38,
0x9D950941, 0x7C0AC652, 0xF6023E67, 0x179DF174,
0x78FBCC08, 0x9964031B, 0x136CFB2E, 0xF2F3343D,
0xAE7CA244, 0x4FE36D57, 0xC5EB9562, 0x24745A71,
0x7D5C1090, 0x9CC3DF83, 0x16CB27B6, 0xF754E8A5,
0xABDB7EDC, 0x4A44B1CF, 0xC04C49FA, 0x21D386E9,
0x721CDD91, 0x93831282, 0x198BEAB7, 0xF81425A4,
0xA49BB3DD, 0x45047CCE, 0xCF0C84FB, 0x2E934BE8,
0x77BB0109, 0x9624CE1A, 0x1C2C362F, 0xFDB3F93C,
0xA13C6F45, 0x40A3A056, 0xCAAB5863, 0x2B349770,
0x6C9CEE93, 0x8D032180, 0x070BD9B5, 0xE69416A6,
0xBA1B80DF, 0x5B844FCC, 0xD18CB7F9, 0x301378EA,
0x693B320B, 0x88A4FD18, 0x02AC052D, 0xE333CA3E,
0xBFBC5C47, 0x5E239354, 0xD42B6B61, 0x35B4A472,
0x667BFF0A, 0x87E43019, 0x0DECC82C, 0xEC73073F,
0xB0FC9146, 0x51635E55, 0xDB6BA660, 0x3AF46973,
0x63DC2392, 0x8243EC81, 0x084B14B4, 0xE9D4DBA7,
0xB55B4DDE, 0x54C482CD, 0xDECC7AF8, 0x3F53B5EB
};
/*
* Multiplication by 1/alpha: 1/alpha * x = (x >> 8) ^ mul_ia[x & 0xFF]
*/
static const ulong32 mul_ia[] = {
0x00000000, 0x180F40CD, 0x301E8033, 0x2811C0FE,
0x603CA966, 0x7833E9AB, 0x50222955, 0x482D6998,
0xC078FBCC, 0xD877BB01, 0xF0667BFF, 0xE8693B32,
0xA04452AA, 0xB84B1267, 0x905AD299, 0x88559254,
0x29F05F31, 0x31FF1FFC, 0x19EEDF02, 0x01E19FCF,
0x49CCF657, 0x51C3B69A, 0x79D27664, 0x61DD36A9,
0xE988A4FD, 0xF187E430, 0xD99624CE, 0xC1996403,
0x89B40D9B, 0x91BB4D56, 0xB9AA8DA8, 0xA1A5CD65,
0x5249BE62, 0x4A46FEAF, 0x62573E51, 0x7A587E9C,
0x32751704, 0x2A7A57C9, 0x026B9737, 0x1A64D7FA,
0x923145AE, 0x8A3E0563, 0xA22FC59D, 0xBA208550,
0xF20DECC8, 0xEA02AC05, 0xC2136CFB, 0xDA1C2C36,
0x7BB9E153, 0x63B6A19E, 0x4BA76160, 0x53A821AD,
0x1B854835, 0x038A08F8, 0x2B9BC806, 0x339488CB,
0xBBC11A9F, 0xA3CE5A52, 0x8BDF9AAC, 0x93D0DA61,
0xDBFDB3F9, 0xC3F2F334, 0xEBE333CA, 0xF3EC7307,
0xA492D5C4, 0xBC9D9509, 0x948C55F7, 0x8C83153A,
0xC4AE7CA2, 0xDCA13C6F, 0xF4B0FC91, 0xECBFBC5C,
0x64EA2E08, 0x7CE56EC5, 0x54F4AE3B, 0x4CFBEEF6,
0x04D6876E, 0x1CD9C7A3, 0x34C8075D, 0x2CC74790,
0x8D628AF5, 0x956DCA38, 0xBD7C0AC6, 0xA5734A0B,
0xED5E2393, 0xF551635E, 0xDD40A3A0, 0xC54FE36D,
0x4D1A7139, 0x551531F4, 0x7D04F10A, 0x650BB1C7,
0x2D26D85F, 0x35299892, 0x1D38586C, 0x053718A1,
0xF6DB6BA6, 0xEED42B6B, 0xC6C5EB95, 0xDECAAB58,
0x96E7C2C0, 0x8EE8820D, 0xA6F942F3, 0xBEF6023E,
0x36A3906A, 0x2EACD0A7, 0x06BD1059, 0x1EB25094,
0x569F390C, 0x4E9079C1, 0x6681B93F, 0x7E8EF9F2,
0xDF2B3497, 0xC724745A, 0xEF35B4A4, 0xF73AF469,
0xBF179DF1, 0xA718DD3C, 0x8F091DC2, 0x97065D0F,
0x1F53CF5B, 0x075C8F96, 0x2F4D4F68, 0x37420FA5,
0x7F6F663D, 0x676026F0, 0x4F71E60E, 0x577EA6C3,
0xE18D0321, 0xF98243EC, 0xD1938312, 0xC99CC3DF,
0x81B1AA47, 0x99BEEA8A, 0xB1AF2A74, 0xA9A06AB9,
0x21F5F8ED, 0x39FAB820, 0x11EB78DE, 0x09E43813,
0x41C9518B, 0x59C61146, 0x71D7D1B8, 0x69D89175,
0xC87D5C10, 0xD0721CDD, 0xF863DC23, 0xE06C9CEE,
0xA841F576, 0xB04EB5BB, 0x985F7545, 0x80503588,
0x0805A7DC, 0x100AE711, 0x381B27EF, 0x20146722,
0x68390EBA, 0x70364E77, 0x58278E89, 0x4028CE44,
0xB3C4BD43, 0xABCBFD8E, 0x83DA3D70, 0x9BD57DBD,
0xD3F81425, 0xCBF754E8, 0xE3E69416, 0xFBE9D4DB,
0x73BC468F, 0x6BB30642, 0x43A2C6BC, 0x5BAD8671,
0x1380EFE9, 0x0B8FAF24, 0x239E6FDA, 0x3B912F17,
0x9A34E272, 0x823BA2BF, 0xAA2A6241, 0xB225228C,
0xFA084B14, 0xE2070BD9, 0xCA16CB27, 0xD2198BEA,
0x5A4C19BE, 0x42435973, 0x6A52998D, 0x725DD940,
0x3A70B0D8, 0x227FF015, 0x0A6E30EB, 0x12617026,
0x451FD6E5, 0x5D109628, 0x750156D6, 0x6D0E161B,
0x25237F83, 0x3D2C3F4E, 0x153DFFB0, 0x0D32BF7D,
0x85672D29, 0x9D686DE4, 0xB579AD1A, 0xAD76EDD7,
0xE55B844F, 0xFD54C482, 0xD545047C, 0xCD4A44B1,
0x6CEF89D4, 0x74E0C919, 0x5CF109E7, 0x44FE492A,
0x0CD320B2, 0x14DC607F, 0x3CCDA081, 0x24C2E04C,
0xAC977218, 0xB49832D5, 0x9C89F22B, 0x8486B2E6,
0xCCABDB7E, 0xD4A49BB3, 0xFCB55B4D, 0xE4BA1B80,
0x17566887, 0x0F59284A, 0x2748E8B4, 0x3F47A879,
0x776AC1E1, 0x6F65812C, 0x477441D2, 0x5F7B011F,
0xD72E934B, 0xCF21D386, 0xE7301378, 0xFF3F53B5,
0xB7123A2D, 0xAF1D7AE0, 0x870CBA1E, 0x9F03FAD3,
0x3EA637B6, 0x26A9777B, 0x0EB8B785, 0x16B7F748,
0x5E9A9ED0, 0x4695DE1D, 0x6E841EE3, 0x768B5E2E,
0xFEDECC7A, 0xE6D18CB7, 0xCEC04C49, 0xD6CF0C84,
0x9EE2651C, 0x86ED25D1, 0xAEFCE52F, 0xB6F3A5E2
};
/*
* Compute the next block of bits of output stream. This is equivalent
* to one full rotation of the shift register.
*/
static LTC_INLINE void _sosemanuk_internal(sosemanuk_state *st)
{
/*
* MUL_A(x) computes alpha * x (in F_{2^32}).
* MUL_G(x) computes 1/alpha * x (in F_{2^32}).
*/
#define MUL_A(x) (T32((x) << 8) ^ mul_a[(x) >> 24])
#define MUL_G(x) (((x) >> 8) ^ mul_ia[(x) & 0xFF])
/*
* This macro computes the special multiplexer, which chooses
* between "x" and "x xor y", depending on the least significant
* bit of the control word. We use the C "?:" selection operator
* (which most compilers know how to optimise) except for Alpha,
* where the manual sign extension seems to perform equally well
* with DEC/Compaq/HP compiler, and much better with gcc.
*/
#ifdef __alpha
#define XMUX(c, x, y) ((((signed int)((c) << 31) >> 31) & (y)) ^ (x))
#else
#define XMUX(c, x, y) (((c) & 0x1) ? ((x) ^ (y)) : (x))
#endif
/*
* FSM() updates the finite state machine.
*/
#define FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) do { \
ulong32 tt, or1; \
tt = XMUX(r1, s ## x1, s ## x8); \
or1 = r1; \
r1 = T32(r2 + tt); \
tt = T32(or1 * 0x54655307); \
r2 = ROLc(tt, 7); \
} while (0)
/*
* LRU updates the shift register; the dropped value is stored
* in variable "dd".
*/
#define LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd) do { \
dd = s ## x0; \
s ## x0 = MUL_A(s ## x0) ^ MUL_G(s ## x3) ^ s ## x9; \
} while (0)
/*
* CC1 stores into variable "ee" the next intermediate word
* (combination of the new states of the LFSR and the FSM).
*/
#define CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee) do { \
ee = T32(s ## x9 + r1) ^ r2; \
} while (0)
/*
* STEP computes one internal round. "dd" receives the "s_t"
* value (dropped from the LFSR) and "ee" gets the value computed
* from the LFSR and FSM.
