blob: 685fe3324cc5e78a7ec5bfe4aab6813130f3af85 [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#include "tomcrypt_private.h"
/**
@file sober128_stream.c
Implementation of SOBER-128 by Tom St Denis.
Based on s128fast.c reference code supplied by Greg Rose of QUALCOMM.
*/
#ifdef LTC_SOBER128
#define __LTC_SOBER128TAB_C__
#include "sober128tab.c"
/* don't change these... */
#define N 17
#define INITKONST 0x6996c53a /* value of KONST to use during key loading */
#define KEYP 15 /* where to insert key words */
#define FOLDP 4 /* where to insert non-linear feedback */
static ulong32 BYTE2WORD(const unsigned char *b)
{
ulong32 t;
LOAD32L(t, b);
return t;
}
static void XORWORD(ulong32 w, const unsigned char *in, unsigned char *out)
{
ulong32 t;
LOAD32L(t, in);
t ^= w;
STORE32L(t, out);
}
/* give correct offset for the current position of the register,
* where logically R[0] is at position "zero".
*/
#define OFF(zero, i) (((zero)+(i)) % N)
/* step the LFSR */
/* After stepping, "zero" moves right one place */
#define STEP(R,z) \
R[OFF(z,0)] = R[OFF(z,15)] ^ R[OFF(z,4)] ^ (R[OFF(z,0)] << 8) ^ Multab[(R[OFF(z,0)] >> 24) & 0xFF];
static void cycle(ulong32 *R)
{
ulong32 t;
int i;
STEP(R,0);
t = R[0];
for (i = 1; i < N; ++i) {
R[i-1] = R[i];
}
R[N-1] = t;
}
/* Return a non-linear function of some parts of the register.
*/
#define NLFUNC(st,z) \
{ \
t = st->R[OFF(z,0)] + st->R[OFF(z,16)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = RORc(t, 8); \
t = ((t + st->R[OFF(z,1)]) ^ st->konst) + st->R[OFF(z,6)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = t + st->R[OFF(z,13)]; \
}
static ulong32 nltap(const sober128_state *st)
{
ulong32 t;
NLFUNC(st, 0);
return t;
}
/* Save the current register state
*/
static void s128_savestate(sober128_state *st)
{
int i;
for (i = 0; i < N; ++i) {
st->initR[i] = st->R[i];
}
}
/* initialise to previously saved register state
*/
static void s128_reloadstate(sober128_state *st)
{
int i;
for (i = 0; i < N; ++i) {
st->R[i] = st->initR[i];
}
}
/* Initialise "konst"
*/
static void s128_genkonst(sober128_state *st)
{
ulong32 newkonst;
do {
cycle(st->R);
newkonst = nltap(st);
} while ((newkonst & 0xFF000000) == 0);
st->konst = newkonst;
}
/* Load key material into the register
*/
#define ADDKEY(k) \
st->R[KEYP] += (k);
#define XORNL(nl) \
st->R[FOLDP] ^= (nl);
/* nonlinear diffusion of register for key */
#define DROUND(z) STEP(st->R,z); NLFUNC(st,(z+1)); st->R[OFF((z+1),FOLDP)] ^= t;
static void s128_diffuse(sober128_state *st)
{
ulong32 t;
/* relies on FOLD == N == 17! */
DROUND(0);
DROUND(1);
DROUND(2);
DROUND(3);
DROUND(4);
DROUND(5);
DROUND(6);
DROUND(7);
DROUND(8);
DROUND(9);
DROUND(10);
DROUND(11);
DROUND(12);
DROUND(13);
DROUND(14);
DROUND(15);
DROUND(16);
}
/**
Initialize an Sober128 context (only the key)
@param st [out] The destination of the Sober128 state
@param key The secret key
@param keylen The length of the secret key (octets)
@return CRYPT_OK if successful
*/
int sober128_stream_setup(sober128_state *st, const unsigned char *key, unsigned long keylen)
{
ulong32 i, k;
LTC_ARGCHK(st != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(keylen > 0);
/* keylen must be multiple of 4 bytes */
if ((keylen & 3) != 0) {
return CRYPT_INVALID_KEYSIZE;
}
/* Register initialised to Fibonacci numbers */
st->R[0] = 1;
st->R[1] = 1;
for (i = 2; i < N; ++i) {
st->R[i] = st->R[i-1] + st->R[i-2];
}
st->konst = INITKONST;
for (i = 0; i < keylen; i += 4) {
k = BYTE2WORD((unsigned char *)&key[i]);
ADDKEY(k);
cycle(st->R);
XORNL(nltap(st));
}
/* also fold in the length of the key */
ADDKEY(keylen);
/* now diffuse */
s128_diffuse(st);
s128_genkonst(st);
s128_savestate(st);
st->nbuf = 0;
return CRYPT_OK;
}
/**
Set IV to the Sober128 state
@param st The Sober12820 state
@param iv The IV data to add
@param ivlen The length of the IV (must be 12)
@return CRYPT_OK on success
*/
int sober128_stream_setiv(sober128_state *st, const unsigned char *iv, unsigned long ivlen)
{
ulong32 i, k;
LTC_ARGCHK(st != NULL);
LTC_ARGCHK(iv != NULL);
LTC_ARGCHK(ivlen > 0);
/* ok we are adding an IV then... */
s128_reloadstate(st);
/* ivlen must be multiple of 4 bytes */
if ((ivlen & 3) != 0) {
return CRYPT_INVALID_KEYSIZE;
}
for (i = 0; i < ivlen; i += 4) {
k = BYTE2WORD((unsigned char *)&iv[i]);
ADDKEY(k);
cycle(st->R);
XORNL(nltap(st));
}
/* also fold in the length of the key */
ADDKEY(ivlen);
/* now diffuse */
s128_diffuse(st);
st->nbuf = 0;
return CRYPT_OK;
}
/* XOR pseudo-random bytes into buffer
*/
#define SROUND(z) STEP(st->R,z); NLFUNC(st,(z+1)); XORWORD(t, in+(z*4), out+(z*4));
/**
Encrypt (or decrypt) bytes of ciphertext (or plaintext) with Sober128
@param st The Sober128 state
@param in The plaintext (or ciphertext)
@param inlen The length of the input (octets)
@param out [out] The ciphertext (or plaintext), length inlen
@return CRYPT_OK if successful
*/
int sober128_stream_crypt(sober128_state *st, const unsigned char *in, unsigned long inlen, unsigned char *out)
{
ulong32 t;
if (inlen == 0) return CRYPT_OK; /* nothing to do */
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(st != NULL);
/* handle any previously buffered bytes */
while (st->nbuf != 0 && inlen != 0) {
*out++ = *in++ ^ (unsigned char)(st->sbuf & 0xFF);
st->sbuf >>= 8;
st->nbuf -= 8;
--inlen;
}
#ifndef LTC_SMALL_CODE
/* do lots at a time, if there's enough to do */
while (inlen >= N*4) {
SROUND(0);
SROUND(1);
SROUND(2);
SROUND(3);
SROUND(4);
SROUND(5);
SROUND(6);
SROUND(7);
SROUND(8);
SROUND(9);
SROUND(10);
SROUND(11);
SROUND(12);
SROUND(13);
SROUND(14);
SROUND(15);
SROUND(16);
out += 4*N;
in += 4*N;
inlen -= 4*N;
}
#endif
/* do small or odd size buffers the slow way */
while (4 <= inlen) {
cycle(st->R);
t = nltap(st);
XORWORD(t, in, out);
out += 4;
in += 4;
inlen -= 4;
}
/* handle any trailing bytes */
if (inlen != 0) {
cycle(st->R);
st->sbuf = nltap(st);
st->nbuf = 32;
while (st->nbuf != 0 && inlen != 0) {
*out++ = *in++ ^ (unsigned char)(st->sbuf & 0xFF);
st->sbuf >>= 8;
st->nbuf -= 8;
--inlen;
}
}
return CRYPT_OK;
}
int sober128_stream_keystream(sober128_state *st, unsigned char *out, unsigned long outlen)
{
if (outlen == 0) return CRYPT_OK; /* nothing to do */
LTC_ARGCHK(out != NULL);
XMEMSET(out, 0, outlen);
return sober128_stream_crypt(st, out, outlen, out);
}
/**
Terminate and clear Sober128 state
@param st The Sober128 state
@return CRYPT_OK on success
*/
int sober128_stream_done(sober128_state *st)
{
LTC_ARGCHK(st != NULL);
XMEMSET(st, 0, sizeof(sober128_state));
return CRYPT_OK;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */