blob: 72fc75cf219114bc20c77af812be1f59668a804b [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/*
* Copyright (c) 2017-2019, STMicroelectronics
*
* The driver API is defined in header file stm32_i2c.h.
*
* I2C bus driver does not register to the PM framework. It is the
* responsibility of the bus owner to call the related STM32 I2C driver
* API functions when bus suspends or resumes.
*/
#include <arm.h>
#include <drivers/stm32_i2c.h>
#include <io.h>
#include <kernel/delay.h>
#include <kernel/dt.h>
#include <kernel/generic_boot.h>
#include <kernel/panic.h>
#include <libfdt.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stm32_util.h>
#include <trace.h>
/* STM32 I2C registers offsets */
#define I2C_CR1 0x00U
#define I2C_CR2 0x04U
#define I2C_OAR1 0x08U
#define I2C_OAR2 0x0CU
#define I2C_TIMINGR 0x10U
#define I2C_TIMEOUTR 0x14U
#define I2C_ISR 0x18U
#define I2C_ICR 0x1CU
#define I2C_PECR 0x20U
#define I2C_RXDR 0x24U
#define I2C_TXDR 0x28U
/* Bit definition for I2C_CR1 register */
#define I2C_CR1_PE BIT(0)
#define I2C_CR1_TXIE BIT(1)
#define I2C_CR1_RXIE BIT(2)
#define I2C_CR1_ADDRIE BIT(3)
#define I2C_CR1_NACKIE BIT(4)
#define I2C_CR1_STOPIE BIT(5)
#define I2C_CR1_TCIE BIT(6)
#define I2C_CR1_ERRIE BIT(7)
#define I2C_CR1_DNF GENMASK_32(11, 8)
#define I2C_CR1_ANFOFF BIT(12)
#define I2C_CR1_SWRST BIT(13)
#define I2C_CR1_TXDMAEN BIT(14)
#define I2C_CR1_RXDMAEN BIT(15)
#define I2C_CR1_SBC BIT(16)
#define I2C_CR1_NOSTRETCH BIT(17)
#define I2C_CR1_WUPEN BIT(18)
#define I2C_CR1_GCEN BIT(19)
#define I2C_CR1_SMBHEN BIT(22)
#define I2C_CR1_SMBDEN BIT(21)
#define I2C_CR1_ALERTEN BIT(22)
#define I2C_CR1_PECEN BIT(23)
/* Bit definition for I2C_CR2 register */
#define I2C_CR2_SADD GENMASK_32(9, 0)
#define I2C_CR2_RD_WRN BIT(10)
#define I2C_CR2_RD_WRN_OFFSET 10U
#define I2C_CR2_ADD10 BIT(11)
#define I2C_CR2_HEAD10R BIT(12)
#define I2C_CR2_START BIT(13)
#define I2C_CR2_STOP BIT(14)
#define I2C_CR2_NACK BIT(15)
#define I2C_CR2_NBYTES GENMASK_32(23, 16)
#define I2C_CR2_NBYTES_OFFSET 16U
#define I2C_CR2_RELOAD BIT(24)
#define I2C_CR2_AUTOEND BIT(25)
#define I2C_CR2_PECBYTE BIT(26)
/* Bit definition for I2C_OAR1 register */
#define I2C_OAR1_OA1 GENMASK_32(9, 0)
#define I2C_OAR1_OA1MODE BIT(10)
#define I2C_OAR1_OA1EN BIT(15)
/* Bit definition for I2C_OAR2 register */
#define I2C_OAR2_OA2 GENMASK_32(7, 1)
#define I2C_OAR2_OA2MSK GENMASK_32(10, 8)
#define I2C_OAR2_OA2NOMASK 0
#define I2C_OAR2_OA2MASK01 BIT(8)
#define I2C_OAR2_OA2MASK02 BIT(9)
#define I2C_OAR2_OA2MASK03 GENMASK_32(9, 8)
#define I2C_OAR2_OA2MASK04 BIT(10)
#define I2C_OAR2_OA2MASK05 (BIT(8) | BIT(10))
#define I2C_OAR2_OA2MASK06 (BIT(9) | BIT(10))
#define I2C_OAR2_OA2MASK07 GENMASK_32(10, 8)
#define I2C_OAR2_OA2EN BIT(15)
/* Bit definition for I2C_TIMINGR register */
#define I2C_TIMINGR_SCLL GENMASK_32(7, 0)
#define I2C_TIMINGR_SCLH GENMASK_32(15, 8)
#define I2C_TIMINGR_SDADEL GENMASK_32(19, 16)
#define I2C_TIMINGR_SCLDEL GENMASK_32(23, 20)
#define I2C_TIMINGR_PRESC GENMASK_32(31, 28)
#define I2C_TIMINGR_SCLL_MAX (I2C_TIMINGR_SCLL + 1)
#define I2C_TIMINGR_SCLH_MAX ((I2C_TIMINGR_SCLH >> 8) + 1)
#define I2C_TIMINGR_SDADEL_MAX ((I2C_TIMINGR_SDADEL >> 16) + 1)
#define I2C_TIMINGR_SCLDEL_MAX ((I2C_TIMINGR_SCLDEL >> 20) + 1)
#define I2C_TIMINGR_PRESC_MAX ((I2C_TIMINGR_PRESC >> 28) + 1)
#define I2C_SET_TIMINGR_SCLL(n) ((n) & \
(I2C_TIMINGR_SCLL_MAX - 1))
#define I2C_SET_TIMINGR_SCLH(n) (((n) & \
(I2C_TIMINGR_SCLH_MAX - 1)) << 8)
#define I2C_SET_TIMINGR_SDADEL(n) (((n) & \
(I2C_TIMINGR_SDADEL_MAX - 1)) << 16)
#define I2C_SET_TIMINGR_SCLDEL(n) (((n) & \
(I2C_TIMINGR_SCLDEL_MAX - 1)) << 20)
#define I2C_SET_TIMINGR_PRESC(n) (((n) & \
(I2C_TIMINGR_PRESC_MAX - 1)) << 28)
/* Bit definition for I2C_TIMEOUTR register */
#define I2C_TIMEOUTR_TIMEOUTA GENMASK_32(11, 0)
#define I2C_TIMEOUTR_TIDLE BIT(12)
#define I2C_TIMEOUTR_TIMOUTEN BIT(15)
#define I2C_TIMEOUTR_TIMEOUTB GENMASK_32(27, 16)
#define I2C_TIMEOUTR_TEXTEN BIT(31)
/* Bit definition for I2C_ISR register */
#define I2C_ISR_TXE BIT(0)
#define I2C_ISR_TXIS BIT(1)
#define I2C_ISR_RXNE BIT(2)
#define I2C_ISR_ADDR BIT(3)
#define I2C_ISR_NACKF BIT(4)
#define I2C_ISR_STOPF BIT(5)
#define I2C_ISR_TC BIT(6)
#define I2C_ISR_TCR BIT(7)
#define I2C_ISR_BERR BIT(8)
#define I2C_ISR_ARLO BIT(9)
#define I2C_ISR_OVR BIT(10)
#define I2C_ISR_PECERR BIT(11)
#define I2C_ISR_TIMEOUT BIT(12)
#define I2C_ISR_ALERT BIT(13)
#define I2C_ISR_BUSY BIT(15)
#define I2C_ISR_DIR BIT(16)
#define I2C_ISR_ADDCODE GENMASK_32(23, 17)
/* Bit definition for I2C_ICR register */
#define I2C_ICR_ADDRCF BIT(3)
#define I2C_ICR_NACKCF BIT(4)
#define I2C_ICR_STOPCF BIT(5)
#define I2C_ICR_BERRCF BIT(8)
#define I2C_ICR_ARLOCF BIT(9)
#define I2C_ICR_OVRCF BIT(10)
#define I2C_ICR_PECCF BIT(11)
#define I2C_ICR_TIMOUTCF BIT(12)
#define I2C_ICR_ALERTCF BIT(13)
/* Max data size for a single I2C transfer */
#define MAX_NBYTE_SIZE 255U
#define I2C_NSEC_PER_SEC 1000000000L
#define I2C_TIMEOUT_BUSY_MS 25
#define I2C_TIMEOUT_BUSY_US (I2C_TIMEOUT_BUSY_MS * 1000)
#define CR2_RESET_MASK (I2C_CR2_SADD | I2C_CR2_HEAD10R | \
I2C_CR2_NBYTES | I2C_CR2_RELOAD | \
I2C_CR2_RD_WRN)
#define TIMINGR_CLEAR_MASK (I2C_TIMINGR_SCLL | I2C_TIMINGR_SCLH | \
I2C_TIMINGR_SDADEL | \
I2C_TIMINGR_SCLDEL | I2C_TIMINGR_PRESC)
/*
* I2C transfer modes
* I2C_RELOAD: Enable Reload mode
* I2C_AUTOEND_MODE: Enable automatic end mode
* I2C_SOFTEND_MODE: Enable software end mode
*/
#define I2C_RELOAD_MODE I2C_CR2_RELOAD
#define I2C_AUTOEND_MODE I2C_CR2_AUTOEND
#define I2C_SOFTEND_MODE 0x0
/*
* Start/restart/stop I2C transfer requests.
*
* I2C_NO_STARTSTOP: Don't Generate stop and start condition
* I2C_GENERATE_STOP: Generate stop condition (size should be set to 0)
* I2C_GENERATE_START_READ: Generate Restart for read request.
* I2C_GENERATE_START_WRITE: Generate Restart for write request
*/
#define I2C_NO_STARTSTOP 0x0
#define I2C_GENERATE_STOP (BIT(31) | I2C_CR2_STOP)
#define I2C_GENERATE_START_READ (BIT(31) | I2C_CR2_START | \
I2C_CR2_RD_WRN)
#define I2C_GENERATE_START_WRITE (BIT(31) | I2C_CR2_START)
/* Memory address byte sizes */
#define I2C_MEMADD_SIZE_8BIT 1
#define I2C_MEMADD_SIZE_16BIT 2
/*
* struct i2c_spec_s - Private I2C timing specifications.
* @rate: I2C bus speed (Hz)
* @rate_min: 80% of I2C bus speed (Hz)
* @rate_max: 120% of I2C bus speed (Hz)
* @fall_max: Max fall time of both SDA and SCL signals (ns)
* @rise_max: Max rise time of both SDA and SCL signals (ns)
* @hddat_min: Min data hold time (ns)
* @vddat_max: Max data valid time (ns)
* @sudat_min: Min data setup time (ns)
* @l_min: Min low period of the SCL clock (ns)
* @h_min: Min high period of the SCL clock (ns)
*/
struct i2c_spec_s {
uint32_t rate;
uint32_t rate_min;
uint32_t rate_max;
uint32_t fall_max;
uint32_t rise_max;
uint32_t hddat_min;
uint32_t vddat_max;
uint32_t sudat_min;
uint32_t l_min;
uint32_t h_min;
};
/*
* struct i2c_timing_s - Private I2C output parameters.
* @scldel: Data setup time
* @sdadel: Data hold time
* @sclh: SCL high period (master mode)
* @sclh: SCL low period (master mode)
* @is_saved: True if relating to a configuration candidate
*/
struct i2c_timing_s {
uint8_t scldel;
uint8_t sdadel;
uint8_t sclh;
uint8_t scll;
bool is_saved;
};
static const struct i2c_spec_s i2c_specs[] = {
[I2C_SPEED_STANDARD] = {
.rate = I2C_STANDARD_RATE,
.rate_min = (I2C_STANDARD_RATE * 80) / 100,
.rate_max = (I2C_STANDARD_RATE * 120) / 100,
.fall_max = 300,
.rise_max = 1000,
.hddat_min = 0,
.vddat_max = 3450,
.sudat_min = 250,
.l_min = 4700,
.h_min = 4000,
},
[I2C_SPEED_FAST] = {
.rate = I2C_FAST_RATE,
.rate_min = (I2C_FAST_RATE * 80) / 100,
.rate_max = (I2C_FAST_RATE * 120) / 100,
.fall_max = 300,
.rise_max = 300,
.hddat_min = 0,
.vddat_max = 900,
.sudat_min = 100,
.l_min = 1300,
.h_min = 600,
},
[I2C_SPEED_FAST_PLUS] = {
.rate = I2C_FAST_PLUS_RATE,
.rate_min = (I2C_FAST_PLUS_RATE * 80) / 100,
.rate_max = (I2C_FAST_PLUS_RATE * 120) / 100,
.fall_max = 100,
.rise_max = 120,
.hddat_min = 0,
.vddat_max = 450,
.sudat_min = 50,
.l_min = 500,
.h_min = 260,
},
};
/*
* I2C request parameters
* @dev_addr: I2C address of the target device
* @mode: Communication mode, one of I2C_MODE_(MASTER|MEM)
* @mem_addr: Target memory cell accessed in device (memory mode)
* @mem_addr_size: Byte size of the memory cell address (memory mode)
* @timeout_ms: Timeout in millisenconds for the request
*/
struct i2c_request {
uint32_t dev_addr;
enum i2c_mode_e mode;
uint32_t mem_addr;
uint32_t mem_addr_size;
unsigned int timeout_ms;
};
static vaddr_t get_base(struct i2c_handle_s *hi2c)
{
return io_pa_or_va_secure(&hi2c->base);
}
static void notif_i2c_timeout(struct i2c_handle_s *hi2c)
{
hi2c->i2c_err |= I2C_ERROR_TIMEOUT;
hi2c->i2c_state = I2C_STATE_READY;
}
static void save_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg)
{
vaddr_t base = get_base(hi2c);
stm32_clock_enable(hi2c->clock);
cfg->cr1 = io_read32(base + I2C_CR1);
cfg->cr2 = io_read32(base + I2C_CR2);
cfg->oar1 = io_read32(base + I2C_OAR1);
cfg->oar2 = io_read32(base + I2C_OAR2);
cfg->timingr = io_read32(base + I2C_TIMINGR);
stm32_clock_disable(hi2c->clock);
}
static void restore_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg)
{
vaddr_t base = get_base(hi2c);
stm32_clock_enable(hi2c->clock);
io_clrbits32(base + I2C_CR1, I2C_CR1_PE);
io_write32(base + I2C_TIMINGR, cfg->timingr & TIMINGR_CLEAR_MASK);
io_write32(base + I2C_OAR1, cfg->oar1);
io_write32(base + I2C_CR2, cfg->cr2);
io_write32(base + I2C_OAR2, cfg->oar2);
io_write32(base + I2C_CR1, cfg->cr1 & ~I2C_CR1_PE);
io_setbits32(base + I2C_CR1, cfg->cr1 & I2C_CR1_PE);
stm32_clock_disable(hi2c->clock);
}
static void __maybe_unused dump_cfg(struct i2c_cfg *cfg __maybe_unused)
{
DMSG("CR1: 0x%" PRIx32, cfg->cr1);
DMSG("CR2: 0x%" PRIx32, cfg->cr2);
DMSG("OAR1: 0x%" PRIx32, cfg->oar1);
DMSG("OAR2: 0x%" PRIx32, cfg->oar2);
DMSG("TIM: 0x%" PRIx32, cfg->timingr);
}
static void __maybe_unused dump_i2c(struct i2c_handle_s *hi2c)
{
vaddr_t __maybe_unused base = get_base(hi2c);
stm32_clock_enable(hi2c->clock);
DMSG("CR1: 0x%" PRIx32, io_read32(base + I2C_CR1));
DMSG("CR2: 0x%" PRIx32, io_read32(base + I2C_CR2));
DMSG("OAR1: 0x%" PRIx32, io_read32(base + I2C_OAR1));
DMSG("OAR2: 0x%" PRIx32, io_read32(base + I2C_OAR2));
DMSG("TIM: 0x%" PRIx32, io_read32(base + I2C_TIMINGR));
stm32_clock_disable(hi2c->clock);
}
/*
* Compute the I2C device timings
*
* @init: Ref to the initialization configuration structure
* @clock_src: I2C clock source frequency (Hz)
* @timing: Pointer to the final computed timing result
* Return 0 on success or a negative value
*/
static int i2c_compute_timing(struct stm32_i2c_init_s *init,
uint32_t clock_src, uint32_t *timing)
{
enum i2c_speed_e mode = init->speed_mode;
uint32_t speed_freq = i2c_specs[mode].rate;
uint32_t i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq);
uint32_t i2cclk = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, clock_src);
uint32_t p_prev = I2C_TIMINGR_PRESC_MAX;
uint32_t af_delay_min = 0;
uint32_t af_delay_max = 0;
uint32_t dnf_delay = 0;
uint32_t tsync = 0;
uint32_t clk_min = 0;
uint32_t clk_max = 0;
int clk_error_prev = 0;
uint16_t p = 0;
uint16_t l = 0;
uint16_t a = 0;
uint16_t h = 0;
unsigned int sdadel_min = 0;
unsigned int sdadel_max = 0;
unsigned int scldel_min = 0;
unsigned int delay = 0;
int s = -1;
struct i2c_timing_s solutions[I2C_TIMINGR_PRESC_MAX] = { 0 };
switch (mode) {
case I2C_SPEED_STANDARD:
case I2C_SPEED_FAST:
case I2C_SPEED_FAST_PLUS:
break;
default:
EMSG("I2C speed out of bound {%d/%d}",
mode, I2C_SPEED_FAST_PLUS);
return -1;
}
speed_freq = i2c_specs[mode].rate;
i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq);
clk_error_prev = INT_MAX;
if ((init->rise_time > i2c_specs[mode].rise_max) ||
(init->fall_time > i2c_specs[mode].fall_max)) {
EMSG(" I2C timings out of bound: Rise{%d > %d}/Fall{%d > %d}",
init->rise_time, i2c_specs[mode].rise_max,
init->fall_time, i2c_specs[mode].fall_max);
return -1;
}
if (init->digital_filter_coef > STM32_I2C_DIGITAL_FILTER_MAX) {
EMSG("DNF out of bound %d/%d",
init->digital_filter_coef, STM32_I2C_DIGITAL_FILTER_MAX);
return -1;
}
/* Analog and Digital Filters */
if (init->analog_filter) {
af_delay_min = STM32_I2C_ANALOG_FILTER_DELAY_MIN;
af_delay_max = STM32_I2C_ANALOG_FILTER_DELAY_MAX;
}
dnf_delay = init->digital_filter_coef * i2cclk;
sdadel_min = i2c_specs[mode].hddat_min + init->fall_time;
delay = af_delay_min - ((init->digital_filter_coef + 3) * i2cclk);
if (SUB_OVERFLOW(sdadel_min, delay, &sdadel_min))
sdadel_min = 0;
sdadel_max = i2c_specs[mode].vddat_max - init->rise_time;
delay = af_delay_max - ((init->digital_filter_coef + 4) * i2cclk);
if (SUB_OVERFLOW(sdadel_max, delay, &sdadel_max))
sdadel_max = 0;
scldel_min = init->rise_time + i2c_specs[mode].sudat_min;
DMSG("I2C SDADEL(min/max): %u/%u, SCLDEL(Min): %u",
sdadel_min, sdadel_max, scldel_min);
/* Compute possible values for PRESC, SCLDEL and SDADEL */
for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) {
for (l = 0; l < I2C_TIMINGR_SCLDEL_MAX; l++) {
uint32_t scldel = (l + 1) * (p + 1) * i2cclk;
if (scldel < scldel_min)
continue;
for (a = 0; a < I2C_TIMINGR_SDADEL_MAX; a++) {
uint32_t sdadel = (a * (p + 1) + 1) * i2cclk;
if ((sdadel >= sdadel_min) &&
(sdadel <= sdadel_max) &&
(p != p_prev)) {
solutions[p].scldel = l;
solutions[p].sdadel = a;
solutions[p].is_saved = true;
p_prev = p;
break;
}
}
if (p_prev == p)
break;
}
}
if (p_prev == I2C_TIMINGR_PRESC_MAX) {
EMSG(" I2C no Prescaler solution");
return -1;
}
tsync = af_delay_min + dnf_delay + (2 * i2cclk);
clk_max = I2C_NSEC_PER_SEC / i2c_specs[mode].rate_min;
clk_min = I2C_NSEC_PER_SEC / i2c_specs[mode].rate_max;
/*
* Among prescaler possibilities discovered above figures out SCL Low
* and High Period. Provided:
* - SCL Low Period has to be higher than Low Period of the SCL Clock
* defined by I2C Specification. I2C Clock has to be lower than
* (SCL Low Period - Analog/Digital filters) / 4.
* - SCL High Period has to be lower than High Period of the SCL Clock
* defined by I2C Specification.
* - I2C Clock has to be lower than SCL High Period.
*/
for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) {
uint32_t prescaler = (p + 1) * i2cclk;
if (!solutions[p].is_saved)
continue;
for (l = 0; l < I2C_TIMINGR_SCLL_MAX; l++) {
uint32_t tscl_l = ((l + 1) * prescaler) + tsync;
if ((tscl_l < i2c_specs[mode].l_min) ||
(i2cclk >=
((tscl_l - af_delay_min - dnf_delay) / 4)))
continue;
for (h = 0; h < I2C_TIMINGR_SCLH_MAX; h++) {
uint32_t tscl_h = ((h + 1) * prescaler) + tsync;
uint32_t tscl = tscl_l + tscl_h +
init->rise_time +
init->fall_time;
if ((tscl >= clk_min) && (tscl <= clk_max) &&
(tscl_h >= i2c_specs[mode].h_min) &&
(i2cclk < tscl_h)) {
int clk_error = tscl - i2cbus;
if (clk_error < 0)
clk_error = -clk_error;
if (clk_error < clk_error_prev) {
clk_error_prev = clk_error;
solutions[p].scll = l;
solutions[p].sclh = h;
s = p;
}
}
}
}
}
if (s < 0) {
EMSG(" I2C no solution at all");
return -1;
}
/* Finalize timing settings */
*timing = I2C_SET_TIMINGR_PRESC(s) |
I2C_SET_TIMINGR_SCLDEL(solutions[s].scldel) |
I2C_SET_TIMINGR_SDADEL(solutions[s].sdadel) |
I2C_SET_TIMINGR_SCLH(solutions[s].sclh) |
I2C_SET_TIMINGR_SCLL(solutions[s].scll);
DMSG("I2C TIMINGR (PRESC/SCLDEL/SDADEL): %i/%i/%i",
s, solutions[s].scldel, solutions[s].sdadel);
DMSG("I2C TIMINGR (SCLH/SCLL): %i/%i",
solutions[s].sclh, solutions[s].scll);
DMSG("I2C TIMINGR: 0x%x", *timing);
return 0;
}
/*
* Setup the I2C device timings
*
* @hi2c: I2C handle structure
* @init: Ref to the initialization configuration structure
* @timing: Output TIMINGR register configuration value
* @retval 0 if OK, negative value else
*/
static int i2c_setup_timing(struct i2c_handle_s *hi2c,
struct stm32_i2c_init_s *init,
uint32_t *timing)
{
int rc = 0;
uint32_t clock_src = stm32_clock_get_rate(hi2c->clock);
if (!clock_src) {
EMSG("Null I2C clock rate");
return -1;
}
do {
rc = i2c_compute_timing(init, clock_src, timing);
if (rc) {
EMSG("Failed to compute I2C timings");
if (init->speed_mode > I2C_SPEED_STANDARD) {
init->speed_mode--;
IMSG("Downgrade I2C speed to %uHz)",
i2c_specs[init->speed_mode].rate);
} else {
break;
}
}
} while (rc);
if (rc) {
EMSG("Impossible to compute I2C timings");
return rc;
}
DMSG("I2C Speed Mode(%i), Freq(%i), Clk Source(%i)",
init->speed_mode, i2c_specs[init->speed_mode].rate, clock_src);
DMSG("I2C Rise(%i) and Fall(%i) Time",
init->rise_time, init->fall_time);
DMSG("I2C Analog Filter(%s), DNF(%i)",
init->analog_filter ? "On" : "Off", init->digital_filter_coef);
return 0;
}
/*
* Configure I2C Analog noise filter.
* @hi2c: I2C handle structure
* @analog_filter_on: True if enabling analog filter, false otherwise
* Return 0 on success or a negative value
*/
static int i2c_config_analog_filter(struct i2c_handle_s *hi2c,
bool analog_filter_on)
{
vaddr_t base = get_base(hi2c);
if (hi2c->i2c_state != I2C_STATE_READY)
return -1;
hi2c->i2c_state = I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
io_clrbits32(base + I2C_CR1, I2C_CR1_PE);
/* Reset I2Cx ANOFF bit */
io_clrbits32(base + I2C_CR1, I2C_CR1_ANFOFF);
/* Set analog filter bit if filter is disabled */
if (!analog_filter_on)
io_setbits32(base + I2C_CR1, I2C_CR1_ANFOFF);
/* Enable the selected I2C peripheral */
io_setbits32(base + I2C_CR1, I2C_CR1_PE);
hi2c->i2c_state = I2C_STATE_READY;
return 0;
}
int stm32_i2c_get_setup_from_fdt(void *fdt, int node,
struct stm32_i2c_init_s *init,
struct stm32_pinctrl **pinctrl,
size_t *pinctrl_count)
{
const fdt32_t *cuint = NULL;
struct dt_node_info info = { .status = 0 };
int count = 0;
/* Default STM32 specific configs caller may need to overwrite */
memset(init, 0, sizeof(*init));
_fdt_fill_device_info(fdt, &info, node);
init->dt_status = info.status;
init->pbase = info.reg;
init->clock = info.clock;
assert(info.reg != DT_INFO_INVALID_REG &&
info.clock != DT_INFO_INVALID_CLOCK);
cuint = fdt_getprop(fdt, node, "i2c-scl-rising-time-ns", NULL);
if (cuint)
init->rise_time = fdt32_to_cpu(*cuint);
else
init->rise_time = STM32_I2C_RISE_TIME_DEFAULT;
cuint = fdt_getprop(fdt, node, "i2c-scl-falling-time-ns", NULL);
if (cuint)
init->fall_time = fdt32_to_cpu(*cuint);
else
init->fall_time = STM32_I2C_FALL_TIME_DEFAULT;
cuint = fdt_getprop(fdt, node, "clock-frequency", NULL);
if (cuint) {
switch (fdt32_to_cpu(*cuint)) {
case I2C_STANDARD_RATE:
init->speed_mode = I2C_SPEED_STANDARD;
break;
case I2C_FAST_RATE:
init->speed_mode = I2C_SPEED_FAST;
break;
case I2C_FAST_PLUS_RATE:
init->speed_mode = I2C_SPEED_FAST_PLUS;
break;
default:
init->speed_mode = STM32_I2C_SPEED_DEFAULT;
break;
}
} else {
init->speed_mode = STM32_I2C_SPEED_DEFAULT;
}
count = stm32_pinctrl_fdt_get_pinctrl(fdt, node, NULL, 0);
if (count <= 0) {
*pinctrl = NULL;
*pinctrl_count = 0;
return count;
}
if (count > 2)
panic("Too many PINCTRLs found");
*pinctrl = calloc(count, sizeof(**pinctrl));
if (!*pinctrl)
panic();
*pinctrl_count = stm32_pinctrl_fdt_get_pinctrl(fdt, node,
*pinctrl, count);
assert(*pinctrl_count == (unsigned int)count);
return 0;
}
int stm32_i2c_init(struct i2c_handle_s *hi2c,
struct stm32_i2c_init_s *init_data)
{
int rc = 0;
uint32_t timing = 0;
vaddr_t base = 0;
uint32_t val = 0;
hi2c->dt_status = init_data->dt_status;
hi2c->base.pa = init_data->pbase;
hi2c->clock = init_data->clock;
rc = i2c_setup_timing(hi2c, init_data, &timing);
if (rc)
return rc;
stm32_clock_enable(hi2c->clock);
base = get_base(hi2c);
hi2c->i2c_state = I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
io_clrbits32(base + I2C_CR1, I2C_CR1_PE);
/* Configure I2Cx: Frequency range */
io_write32(base + I2C_TIMINGR, timing & TIMINGR_CLEAR_MASK);
/* Disable Own Address1 before set the Own Address1 configuration */
io_write32(base + I2C_OAR1, 0);
/* Configure I2Cx: Own Address1 and ack own address1 mode */
if (init_data->addr_mode_10b_not_7b)
io_write32(base + I2C_OAR1,
I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE |
init_data->own_address1);
else
io_write32(base + I2C_OAR1,
I2C_OAR1_OA1EN | init_data->own_address1);
/* Configure I2Cx: Addressing Master mode */
io_write32(base + I2C_CR2, 0);
if (init_data->addr_mode_10b_not_7b)
io_setbits32(base + I2C_CR2, I2C_CR2_ADD10);
/*
* Enable the AUTOEND by default, and enable NACK
* (should be disabled only during Slave process).
*/
io_setbits32(base + I2C_CR2, I2C_CR2_AUTOEND | I2C_CR2_NACK);
/* Disable Own Address2 before set the Own Address2 configuration */
io_write32(base + I2C_OAR2, 0);
/* Configure I2Cx: Dual mode and Own Address2 */
if (init_data->dual_address_mode)
io_write32(base + I2C_OAR2,
I2C_OAR2_OA2EN | init_data->own_address2 |
(init_data->own_address2_masks << 8));
/* Configure I2Cx: Generalcall and NoStretch mode */
val = 0;
if (init_data->general_call_mode)
val |= I2C_CR1_GCEN;
if (init_data->no_stretch_mode)
val |= I2C_CR1_NOSTRETCH;
io_write32(base + I2C_CR1, val);
/* Enable the selected I2C peripheral */
io_setbits32(base + I2C_CR1, I2C_CR1_PE);
hi2c->i2c_err = I2C_ERROR_NONE;
hi2c->i2c_state = I2C_STATE_READY;
rc = i2c_config_analog_filter(hi2c, init_data->analog_filter);
if (rc)
EMSG("I2C analog filter error %d", rc);
stm32_clock_disable(hi2c->clock);
return rc;
}
/* I2C transmit (TX) data register flush sequence */
static void i2c_flush_txdr(struct i2c_handle_s *hi2c)
{
vaddr_t base = get_base(hi2c);
/*
* If a pending TXIS flag is set,
* write a dummy data in TXDR to clear it.
*/
if (io_read32(base + I2C_ISR) & I2C_ISR_TXIS)
io_write32(base + I2C_TXDR, 0);
/* Flush TX register if not empty */
if ((io_read32(base + I2C_ISR) & I2C_ISR_TXE) == 0)
io_setbits32(base + I2C_ISR, I2C_ISR_TXE);
}
/*
* Wait for a single target I2C_ISR bit to reach an awaited value (0 or 1)
*
* @hi2c: I2C handle structure
* @bit_mask: Bit mask for the target single bit position to consider
* @awaited_value: Awaited value of the target bit in I2C_ISR, 0 or 1
* @timeout_ref: Expriation timeout reference
* Return 0 on success and a non-zero value on timeout
*/
static int wait_isr_event(struct i2c_handle_s *hi2c, uint32_t bit_mask,
unsigned int awaited_value, uint64_t timeout_ref)
{
vaddr_t isr = get_base(hi2c) + I2C_ISR;
assert(IS_POWER_OF_TWO(bit_mask) && !(awaited_value & ~1U));
/* May timeout while TEE thread is suspended */
while (!timeout_elapsed(timeout_ref))
if (!!(io_read32(isr) & bit_mask) == awaited_value)
break;
if (!!(io_read32(isr) & bit_mask) == awaited_value)
return 0;
notif_i2c_timeout(hi2c);
return -1;
}
/* Handle Acknowledge-Failed sequence detection during an I2C Communication */
static int i2c_ack_failed(struct i2c_handle_s *hi2c, uint64_t timeout_ref)
{
vaddr_t base = get_base(hi2c);
if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U)
return 0;
/*
* Wait until STOP Flag is reset. Use polling method.
* AutoEnd should be initiate after AF.
* Timeout may elpased while TEE thread is suspended.
*/
while (!timeout_elapsed(timeout_ref))
if (io_read32(base + I2C_ISR) & I2C_ISR_STOPF)
break;
if ((io_read32(base + I2C_ISR) & I2C_ISR_STOPF) == 0) {
notif_i2c_timeout(hi2c);
return -1;
}
io_write32(base + I2C_ICR, I2C_ISR_NACKF);
io_write32(base + I2C_ICR, I2C_ISR_STOPF);
i2c_flush_txdr(hi2c);
io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
hi2c->i2c_err |= I2C_ERROR_ACKF;
hi2c->i2c_state = I2C_STATE_READY;
return -1;
}
/* Wait TXIS bit is 1 in I2C_ISR register */
static int i2c_wait_txis(struct i2c_handle_s *hi2c, uint64_t timeout_ref)
{
while (!timeout_elapsed(timeout_ref)) {
if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS)
break;
if (i2c_ack_failed(hi2c, timeout_ref))
return -1;
}
if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS)
return 0;
if (i2c_ack_failed(hi2c, timeout_ref))
return -1;
notif_i2c_timeout(hi2c);
return -1;
}
/* Wait STOPF bit is 1 in I2C_ISR register */
static int i2c_wait_stop(struct i2c_handle_s *hi2c, uint64_t timeout_ref)
{
while (!timeout_elapsed(timeout_ref)) {
if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF)
break;
if (i2c_ack_failed(hi2c, timeout_ref))
return -1;
}
if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF)
return 0;
if (i2c_ack_failed(hi2c, timeout_ref))
return -1;
notif_i2c_timeout(hi2c);
return -1;
}
/*
* Load I2C_CR2 register for a I2C transfer
*
* @hi2c: I2C handle structure
* @dev_addr: Slave address to be transferred
* @size: Number of bytes to be transferred
* @i2c_mode: One of I2C_{RELOAD|AUTOEND|SOFTEND}_MODE: Enable Reload mode.
* @startstop: One of I2C_NO_STARTSTOP, I2C_GENERATE_STOP,
* I2C_GENERATE_START_{READ|WRITE}
*/
static void i2c_transfer_config(struct i2c_handle_s *hi2c, uint32_t dev_addr,
uint32_t size, uint32_t i2c_mode,
uint32_t startstop)
{
uint32_t clr_value = I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD |
I2C_CR2_AUTOEND | I2C_CR2_START | I2C_CR2_STOP |
(I2C_CR2_RD_WRN &
(startstop >> (31U - I2C_CR2_RD_WRN_OFFSET)));
uint32_t set_value = (dev_addr & I2C_CR2_SADD) |
((size << I2C_CR2_NBYTES_OFFSET) &
I2C_CR2_NBYTES) |
i2c_mode | startstop;
io_clrsetbits32(get_base(hi2c) + I2C_CR2, clr_value, set_value);
}
/*
* Master sends target device address followed by internal memory
* address for a memory write request.
* Function returns 0 on success or a negative value.
*/
static int i2c_request_mem_write(struct i2c_handle_s *hi2c,
struct i2c_request *request,
uint64_t timeout_ref)
{
vaddr_t base = get_base(hi2c);
i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size,
I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE);
if (i2c_wait_txis(hi2c, timeout_ref))
return -1;
if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) {
/* Send memory address */
io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
} else {
/* Send MSB of memory address */
io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8);
if (i2c_wait_txis(hi2c, timeout_ref))
return -1;
/* Send LSB of memory address */
io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
}
if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref))
return -1;
return 0;
}
/*
* Master sends target device address followed by internal memory
* address to prepare a memory read request.
* Function returns 0 on success or a negative value.
*/
static int i2c_request_mem_read(struct i2c_handle_s *hi2c,
struct i2c_request *request,
uint64_t timeout_ref)
{
vaddr_t base = get_base(hi2c);
i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size,
I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE);
if (i2c_wait_txis(hi2c, timeout_ref))
return -1;
if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) {
/* Send memory address */
io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
} else {
/* Send MSB of memory address */
io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8);
if (i2c_wait_txis(hi2c, timeout_ref))
return -1;
/* Send LSB of memory address */
io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
}
if (wait_isr_event(hi2c, I2C_ISR_TC, 1, timeout_ref))
return -1;
return 0;
}
/*
* Write an amount of data in blocking mode
*
* @hi2c: Reference to struct i2c_handle_s
* @request: I2C request parameters
* @p_data: Pointer to data buffer
* @size: Amount of data to be sent
* Return 0 on success or a negative value
*/
static int i2c_write(struct i2c_handle_s *hi2c, struct i2c_request *request,
uint8_t *p_data, uint16_t size)
{
uint64_t timeout_ref = 0;
vaddr_t base = get_base(hi2c);
int rc = -1;
uint8_t *p_buff = p_data;
size_t xfer_size = 0;
size_t xfer_count = size;
if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM)
return -1;
if (hi2c->i2c_state != I2C_STATE_READY)
return -1;
if (!p_data || !size)
return -1;
stm32_clock_enable(hi2c->clock);
timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000);
if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref))
goto bail;
hi2c->i2c_state = I2C_STATE_BUSY_TX;
hi2c->i2c_err = I2C_ERROR_NONE;
timeout_ref = timeout_init_us(request->timeout_ms * 1000);
if (request->mode == I2C_MODE_MEM) {
/* In memory mode, send slave address and memory address */
if (i2c_request_mem_write(hi2c, request, timeout_ref))
goto bail;
if (xfer_count > MAX_NBYTE_SIZE) {
xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
} else {
xfer_size = xfer_count;
i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
}
} else {
/* In master mode, send slave address */
if (xfer_count > MAX_NBYTE_SIZE) {
xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
I2C_RELOAD_MODE,
I2C_GENERATE_START_WRITE);
} else {
xfer_size = xfer_count;
i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
I2C_AUTOEND_MODE,
I2C_GENERATE_START_WRITE);
}
}
do {
if (i2c_wait_txis(hi2c, timeout_ref))
goto bail;
io_write8(base + I2C_TXDR, *p_buff);
p_buff++;
xfer_count--;
xfer_size--;
if (xfer_count && !xfer_size) {
/* Wait until TCR flag is set */
if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref))
goto bail;
if (xfer_count > MAX_NBYTE_SIZE) {
xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, request->dev_addr,
xfer_size,
I2C_RELOAD_MODE,
I2C_NO_STARTSTOP);
} else {
xfer_size = xfer_count;
i2c_transfer_config(hi2c, request->dev_addr,
xfer_size,
I2C_AUTOEND_MODE,
I2C_NO_STARTSTOP);
}
}
} while (xfer_count > 0U);
/*
* No need to Check TC flag, with AUTOEND mode the stop
* is automatically generated.
* Wait until STOPF flag is reset.
*/
if (i2c_wait_stop(hi2c, timeout_ref))
goto bail;
io_write32(base + I2C_ICR, I2C_ISR_STOPF);
io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
hi2c->i2c_state = I2C_STATE_READY;
rc = 0;
bail:
stm32_clock_disable(hi2c->clock);
return rc;
}
int stm32_i2c_mem_write(struct i2c_handle_s *hi2c, uint32_t dev_addr,
uint32_t mem_addr, uint32_t mem_addr_size,
uint8_t *p_data, size_t size, unsigned int timeout_ms)
{
struct i2c_request request = {
.dev_addr = dev_addr,
.mode = I2C_MODE_MEM,
.mem_addr = mem_addr,
.mem_addr_size = mem_addr_size,
.timeout_ms = timeout_ms,
};
return i2c_write(hi2c, &request, p_data, size);
}
int stm32_i2c_master_transmit(struct i2c_handle_s *hi2c, uint32_t dev_addr,
uint8_t *p_data, size_t size,
unsigned int timeout_ms)
{
struct i2c_request request = {
.dev_addr = dev_addr,
.mode = I2C_MODE_MASTER,
.timeout_ms = timeout_ms,
};
return i2c_write(hi2c, &request, p_data, size);
}
int stm32_i2c_read_write_membyte(struct i2c_handle_s *hi2c, uint16_t dev_addr,
unsigned int mem_addr, uint8_t *p_data,
bool write)
{
uint64_t timeout_ref = 0;
uintptr_t base = get_base(hi2c);
int rc = -1;
uint8_t *p_buff = p_data;
uint32_t event_mask = 0;
if (hi2c->i2c_state != I2C_STATE_READY || !p_data)
return -1;
stm32_clock_enable(hi2c->clock);
timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref))
goto bail;
hi2c->i2c_state = write ? I2C_STATE_BUSY_TX : I2C_STATE_BUSY_RX;
hi2c->i2c_err = I2C_ERROR_NONE;
i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT,
write ? I2C_RELOAD_MODE : I2C_SOFTEND_MODE,
I2C_GENERATE_START_WRITE);
timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
if (i2c_wait_txis(hi2c, timeout_ref))
goto bail;
io_write8(base + I2C_TXDR, mem_addr);
if (write)
event_mask = I2C_ISR_TCR;
else
event_mask = I2C_ISR_TC;
timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
if (wait_isr_event(hi2c, event_mask, 1, timeout_ref))
goto bail;
i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT,
I2C_AUTOEND_MODE,
write ? I2C_NO_STARTSTOP : I2C_GENERATE_START_READ);
timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
if (write) {
if (i2c_wait_txis(hi2c, timeout_ref))
goto bail;
io_write8(base + I2C_TXDR, *p_buff);
} else {
if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, timeout_ref))
goto bail;
*p_buff = io_read8(base + I2C_RXDR);
}
timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
if (i2c_wait_stop(hi2c, timeout_ref))
goto bail;
io_write32(base + I2C_ICR, I2C_ISR_STOPF);
io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
hi2c->i2c_state = I2C_STATE_READY;
rc = 0;
bail:
stm32_clock_disable(hi2c->clock);
return rc;
}
/*
* Read an amount of data in blocking mode
*
* @hi2c: Reference to struct i2c_handle_s
* @request: I2C request parameters
* @p_data: Pointer to data buffer
* @size: Amount of data to be sent
* Return 0 on success or a negative value
*/
static int i2c_read(struct i2c_handle_s *hi2c, struct i2c_request *request,
uint8_t *p_data, uint32_t size)
{
vaddr_t base = get_base(hi2c);
uint64_t timeout_ref = 0;
int rc = -1;
uint8_t *p_buff = p_data;
size_t xfer_count = size;
size_t xfer_size = 0;
if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM)
return -1;
if (hi2c->i2c_state != I2C_STATE_READY)
return -1;
if (!p_data || !size)
return -1;
stm32_clock_enable(hi2c->clock);
timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000);
if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref))
goto bail;
hi2c->i2c_state = I2C_STATE_BUSY_RX;
hi2c->i2c_err = I2C_ERROR_NONE;
timeout_ref = timeout_init_us(request->timeout_ms * 1000);
if (request->mode == I2C_MODE_MEM) {
/* Send memory address */
if (i2c_request_mem_read(hi2c, request, timeout_ref))
goto bail;
}
/*
* Send slave address.
* Set NBYTES to write and reload if xfer_count > MAX_NBYTE_SIZE
* and generate RESTART.
*/
if (xfer_count > MAX_NBYTE_SIZE) {
xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
} else {
xfer_size = xfer_count;
i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
}
do {
if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, timeout_ref))
goto bail;
*p_buff = io_read8(base + I2C_RXDR);
p_buff++;
xfer_size--;
xfer_count--;
if (xfer_count && !xfer_size) {
if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref))
goto bail;
if (xfer_count > MAX_NBYTE_SIZE) {
xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, request->dev_addr,
xfer_size,
I2C_RELOAD_MODE,
I2C_NO_STARTSTOP);
} else {
xfer_size = xfer_count;
i2c_transfer_config(hi2c, request->dev_addr,
xfer_size,
I2C_AUTOEND_MODE,
I2C_NO_STARTSTOP);
}
}
} while (xfer_count > 0U);
/*
* No need to Check TC flag, with AUTOEND mode the stop
* is automatically generated.
* Wait until STOPF flag is reset.
*/
if (i2c_wait_stop(hi2c, timeout_ref))
goto bail;
io_write32(base + I2C_ICR, I2C_ISR_STOPF);
io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
hi2c->i2c_state = I2C_STATE_READY;
rc = 0;
bail:
stm32_clock_disable(hi2c->clock);
return rc;
}
int stm32_i2c_mem_read(struct i2c_handle_s *hi2c, uint32_t dev_addr,
uint32_t mem_addr, uint32_t mem_addr_size,
uint8_t *p_data, size_t size, unsigned int timeout_ms)
{
struct i2c_request request = {
.dev_addr = dev_addr,
.mode = I2C_MODE_MEM,
.mem_addr = mem_addr,
.mem_addr_size = mem_addr_size,
.timeout_ms = timeout_ms,
};
return i2c_read(hi2c, &request, p_data, size);
}
int stm32_i2c_master_receive(struct i2c_handle_s *hi2c, uint32_t dev_addr,
uint8_t *p_data, size_t size,
unsigned int timeout_ms)
{
struct i2c_request request = {
.dev_addr = dev_addr,
.mode = I2C_MODE_MASTER,
.timeout_ms = timeout_ms,
};
return i2c_read(hi2c, &request, p_data, size);
}
bool stm32_i2c_is_device_ready(struct i2c_handle_s *hi2c, uint32_t dev_addr,
unsigned int trials, unsigned int timeout_ms)
{
vaddr_t base = get_base(hi2c);
unsigned int i2c_trials = 0U;
bool rc = false;
if (hi2c->i2c_state != I2C_STATE_READY)
return rc;
stm32_clock_enable(hi2c->clock);
if (io_read32(base + I2C_ISR) & I2C_ISR_BUSY)
goto bail;
hi2c->i2c_state = I2C_STATE_BUSY;
hi2c->i2c_err = I2C_ERROR_NONE;
do {
uint64_t timeout_ref = 0;
vaddr_t isr = base + I2C_ISR;
/* Generate Start */
if ((io_read32(base + I2C_OAR1) & I2C_OAR1_OA1MODE) == 0)
io_write32(base + I2C_CR2,
((dev_addr & I2C_CR2_SADD) |
I2C_CR2_START | I2C_CR2_AUTOEND) &
~I2C_CR2_RD_WRN);
else
io_write32(base + I2C_CR2,
((dev_addr & I2C_CR2_SADD) |
I2C_CR2_START | I2C_CR2_ADD10) &
~I2C_CR2_RD_WRN);
/*
* No need to Check TC flag, with AUTOEND mode the stop
* is automatically generated.
* Wait until STOPF flag is set or a NACK flag is set.
*/
timeout_ref = timeout_init_us(timeout_ms * 1000);
while (!timeout_elapsed(timeout_ref))
if (io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF))
break;
if ((io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF)) == 0) {
notif_i2c_timeout(hi2c);
goto bail;
}
if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U) {
if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref))
goto bail;
io_write32(base + I2C_ICR, I2C_ISR_STOPF);
hi2c->i2c_state = I2C_STATE_READY;
rc = true;
goto bail;
}
if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref))
goto bail;
io_write32(base + I2C_ICR, I2C_ISR_NACKF);
io_write32(base + I2C_ICR, I2C_ISR_STOPF);
if (i2c_trials == trials) {
io_setbits32(base + I2C_CR2, I2C_CR2_STOP);
if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref))
goto bail;
io_write32(base + I2C_ICR, I2C_ISR_STOPF);
}
i2c_trials++;
} while (i2c_trials < trials);
notif_i2c_timeout(hi2c);
bail:
stm32_clock_disable(hi2c->clock);
return rc;
}
void stm32_i2c_resume(struct i2c_handle_s *hi2c)
{
if (hi2c->i2c_state == I2C_STATE_READY)
return;
if ((hi2c->i2c_state != I2C_STATE_RESET) &&
(hi2c->i2c_state != I2C_STATE_SUSPENDED))
panic();
stm32_pinctrl_load_active_cfg(hi2c->pinctrl, hi2c->pinctrl_count);
if (hi2c->i2c_state == I2C_STATE_RESET) {
/* There is no valid I2C configuration to be loaded yet */
return;
}
restore_cfg(hi2c, &hi2c->sec_cfg);
hi2c->i2c_state = I2C_STATE_READY;
}
void stm32_i2c_suspend(struct i2c_handle_s *hi2c)
{
if (hi2c->i2c_state == I2C_STATE_SUSPENDED)
return;
if (hi2c->i2c_state != I2C_STATE_READY)
panic();
save_cfg(hi2c, &hi2c->sec_cfg);
stm32_pinctrl_load_standby_cfg(hi2c->pinctrl, hi2c->pinctrl_count);
hi2c->i2c_state = I2C_STATE_SUSPENDED;
}