*/
#define STEP(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd, ee) do { \
FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9); \
LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd); \
CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee); \
} while (0)
/*
* Apply one Serpent round (with the provided S-box macro), XOR
* the result with the "v" values, and encode the result into
* the destination buffer, at the provided offset. The "x*"
* arguments encode the output permutation of the "S" macro.
*/
#define SRD(S, x0, x1, x2, x3, ooff) do { \
S(u0, u1, u2, u3, u4); \
STORE32L(u ## x0 ^ v0, st->buf + ooff); \
STORE32L(u ## x1 ^ v1, st->buf + ooff + 4); \
STORE32L(u ## x2 ^ v2, st->buf + ooff + 8); \
STORE32L(u ## x3 ^ v3, st->buf + ooff + 12); \
} while (0)
ulong32 s00 = st->s00;
ulong32 s01 = st->s01;
ulong32 s02 = st->s02;
ulong32 s03 = st->s03;
ulong32 s04 = st->s04;
ulong32 s05 = st->s05;
ulong32 s06 = st->s06;
ulong32 s07 = st->s07;
ulong32 s08 = st->s08;
ulong32 s09 = st->s09;
ulong32 r1 = st->r1;
ulong32 r2 = st->r2;
ulong32 u0, u1, u2, u3, u4;
ulong32 v0, v1, v2, v3;
STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v0, u0);
STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v1, u1);
STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v2, u2);
STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v3, u3);
SRD(S2, 2, 3, 1, 4, 0);
STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v0, u0);
STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v1, u1);
STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v2, u2);
STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v3, u3);
SRD(S2, 2, 3, 1, 4, 16);
STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v0, u0);
STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v1, u1);
STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v2, u2);
STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v3, u3);
SRD(S2, 2, 3, 1, 4, 32);
STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v0, u0);
STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v1, u1);
STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v2, u2);
STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v3, u3);
SRD(S2, 2, 3, 1, 4, 48);
STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v0, u0);
STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v1, u1);
STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v2, u2);
STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v3, u3);
SRD(S2, 2, 3, 1, 4, 64);
st->s00 = s00;
st->s01 = s01;
st->s02 = s02;
st->s03 = s03;
st->s04 = s04;
st->s05 = s05;
st->s06 = s06;
st->s07 = s07;
st->s08 = s08;
st->s09 = s09;
st->r1 = r1;
st->r2 = r2;
}
/*
* Combine buffers in1[] and in2[] by XOR, result in out[]. The length
* is "datalen" (in bytes). Partial overlap of out[] with either in1[]
* or in2[] is not allowed. Total overlap (out == in1 and/or out == in2)
* is allowed.
*/
static LTC_INLINE void _xorbuf(const unsigned char *in1, const unsigned char *in2,
unsigned char *out, unsigned long datalen)
{
while (datalen -- > 0) {
*out ++ = *in1 ++ ^ *in2 ++;
}
}
/*
* Cipher operation, as a stream cipher: data is read from the "in"
* buffer, combined by XOR with the stream, and the result is written
* in the "out" buffer. "in" and "out" must be either equal, or
* reference distinct buffers (no partial overlap is allowed).
* @param st The Sosemanuk state
* @param in Data in
* @param inlen Length of data in bytes
* @param out Data out
* @return CRYPT_OK on success
*/
int sosemanuk_crypt(sosemanuk_state *st,
const unsigned char *in, unsigned long inlen, unsigned char *out)
{
LTC_ARGCHK(st != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
if (st->ptr < (sizeof(st->buf))) {
unsigned long rlen = (sizeof(st->buf)) - st->ptr;
if (rlen > inlen) {
rlen = inlen;
}
_xorbuf(st->buf + st->ptr, in, out, rlen);
in += rlen;
out += rlen;
inlen -= rlen;
st->ptr += rlen;
}
while (inlen > 0) {
_sosemanuk_internal(st);
if (inlen >= sizeof(st->buf)) {
_xorbuf(st->buf, in, out, sizeof(st->buf));
in += sizeof(st->buf);
out += sizeof(st->buf);
inlen -= sizeof(st->buf);
} else {
_xorbuf(st->buf, in, out, inlen);
st->ptr = inlen;
inlen = 0;
}
}
return CRYPT_OK;
}
/*
* Cipher operation, as a PRNG: the provided output buffer is filled with
* pseudo-random bytes as output from the stream cipher.
* @param st The Sosemanuk state
* @param out Data out
* @param outlen Length of output in bytes
* @return CRYPT_OK on success
*/
int sosemanuk_keystream(sosemanuk_state *st, unsigned char *out, unsigned long outlen)
{
if (outlen == 0) return CRYPT_OK; /* nothing to do */
LTC_ARGCHK(out != NULL);
XMEMSET(out, 0, outlen);
return sosemanuk_crypt(st, out, outlen, out);
}
/*
* Terminate and clear Sosemanuk key context
* @param st The Sosemanuk state
* @return CRYPT_OK on success
*/
int sosemanuk_done(sosemanuk_state *st)
{
LTC_ARGCHK(st != NULL);
XMEMSET(st, 0, sizeof(sosemanuk_state));
return CRYPT_OK;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */