| /* |
| * GStreamer |
| * Copyright (C) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public |
| * License along with this library; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| * Chebyshev type 1 filter design based on |
| * "The Scientist and Engineer's Guide to DSP", Chapter 20. |
| * http://www.dspguide.com/ |
| * |
| * For type 2 and Chebyshev filters in general read |
| * http://en.wikipedia.org/wiki/Chebyshev_filter |
| * |
| * Transformation from lowpass to bandpass/bandreject: |
| * http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandPassZ.htm |
| * http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandStopZ.htm |
| * |
| */ |
| |
| /** |
| * SECTION:element-audiochebband |
| * |
| * Attenuates all frequencies outside (bandpass) or inside (bandreject) of a frequency |
| * band. The number of poles and the ripple parameter control the rolloff. |
| * |
| * This element has the advantage over the windowed sinc bandpass and bandreject filter that it is |
| * much faster and produces almost as good results. It's only disadvantages are the highly |
| * non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel. |
| * |
| * For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e. |
| * some frequencies in the passband will be amplified by that value. A higher ripple value will allow |
| * a faster rolloff. |
| * |
| * For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will |
| * be at most this value. A lower ripple value will allow a faster rolloff. |
| * |
| * As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter. |
| * |
| * <note> |
| * Be warned that a too large number of poles can produce noise. The most poles are possible with |
| * a cutoff frequency at a quarter of the sampling rate. |
| * </note> |
| * |
| * <refsect2> |
| * <title>Example launch line</title> |
| * |[ |
| * gst-launch audiotestsrc freq=1500 ! audioconvert ! audiochebband mode=band-pass lower-frequency=1000 upper-frequenc=6000 poles=4 ! audioconvert ! alsasink |
| * gst-launch filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiochebband mode=band-reject lower-frequency=1000 upper-frequency=4000 ripple=0.2 ! audioconvert ! alsasink |
| * gst-launch audiotestsrc wave=white-noise ! audioconvert ! audiochebband mode=band-pass lower-frequency=1000 upper-frequency=4000 type=2 ! audioconvert ! alsasink |
| * ]| |
| * </refsect2> |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include <string.h> |
| |
| #include <gst/gst.h> |
| #include <gst/base/gstbasetransform.h> |
| #include <gst/audio/audio.h> |
| #include <gst/audio/gstaudiofilter.h> |
| |
| #include <math.h> |
| |
| #include "math_compat.h" |
| |
| #include "audiochebband.h" |
| |
| #include "gst/glib-compat-private.h" |
| |
| #define GST_CAT_DEFAULT gst_audio_cheb_band_debug |
| GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT); |
| |
| enum |
| { |
| PROP_0, |
| PROP_MODE, |
| PROP_TYPE, |
| PROP_LOWER_FREQUENCY, |
| PROP_UPPER_FREQUENCY, |
| PROP_RIPPLE, |
| PROP_POLES |
| }; |
| |
| #define gst_audio_cheb_band_parent_class parent_class |
| G_DEFINE_TYPE (GstAudioChebBand, gst_audio_cheb_band, |
| GST_TYPE_AUDIO_FX_BASE_IIR_FILTER); |
| |
| static void gst_audio_cheb_band_set_property (GObject * object, |
| guint prop_id, const GValue * value, GParamSpec * pspec); |
| static void gst_audio_cheb_band_get_property (GObject * object, |
| guint prop_id, GValue * value, GParamSpec * pspec); |
| static void gst_audio_cheb_band_finalize (GObject * object); |
| |
| static gboolean gst_audio_cheb_band_setup (GstAudioFilter * filter, |
| const GstAudioInfo * info); |
| |
| enum |
| { |
| MODE_BAND_PASS = 0, |
| MODE_BAND_REJECT |
| }; |
| |
| #define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE (gst_audio_cheb_band_mode_get_type ()) |
| static GType |
| gst_audio_cheb_band_mode_get_type (void) |
| { |
| static GType gtype = 0; |
| |
| if (gtype == 0) { |
| static const GEnumValue values[] = { |
| {MODE_BAND_PASS, "Band pass (default)", |
| "band-pass"}, |
| {MODE_BAND_REJECT, "Band reject", |
| "band-reject"}, |
| {0, NULL, NULL} |
| }; |
| |
| gtype = g_enum_register_static ("GstAudioChebBandMode", values); |
| } |
| return gtype; |
| } |
| |
| /* GObject vmethod implementations */ |
| |
| static void |
| gst_audio_cheb_band_class_init (GstAudioChebBandClass * klass) |
| { |
| GObjectClass *gobject_class = (GObjectClass *) klass; |
| GstElementClass *gstelement_class = (GstElementClass *) klass; |
| GstAudioFilterClass *filter_class = (GstAudioFilterClass *) klass; |
| |
| GST_DEBUG_CATEGORY_INIT (gst_audio_cheb_band_debug, "audiochebband", 0, |
| "audiochebband element"); |
| |
| gobject_class->set_property = gst_audio_cheb_band_set_property; |
| gobject_class->get_property = gst_audio_cheb_band_get_property; |
| gobject_class->finalize = gst_audio_cheb_band_finalize; |
| |
| g_object_class_install_property (gobject_class, PROP_MODE, |
| g_param_spec_enum ("mode", "Mode", |
| "Low pass or high pass mode", GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE, |
| MODE_BAND_PASS, |
| G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); |
| g_object_class_install_property (gobject_class, PROP_TYPE, |
| g_param_spec_int ("type", "Type", "Type of the chebychev filter", 1, 2, 1, |
| G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); |
| |
| /* FIXME: Don't use the complete possible range but restrict the upper boundary |
| * so automatically generated UIs can use a slider without */ |
| g_object_class_install_property (gobject_class, PROP_LOWER_FREQUENCY, |
| g_param_spec_float ("lower-frequency", "Lower frequency", |
| "Start frequency of the band (Hz)", 0.0, 100000.0, |
| 0.0, |
| G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); |
| g_object_class_install_property (gobject_class, PROP_UPPER_FREQUENCY, |
| g_param_spec_float ("upper-frequency", "Upper frequency", |
| "Stop frequency of the band (Hz)", 0.0, 100000.0, 0.0, |
| G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); |
| g_object_class_install_property (gobject_class, PROP_RIPPLE, |
| g_param_spec_float ("ripple", "Ripple", "Amount of ripple (dB)", 0.0, |
| 200.0, 0.25, |
| G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); |
| /* FIXME: What to do about this upper boundary? With a frequencies near |
| * rate/4 32 poles are completely possible, with frequencies very low |
| * or very high 16 poles already produces only noise */ |
| g_object_class_install_property (gobject_class, PROP_POLES, |
| g_param_spec_int ("poles", "Poles", |
| "Number of poles to use, will be rounded up to the next multiply of four", |
| 4, 32, 4, |
| G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); |
| |
| gst_element_class_set_static_metadata (gstelement_class, |
| "Band pass & band reject filter", "Filter/Effect/Audio", |
| "Chebyshev band pass and band reject filter", |
| "Sebastian Dröge <sebastian.droege@collabora.co.uk>"); |
| |
| filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_cheb_band_setup); |
| } |
| |
| static void |
| gst_audio_cheb_band_init (GstAudioChebBand * filter) |
| { |
| filter->lower_frequency = filter->upper_frequency = 0.0; |
| filter->mode = MODE_BAND_PASS; |
| filter->type = 1; |
| filter->poles = 4; |
| filter->ripple = 0.25; |
| |
| g_mutex_init (&filter->lock); |
| } |
| |
| static void |
| generate_biquad_coefficients (GstAudioChebBand * filter, |
| gint p, gint rate, gdouble * b0, gdouble * b1, gdouble * b2, gdouble * b3, |
| gdouble * b4, gdouble * a1, gdouble * a2, gdouble * a3, gdouble * a4) |
| { |
| gint np = filter->poles / 2; |
| gdouble ripple = filter->ripple; |
| |
| /* pole location in s-plane */ |
| gdouble rp, ip; |
| |
| /* zero location in s-plane */ |
| gdouble iz = 0.0; |
| |
| /* transfer function coefficients for the z-plane */ |
| gdouble x0, x1, x2, y1, y2; |
| gint type = filter->type; |
| |
| /* Calculate pole location for lowpass at frequency 1 */ |
| { |
| gdouble angle = (G_PI / 2.0) * (2.0 * p - 1) / np; |
| |
| rp = -sin (angle); |
| ip = cos (angle); |
| } |
| |
| /* If we allow ripple, move the pole from the unit |
| * circle to an ellipse and keep cutoff at frequency 1 */ |
| if (ripple > 0 && type == 1) { |
| gdouble es, vx; |
| |
| es = sqrt (pow (10.0, ripple / 10.0) - 1.0); |
| |
| vx = (1.0 / np) * asinh (1.0 / es); |
| rp = rp * sinh (vx); |
| ip = ip * cosh (vx); |
| } else if (type == 2) { |
| gdouble es, vx; |
| |
| es = sqrt (pow (10.0, ripple / 10.0) - 1.0); |
| vx = (1.0 / np) * asinh (es); |
| rp = rp * sinh (vx); |
| ip = ip * cosh (vx); |
| } |
| |
| /* Calculate inverse of the pole location to move from |
| * type I to type II */ |
| if (type == 2) { |
| gdouble mag2 = rp * rp + ip * ip; |
| |
| rp /= mag2; |
| ip /= mag2; |
| } |
| |
| /* Calculate zero location for frequency 1 on the |
| * unit circle for type 2 */ |
| if (type == 2) { |
| gdouble angle = G_PI / (np * 2.0) + ((p - 1) * G_PI) / (np); |
| gdouble mag2; |
| |
| iz = cos (angle); |
| mag2 = iz * iz; |
| iz /= mag2; |
| } |
| |
| /* Convert from s-domain to z-domain by |
| * using the bilinear Z-transform, i.e. |
| * substitute s by (2/t)*((z-1)/(z+1)) |
| * with t = 2 * tan(0.5). |
| */ |
| if (type == 1) { |
| gdouble t, m, d; |
| |
| t = 2.0 * tan (0.5); |
| m = rp * rp + ip * ip; |
| d = 4.0 - 4.0 * rp * t + m * t * t; |
| |
| x0 = (t * t) / d; |
| x1 = 2.0 * x0; |
| x2 = x0; |
| y1 = (8.0 - 2.0 * m * t * t) / d; |
| y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d; |
| } else { |
| gdouble t, m, d; |
| |
| t = 2.0 * tan (0.5); |
| m = rp * rp + ip * ip; |
| d = 4.0 - 4.0 * rp * t + m * t * t; |
| |
| x0 = (t * t * iz * iz + 4.0) / d; |
| x1 = (-8.0 + 2.0 * iz * iz * t * t) / d; |
| x2 = x0; |
| y1 = (8.0 - 2.0 * m * t * t) / d; |
| y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d; |
| } |
| |
| /* Convert from lowpass at frequency 1 to either bandpass |
| * or band reject. |
| * |
| * For bandpass substitute z^(-1) with: |
| * |
| * -2 -1 |
| * -z + alpha * z - beta |
| * ---------------------------- |
| * -2 -1 |
| * beta * z - alpha * z + 1 |
| * |
| * alpha = (2*a*b)/(1+b) |
| * beta = (b-1)/(b+1) |
| * a = cos((w1 + w0)/2) / cos((w1 - w0)/2) |
| * b = tan(1/2) * cot((w1 - w0)/2) |
| * |
| * For bandreject substitute z^(-1) with: |
| * |
| * -2 -1 |
| * z - alpha * z + beta |
| * ---------------------------- |
| * -2 -1 |
| * beta * z - alpha * z + 1 |
| * |
| * alpha = (2*a)/(1+b) |
| * beta = (1-b)/(1+b) |
| * a = cos((w1 + w0)/2) / cos((w1 - w0)/2) |
| * b = tan(1/2) * tan((w1 - w0)/2) |
| * |
| */ |
| { |
| gdouble a, b, d; |
| gdouble alpha, beta; |
| gdouble w0 = 2.0 * G_PI * (filter->lower_frequency / rate); |
| gdouble w1 = 2.0 * G_PI * (filter->upper_frequency / rate); |
| |
| if (filter->mode == MODE_BAND_PASS) { |
| a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0); |
| b = tan (1.0 / 2.0) / tan ((w1 - w0) / 2.0); |
| |
| alpha = (2.0 * a * b) / (1.0 + b); |
| beta = (b - 1.0) / (b + 1.0); |
| |
| d = 1.0 + beta * (y1 - beta * y2); |
| |
| *b0 = (x0 + beta * (-x1 + beta * x2)) / d; |
| *b1 = (alpha * (-2.0 * x0 + x1 + beta * x1 - 2.0 * beta * x2)) / d; |
| *b2 = |
| (-x1 - beta * beta * x1 + 2.0 * beta * (x0 + x2) + |
| alpha * alpha * (x0 - x1 + x2)) / d; |
| *b3 = (alpha * (x1 + beta * (-2.0 * x0 + x1) - 2.0 * x2)) / d; |
| *b4 = (beta * (beta * x0 - x1) + x2) / d; |
| *a1 = (alpha * (2.0 + y1 + beta * y1 - 2.0 * beta * y2)) / d; |
| *a2 = |
| (-y1 - beta * beta * y1 - alpha * alpha * (1.0 + y1 - y2) + |
| 2.0 * beta * (-1.0 + y2)) / d; |
| *a3 = (alpha * (y1 + beta * (2.0 + y1) - 2.0 * y2)) / d; |
| *a4 = (-beta * beta - beta * y1 + y2) / d; |
| } else { |
| a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0); |
| b = tan (1.0 / 2.0) * tan ((w1 - w0) / 2.0); |
| |
| alpha = (2.0 * a) / (1.0 + b); |
| beta = (1.0 - b) / (1.0 + b); |
| |
| d = -1.0 + beta * (beta * y2 + y1); |
| |
| *b0 = (-x0 - beta * x1 - beta * beta * x2) / d; |
| *b1 = (alpha * (2.0 * x0 + x1 + beta * x1 + 2.0 * beta * x2)) / d; |
| *b2 = |
| (-x1 - beta * beta * x1 - 2.0 * beta * (x0 + x2) - |
| alpha * alpha * (x0 + x1 + x2)) / d; |
| *b3 = (alpha * (x1 + beta * (2.0 * x0 + x1) + 2.0 * x2)) / d; |
| *b4 = (-beta * beta * x0 - beta * x1 - x2) / d; |
| *a1 = (alpha * (-2.0 + y1 + beta * y1 + 2.0 * beta * y2)) / d; |
| *a2 = |
| -(y1 + beta * beta * y1 + 2.0 * beta * (-1.0 + y2) + |
| alpha * alpha * (-1.0 + y1 + y2)) / d; |
| *a3 = (alpha * (beta * (-2.0 + y1) + y1 + 2.0 * y2)) / d; |
| *a4 = -(-beta * beta + beta * y1 + y2) / d; |
| } |
| } |
| } |
| |
| static void |
| generate_coefficients (GstAudioChebBand * filter, const GstAudioInfo * info) |
| { |
| gint rate; |
| |
| if (info) { |
| rate = GST_AUDIO_INFO_RATE (info); |
| } else { |
| rate = GST_AUDIO_FILTER_RATE (filter); |
| } |
| |
| if (rate == 0) { |
| gdouble *a = g_new0 (gdouble, 1); |
| gdouble *b = g_new0 (gdouble, 1); |
| |
| a[0] = 1.0; |
| b[0] = 1.0; |
| gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER |
| (filter), a, 1, b, 1); |
| GST_LOG_OBJECT (filter, "rate was not set yet"); |
| return; |
| } |
| |
| if (filter->upper_frequency <= filter->lower_frequency) { |
| gdouble *a = g_new0 (gdouble, 1); |
| gdouble *b = g_new0 (gdouble, 1); |
| |
| a[0] = 1.0; |
| b[0] = (filter->mode == MODE_BAND_PASS) ? 0.0 : 1.0; |
| gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER |
| (filter), a, 1, b, 1); |
| |
| GST_LOG_OBJECT (filter, "frequency band had no or negative dimension"); |
| return; |
| } |
| |
| if (filter->upper_frequency > rate / 2) { |
| filter->upper_frequency = rate / 2; |
| GST_LOG_OBJECT (filter, "clipped upper frequency to nyquist frequency"); |
| } |
| |
| if (filter->lower_frequency < 0.0) { |
| filter->lower_frequency = 0.0; |
| GST_LOG_OBJECT (filter, "clipped lower frequency to 0.0"); |
| } |
| |
| /* Calculate coefficients for the chebyshev filter */ |
| { |
| gint np = filter->poles; |
| gdouble *a, *b; |
| gint i, p; |
| |
| a = g_new0 (gdouble, np + 5); |
| b = g_new0 (gdouble, np + 5); |
| |
| /* Calculate transfer function coefficients */ |
| a[4] = 1.0; |
| b[4] = 1.0; |
| |
| for (p = 1; p <= np / 4; p++) { |
| gdouble b0, b1, b2, b3, b4, a1, a2, a3, a4; |
| gdouble *ta = g_new0 (gdouble, np + 5); |
| gdouble *tb = g_new0 (gdouble, np + 5); |
| |
| generate_biquad_coefficients (filter, p, rate, |
| &b0, &b1, &b2, &b3, &b4, &a1, &a2, &a3, &a4); |
| |
| memcpy (ta, a, sizeof (gdouble) * (np + 5)); |
| memcpy (tb, b, sizeof (gdouble) * (np + 5)); |
| |
| /* add the new coefficients for the new two poles |
| * to the cascade by multiplication of the transfer |
| * functions */ |
| for (i = 4; i < np + 5; i++) { |
| b[i] = |
| b0 * tb[i] + b1 * tb[i - 1] + b2 * tb[i - 2] + b3 * tb[i - 3] + |
| b4 * tb[i - 4]; |
| a[i] = |
| ta[i] - a1 * ta[i - 1] - a2 * ta[i - 2] - a3 * ta[i - 3] - |
| a4 * ta[i - 4]; |
| } |
| g_free (ta); |
| g_free (tb); |
| } |
| |
| /* Move coefficients to the beginning of the array to move from |
| * the transfer function's coefficients to the difference |
| * equation's coefficients */ |
| for (i = 0; i <= np; i++) { |
| a[i] = a[i + 4]; |
| b[i] = b[i + 4]; |
| } |
| |
| /* Normalize to unity gain at frequency 0 and frequency |
| * 0.5 for bandreject and unity gain at band center frequency |
| * for bandpass */ |
| if (filter->mode == MODE_BAND_REJECT) { |
| /* gain is sqrt(H(0)*H(0.5)) */ |
| |
| gdouble gain1 = |
| gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1, |
| 1.0, 0.0); |
| gdouble gain2 = |
| gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1, |
| -1.0, 0.0); |
| |
| gain1 = sqrt (gain1 * gain2); |
| |
| for (i = 0; i <= np; i++) { |
| b[i] /= gain1; |
| } |
| } else { |
| /* gain is H(wc), wc = center frequency */ |
| |
| gdouble w1 = 2.0 * G_PI * (filter->lower_frequency / rate); |
| gdouble w2 = 2.0 * G_PI * (filter->upper_frequency / rate); |
| gdouble w0 = (w2 + w1) / 2.0; |
| gdouble zr = cos (w0), zi = sin (w0); |
| gdouble gain = |
| gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1, zr, |
| zi); |
| |
| for (i = 0; i <= np; i++) { |
| b[i] /= gain; |
| } |
| } |
| |
| gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER |
| (filter), a, np + 1, b, np + 1); |
| |
| GST_LOG_OBJECT (filter, |
| "Generated IIR coefficients for the Chebyshev filter"); |
| GST_LOG_OBJECT (filter, |
| "mode: %s, type: %d, poles: %d, lower-frequency: %.2f Hz, upper-frequency: %.2f Hz, ripple: %.2f dB", |
| (filter->mode == MODE_BAND_PASS) ? "band-pass" : "band-reject", |
| filter->type, filter->poles, filter->lower_frequency, |
| filter->upper_frequency, filter->ripple); |
| |
| GST_LOG_OBJECT (filter, "%.2f dB gain @ 0Hz", |
| 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, |
| np + 1, 1.0, 0.0))); |
| { |
| gdouble w1 = 2.0 * G_PI * (filter->lower_frequency / rate); |
| gdouble w2 = 2.0 * G_PI * (filter->upper_frequency / rate); |
| gdouble w0 = (w2 + w1) / 2.0; |
| gdouble zr, zi; |
| |
| zr = cos (w1); |
| zi = sin (w1); |
| GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz", |
| 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, |
| b, np + 1, zr, zi)), (int) filter->lower_frequency); |
| zr = cos (w0); |
| zi = sin (w0); |
| GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz", |
| 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, |
| b, np + 1, zr, zi)), |
| (int) ((filter->lower_frequency + filter->upper_frequency) / 2.0)); |
| zr = cos (w2); |
| zi = sin (w2); |
| GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz", |
| 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, |
| b, np + 1, zr, zi)), (int) filter->upper_frequency); |
| } |
| GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz", |
| 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, |
| np + 1, -1.0, 0.0)), rate / 2); |
| } |
| } |
| |
| static void |
| gst_audio_cheb_band_finalize (GObject * object) |
| { |
| GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object); |
| |
| g_mutex_clear (&filter->lock); |
| |
| G_OBJECT_CLASS (parent_class)->finalize (object); |
| } |
| |
| static void |
| gst_audio_cheb_band_set_property (GObject * object, guint prop_id, |
| const GValue * value, GParamSpec * pspec) |
| { |
| GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object); |
| |
| switch (prop_id) { |
| case PROP_MODE: |
| g_mutex_lock (&filter->lock); |
| filter->mode = g_value_get_enum (value); |
| generate_coefficients (filter, NULL); |
| g_mutex_unlock (&filter->lock); |
| break; |
| case PROP_TYPE: |
| g_mutex_lock (&filter->lock); |
| filter->type = g_value_get_int (value); |
| generate_coefficients (filter, NULL); |
| g_mutex_unlock (&filter->lock); |
| break; |
| case PROP_LOWER_FREQUENCY: |
| g_mutex_lock (&filter->lock); |
| filter->lower_frequency = g_value_get_float (value); |
| generate_coefficients (filter, NULL); |
| g_mutex_unlock (&filter->lock); |
| break; |
| case PROP_UPPER_FREQUENCY: |
| g_mutex_lock (&filter->lock); |
| filter->upper_frequency = g_value_get_float (value); |
| generate_coefficients (filter, NULL); |
| g_mutex_unlock (&filter->lock); |
| break; |
| case PROP_RIPPLE: |
| g_mutex_lock (&filter->lock); |
| filter->ripple = g_value_get_float (value); |
| generate_coefficients (filter, NULL); |
| g_mutex_unlock (&filter->lock); |
| break; |
| case PROP_POLES: |
| g_mutex_lock (&filter->lock); |
| filter->poles = GST_ROUND_UP_4 (g_value_get_int (value)); |
| generate_coefficients (filter, NULL); |
| g_mutex_unlock (&filter->lock); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |
| |
| static void |
| gst_audio_cheb_band_get_property (GObject * object, guint prop_id, |
| GValue * value, GParamSpec * pspec) |
| { |
| GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object); |
| |
| switch (prop_id) { |
| case PROP_MODE: |
| g_value_set_enum (value, filter->mode); |
| break; |
| case PROP_TYPE: |
| g_value_set_int (value, filter->type); |
| break; |
| case PROP_LOWER_FREQUENCY: |
| g_value_set_float (value, filter->lower_frequency); |
| break; |
| case PROP_UPPER_FREQUENCY: |
| g_value_set_float (value, filter->upper_frequency); |
| break; |
| case PROP_RIPPLE: |
| g_value_set_float (value, filter->ripple); |
| break; |
| case PROP_POLES: |
| g_value_set_int (value, filter->poles); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |
| |
| /* GstAudioFilter vmethod implementations */ |
| |
| static gboolean |
| gst_audio_cheb_band_setup (GstAudioFilter * base, const GstAudioInfo * info) |
| { |
| GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (base); |
| |
| generate_coefficients (filter, info); |
| |
| return GST_AUDIO_FILTER_CLASS (parent_class)->setup (base, info); |
| } |