| /* |
| ** |
| ** File: fmopl.c -- software implementation of FM sound generator |
| ** |
| ** Copyright (C) 1999 Tatsuyuki Satoh , MultiArcadeMachineEmurator development |
| ** |
| ** Version 0.36f |
| ** |
| */ |
| |
| /* |
| preliminary : |
| Problem : |
| note: |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <stdarg.h> |
| /*#include "driver.h" */ |
| /* use M.A.M.E. */ |
| #include "fmopl.h" |
| #include <math.h> |
| |
| /* MPC - hacks */ |
| #include "types.h" |
| #include "log.h" |
| |
| #ifndef PI |
| #define PI 3.14159265358979323846 |
| #endif |
| |
| /* -------------------- preliminary define section --------------------- */ |
| /* attack/decay rate time rate */ |
| #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ |
| #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ |
| |
| #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ |
| |
| #define FREQ_BITS 24 /* frequency turn */ |
| |
| /* counter bits = 20 , octerve 7 */ |
| #define FREQ_RATE (1<<(FREQ_BITS-20)) |
| #define TL_BITS (FREQ_BITS+2) |
| |
| /* final output shift , limit minimum and maximum */ |
| #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ |
| #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) |
| #define OPL_MINOUT (-0x8000<<OPL_OUTSB) |
| |
| /* -------------------- quality selection --------------------- */ |
| |
| /* sinwave entries */ |
| /* used static memory = SIN_ENT * 4 (byte) */ |
| #define SIN_ENT 2048 |
| |
| /* output level entries (envelope,sinwave) */ |
| /* envelope counter lower bits */ |
| #define ENV_BITS 16 |
| /* envelope output entries */ |
| #define EG_ENT 4096 |
| /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ |
| /* used static memory = EG_ENT*4 (byte) */ |
| |
| #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ |
| #define EG_DED EG_OFF |
| #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ |
| #define EG_AED EG_DST |
| #define EG_AST 0 /* ATTACK START */ |
| |
| #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ |
| |
| /* LFO table entries */ |
| #define VIB_ENT 512 |
| #define VIB_SHIFT (32-9) |
| #define AMS_ENT 512 |
| #define AMS_SHIFT (32-9) |
| |
| #define VIB_RATE 256 |
| |
| /* -------------------- local defines , macros --------------------- */ |
| |
| /* register number to channel number , slot offset */ |
| #define SLOT1 0 |
| #define SLOT2 1 |
| |
| /* envelope phase */ |
| #define ENV_MOD_RR 0x00 |
| #define ENV_MOD_DR 0x01 |
| #define ENV_MOD_AR 0x02 |
| |
| /* -------------------- tables --------------------- */ |
| static const int slot_array[32] = { |
| 0, 2, 4, 1, 3, 5, -1, -1, |
| 6, 8, 10, 7, 9, 11, -1, -1, |
| 12, 14, 16, 13, 15, 17, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1 |
| }; |
| |
| /* key scale level */ |
| #define ML(x) ((UINT32)((x)*0.1875*2/EG_STEP)) |
| static const UINT32 KSL_TABLE[8 * 16] = { |
| /* OCT 0 */ |
| ML (0.000), ML (0.000), ML (0.000), ML (0.000), |
| ML (0.000), ML (0.000), ML (0.000), ML (0.000), |
| ML (0.000), ML (0.000), ML (0.000), ML (0.000), |
| ML (0.000), ML (0.000), ML (0.000), ML (0.000), |
| /* OCT 1 */ |
| ML (0.000), ML (0.000), ML (0.000), ML (0.000), |
| ML (0.000), ML (0.000), ML (0.000), ML (0.000), |
| ML (0.000), ML (0.750), ML (1.125), ML (1.500), |
| ML (1.875), ML (2.250), ML (2.625), ML (3.000), |
| /* OCT 2 */ |
| ML (0.000), ML (0.000), ML (0.000), ML (0.000), |
| ML (0.000), ML (1.125), ML (1.875), ML (2.625), |
| ML (3.000), ML (3.750), ML (4.125), ML (4.500), |
| ML (4.875), ML (5.250), ML (5.625), ML (6.000), |
| /* OCT 3 */ |
| ML (0.000), ML (0.000), ML (0.000), ML (1.875), |
| ML (3.000), ML (4.125), ML (4.875), ML (5.625), |
| ML (6.000), ML (6.750), ML (7.125), ML (7.500), |
| ML (7.875), ML (8.250), ML (8.625), ML (9.000), |
| /* OCT 4 */ |
| ML (0.000), ML (0.000), ML (3.000), ML (4.875), |
| ML (6.000), ML (7.125), ML (7.875), ML (8.625), |
| ML (9.000), ML (9.750), ML (10.125), ML (10.500), |
| ML (10.875), ML (11.250), ML (11.625), ML (12.000), |
| /* OCT 5 */ |
| ML (0.000), ML (3.000), ML (6.000), ML (7.875), |
| ML (9.000), ML (10.125), ML (10.875), ML (11.625), |
| ML (12.000), ML (12.750), ML (13.125), ML (13.500), |
| ML (13.875), ML (14.250), ML (14.625), ML (15.000), |
| /* OCT 6 */ |
| ML (0.000), ML (6.000), ML (9.000), ML (10.875), |
| ML (12.000), ML (13.125), ML (13.875), ML (14.625), |
| ML (15.000), ML (15.750), ML (16.125), ML (16.500), |
| ML (16.875), ML (17.250), ML (17.625), ML (18.000), |
| /* OCT 7 */ |
| ML (0.000), ML (9.000), ML (12.000), ML (13.875), |
| ML (15.000), ML (16.125), ML (16.875), ML (17.625), |
| ML (18.000), ML (18.750), ML (19.125), ML (19.500), |
| ML (19.875), ML (20.250), ML (20.625), ML (21.000) |
| }; |
| |
| #undef ML |
| |
| /* sustain lebel table (3db per step) */ |
| /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ |
| #define SC(db) ((INT32) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST) |
| static const INT32 SL_TABLE[16] = { |
| SC (0), SC (1), SC (2), SC (3), SC (4), SC (5), SC (6), SC (7), |
| SC (8), SC (9), SC (10), SC (11), SC (12), SC (13), SC (14), SC (31) |
| }; |
| |
| #undef SC |
| |
| #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ |
| /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ |
| /* TL_TABLE[ 0 to TL_MAX ] : plus section */ |
| /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ |
| static INT32 *TL_TABLE; |
| |
| /* pointers to TL_TABLE with sinwave output offset */ |
| static INT32 **SIN_TABLE; |
| |
| /* LFO table */ |
| static INT32 *AMS_TABLE; |
| static INT32 *VIB_TABLE; |
| |
| /* envelope output curve table */ |
| /* attack + decay + OFF */ |
| static INT32 ENV_CURVE[2 * EG_ENT + 1]; |
| |
| /* multiple table */ |
| #define ML(x) ((UINT32) (2*(x))) |
| static const UINT32 MUL_TABLE[16] = { |
| /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ |
| ML (0.50), ML (1.00), ML (2.00), ML (3.00), ML (4.00), ML (5.00), ML (6.00), |
| ML (7.00), |
| ML (8.00), ML (9.00), ML (10.00), ML (10.00), ML (12.00), ML (12.00), |
| ML (15.00), ML (15.00) |
| }; |
| |
| #undef ML |
| |
| /* dummy attack / decay rate ( when rate == 0 ) */ |
| static INT32 RATE_0[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| /* -------------------- static state --------------------- */ |
| |
| /* lock level of common table */ |
| static int num_lock = 0; |
| |
| /* work table */ |
| static void *cur_chip = NULL; /* current chip point */ |
| |
| /* currenct chip state */ |
| /* static FMSAMPLE *bufL,*bufR; */ |
| static OPL_CH *S_CH; |
| static OPL_CH *E_CH; |
| OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; |
| |
| static INT32 outd[1]; |
| static INT32 ams; |
| static INT32 vib; |
| INT32 *ams_table; |
| INT32 *vib_table; |
| static INT32 amsIncr; |
| static INT32 vibIncr; |
| static INT32 feedback2; /* connect for SLOT 2 */ |
| |
| /* log output level */ |
| #define LOG_ERR 3 /* ERROR */ |
| #define LOG_WAR 2 /* WARNING */ |
| #define LOG_INF 1 /* INFORMATION */ |
| |
| #define LOG_LEVEL LOG_INF |
| |
| /* #define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x */ |
| #define LOG(n,x) if( (n)>=LOG_LEVEL ) log_printf x |
| |
| /* --------------------- subroutines --------------------- */ |
| |
| INLINE int |
| Limit (int val, int max, int min) |
| { |
| if (val > max) |
| val = max; |
| else if (val < min) |
| val = min; |
| |
| return val; |
| } |
| |
| /* status set and IRQ handling */ |
| INLINE void |
| OPL_STATUS_SET (FM_OPL * OPL, int flag) |
| { |
| /* set status flag */ |
| OPL->status |= flag; |
| if (!(OPL->status & 0x80)) { |
| if (OPL->status & OPL->statusmask) { /* IRQ on */ |
| OPL->status |= 0x80; |
| /* callback user interrupt handler (IRQ is OFF to ON) */ |
| if (OPL->IRQHandler) |
| (OPL->IRQHandler) (OPL->IRQParam, 1); |
| } |
| } |
| } |
| |
| /* status reset and IRQ handling */ |
| INLINE void |
| OPL_STATUS_RESET (FM_OPL * OPL, int flag) |
| { |
| /* reset status flag */ |
| OPL->status &= ~flag; |
| if ((OPL->status & 0x80)) { |
| if (!(OPL->status & OPL->statusmask)) { |
| OPL->status &= 0x7f; |
| /* callback user interrupt handler (IRQ is ON to OFF) */ |
| if (OPL->IRQHandler) |
| (OPL->IRQHandler) (OPL->IRQParam, 0); |
| } |
| } |
| } |
| |
| /* IRQ mask set */ |
| INLINE void |
| OPL_STATUSMASK_SET (FM_OPL * OPL, int flag) |
| { |
| OPL->statusmask = flag; |
| /* IRQ handling check */ |
| OPL_STATUS_SET (OPL, 0); |
| OPL_STATUS_RESET (OPL, 0); |
| } |
| |
| /* ----- key on ----- */ |
| INLINE void |
| OPL_KEYON (OPL_SLOT * SLOT) |
| { |
| /* sin wave restart */ |
| SLOT->Cnt = 0; |
| /* set attack */ |
| SLOT->evm = ENV_MOD_AR; |
| SLOT->evs = SLOT->evsa; |
| SLOT->evc = EG_AST; |
| SLOT->eve = EG_AED; |
| } |
| |
| /* ----- key off ----- */ |
| INLINE void |
| OPL_KEYOFF (OPL_SLOT * SLOT) |
| { |
| if (SLOT->evm > ENV_MOD_RR) { |
| /* set envelope counter from envleope output */ |
| SLOT->evm = ENV_MOD_RR; |
| if (!(SLOT->evc & EG_DST)) |
| /* SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; */ |
| SLOT->evc = EG_DST; |
| SLOT->eve = EG_DED; |
| SLOT->evs = SLOT->evsr; |
| } |
| } |
| |
| /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ |
| /* return : envelope output */ |
| INLINE UINT32 |
| OPL_CALC_SLOT (OPL_SLOT * SLOT) |
| { |
| /* calcrate envelope generator */ |
| if ((SLOT->evc += SLOT->evs) >= SLOT->eve) { |
| switch (SLOT->evm) { |
| case ENV_MOD_AR: /* ATTACK -> DECAY1 */ |
| /* next DR */ |
| SLOT->evm = ENV_MOD_DR; |
| SLOT->evc = EG_DST; |
| SLOT->eve = SLOT->SL; |
| SLOT->evs = SLOT->evsd; |
| break; |
| case ENV_MOD_DR: /* DECAY -> SL or RR */ |
| SLOT->evc = SLOT->SL; |
| SLOT->eve = EG_DED; |
| if (SLOT->eg_typ) { |
| SLOT->evs = 0; |
| } else { |
| SLOT->evm = ENV_MOD_RR; |
| SLOT->evs = SLOT->evsr; |
| } |
| break; |
| case ENV_MOD_RR: /* RR -> OFF */ |
| SLOT->evc = EG_OFF; |
| SLOT->eve = EG_OFF + 1; |
| SLOT->evs = 0; |
| break; |
| } |
| } |
| /* calcrate envelope */ |
| return SLOT->TLL + ENV_CURVE[SLOT->evc >> ENV_BITS] + (SLOT->ams ? ams : 0); |
| } |
| |
| /* set algorythm connection */ |
| static void |
| set_algorythm (OPL_CH * CH) |
| { |
| INT32 *carrier = &outd[0]; |
| |
| CH->connect1 = CH->CON ? carrier : &feedback2; |
| CH->connect2 = carrier; |
| } |
| |
| /* ---------- frequency counter for operater update ---------- */ |
| INLINE void |
| CALC_FCSLOT (OPL_CH * CH, OPL_SLOT * SLOT) |
| { |
| int ksr; |
| |
| /* frequency step counter */ |
| SLOT->Incr = CH->fc * SLOT->mul; |
| ksr = CH->kcode >> SLOT->KSR; |
| |
| if (SLOT->ksr != ksr) { |
| SLOT->ksr = ksr; |
| /* attack , decay rate recalcration */ |
| SLOT->evsa = SLOT->AR[ksr]; |
| SLOT->evsd = SLOT->DR[ksr]; |
| SLOT->evsr = SLOT->RR[ksr]; |
| } |
| SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); |
| } |
| |
| /* set multi,am,vib,EG-TYP,KSR,mul */ |
| INLINE void |
| set_mul (FM_OPL * OPL, int slot, int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot / 2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; |
| |
| SLOT->mul = MUL_TABLE[v & 0x0f]; |
| SLOT->KSR = (v & 0x10) ? 0 : 2; |
| SLOT->eg_typ = (v & 0x20) >> 5; |
| SLOT->vib = (v & 0x40); |
| SLOT->ams = (v & 0x80); |
| CALC_FCSLOT (CH, SLOT); |
| } |
| |
| /* set ksl & tl */ |
| INLINE void |
| set_ksl_tl (FM_OPL * OPL, int slot, int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot / 2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; |
| int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */ |
| |
| SLOT->ksl = ksl ? 3 - ksl : 31; |
| SLOT->TL = (INT32) (((v & 0x3f) * (0.75 / EG_STEP))); /* 0.75db step */ |
| |
| if (!(OPL->mode & 0x80)) { /* not CSM latch total level */ |
| SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); |
| } |
| } |
| |
| /* set attack rate & decay rate */ |
| INLINE void |
| set_ar_dr (FM_OPL * OPL, int slot, int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot / 2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; |
| int ar = v >> 4; |
| int dr = v & 0x0f; |
| |
| SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0; |
| SLOT->evsa = SLOT->AR[SLOT->ksr]; |
| if (SLOT->evm == ENV_MOD_AR) |
| SLOT->evs = SLOT->evsa; |
| |
| SLOT->DR = dr ? &OPL->DR_TABLE[dr << 2] : RATE_0; |
| SLOT->evsd = SLOT->DR[SLOT->ksr]; |
| if (SLOT->evm == ENV_MOD_DR) |
| SLOT->evs = SLOT->evsd; |
| } |
| |
| /* set sustain level & release rate */ |
| INLINE void |
| set_sl_rr (FM_OPL * OPL, int slot, int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot / 2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; |
| int sl = v >> 4; |
| int rr = v & 0x0f; |
| |
| SLOT->SL = SL_TABLE[sl]; |
| if (SLOT->evm == ENV_MOD_DR) |
| SLOT->eve = SLOT->SL; |
| SLOT->RR = &OPL->DR_TABLE[rr << 2]; |
| SLOT->evsr = SLOT->RR[SLOT->ksr]; |
| if (SLOT->evm == ENV_MOD_RR) |
| SLOT->evs = SLOT->evsr; |
| } |
| |
| /* operator output calcrator */ |
| #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] |
| /* ---------- calcrate one of channel ---------- */ |
| INLINE void |
| OPL_CALC_CH (OPL_CH * CH) |
| { |
| UINT32 env_out; |
| OPL_SLOT *SLOT; |
| |
| feedback2 = 0; |
| /* SLOT 1 */ |
| SLOT = &CH->SLOT[SLOT1]; |
| env_out = OPL_CALC_SLOT (SLOT); |
| if (env_out < EG_ENT - 1) { |
| /* PG */ |
| if (SLOT->vib) |
| SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); |
| else |
| SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| if (CH->FB) { |
| int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB; |
| |
| CH->op1_out[1] = CH->op1_out[0]; |
| *CH->connect1 += CH->op1_out[0] = OP_OUT (SLOT, env_out, feedback1); |
| } else { |
| *CH->connect1 += OP_OUT (SLOT, env_out, 0); |
| } |
| } else { |
| CH->op1_out[1] = CH->op1_out[0]; |
| CH->op1_out[0] = 0; |
| } |
| /* SLOT 2 */ |
| SLOT = &CH->SLOT[SLOT2]; |
| env_out = OPL_CALC_SLOT (SLOT); |
| if (env_out < EG_ENT - 1) { |
| /* PG */ |
| if (SLOT->vib) |
| SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); |
| else |
| SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| outd[0] += OP_OUT (SLOT, env_out, feedback2); |
| } |
| } |
| |
| /* ---------- calcrate rythm block ---------- */ |
| #define WHITE_NOISE_db 6.0 |
| INLINE void |
| OPL_CALC_RH (OPL_CH * CH) |
| { |
| UINT32 env_tam, env_sd, env_top, env_hh; |
| int whitenoise = (rand () & 1) * ((int) (WHITE_NOISE_db / EG_STEP)); |
| INT32 tone8; |
| |
| OPL_SLOT *SLOT; |
| int env_out; |
| |
| /* BD : same as FM serial mode and output level is large */ |
| feedback2 = 0; |
| /* SLOT 1 */ |
| SLOT = &CH[6].SLOT[SLOT1]; |
| env_out = OPL_CALC_SLOT (SLOT); |
| if (env_out < EG_ENT - 1) { |
| /* PG */ |
| if (SLOT->vib) |
| SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); |
| else |
| SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| if (CH[6].FB) { |
| int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB; |
| |
| CH[6].op1_out[1] = CH[6].op1_out[0]; |
| feedback2 = CH[6].op1_out[0] = OP_OUT (SLOT, env_out, feedback1); |
| } else { |
| feedback2 = OP_OUT (SLOT, env_out, 0); |
| } |
| } else { |
| feedback2 = 0; |
| CH[6].op1_out[1] = CH[6].op1_out[0]; |
| CH[6].op1_out[0] = 0; |
| } |
| /* SLOT 2 */ |
| SLOT = &CH[6].SLOT[SLOT2]; |
| env_out = OPL_CALC_SLOT (SLOT); |
| if (env_out < EG_ENT - 1) { |
| /* PG */ |
| if (SLOT->vib) |
| SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); |
| else |
| SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| outd[0] += OP_OUT (SLOT, env_out, feedback2) * 2; |
| } |
| /* SD (17) = mul14[fnum7] + white noise |
| TAM (15) = mul15[fnum8] |
| TOP (18) = fnum6(mul18[fnum8]+whitenoise) |
| HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise */ |
| env_sd = OPL_CALC_SLOT (SLOT7_2) + whitenoise; |
| env_tam = OPL_CALC_SLOT (SLOT8_1); |
| env_top = OPL_CALC_SLOT (SLOT8_2); |
| env_hh = OPL_CALC_SLOT (SLOT7_1) + whitenoise; |
| |
| /* PG */ |
| if (SLOT7_1->vib) |
| SLOT7_1->Cnt += (2 * SLOT7_1->Incr * vib / VIB_RATE); |
| else |
| SLOT7_1->Cnt += 2 * SLOT7_1->Incr; |
| if (SLOT7_2->vib) |
| SLOT7_2->Cnt += ((CH[7].fc * 8) * vib / VIB_RATE); |
| else |
| SLOT7_2->Cnt += (CH[7].fc * 8); |
| if (SLOT8_1->vib) |
| SLOT8_1->Cnt += (SLOT8_1->Incr * vib / VIB_RATE); |
| else |
| SLOT8_1->Cnt += SLOT8_1->Incr; |
| if (SLOT8_2->vib) |
| SLOT8_2->Cnt += ((CH[8].fc * 48) * vib / VIB_RATE); |
| else |
| SLOT8_2->Cnt += (CH[8].fc * 48); |
| |
| tone8 = OP_OUT (SLOT8_2, whitenoise, 0); |
| |
| /* SD */ |
| if (env_sd < EG_ENT - 1) |
| outd[0] += OP_OUT (SLOT7_1, env_sd, 0) * 8; |
| /* TAM */ |
| if (env_tam < EG_ENT - 1) |
| outd[0] += OP_OUT (SLOT8_1, env_tam, 0) * 2; |
| /* TOP-CY */ |
| if (env_top < EG_ENT - 1) |
| outd[0] += OP_OUT (SLOT7_2, env_top, tone8) * 2; |
| /* HH */ |
| if (env_hh < EG_ENT - 1) |
| outd[0] += OP_OUT (SLOT7_2, env_hh, tone8) * 2; |
| } |
| |
| /* ----------- initialize time tabls ----------- */ |
| static void |
| init_timetables (FM_OPL * OPL, int ARRATE, int DRRATE) |
| { |
| int i; |
| double rate; |
| |
| /* make attack rate & decay rate tables */ |
| for (i = 0; i < 4; i++) |
| OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; |
| for (i = 4; i <= 60; i++) { |
| rate = OPL->freqbase; /* frequency rate */ |
| if (i < 60) |
| rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ |
| rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */ |
| rate *= (double) (EG_ENT << ENV_BITS); |
| OPL->AR_TABLE[i] = (INT32) (rate / ARRATE); |
| OPL->DR_TABLE[i] = (INT32) (rate / DRRATE); |
| } |
| for (i = 60; i < 75; i++) { |
| OPL->AR_TABLE[i] = EG_AED - 1; |
| OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; |
| } |
| #if 0 |
| for (i = 0; i < 64; i++) { /* make for overflow area */ |
| LOG (LOG_WAR, ("rate %2d , ar %f ms , dr %f ms \n", i, |
| ((double) (EG_ENT << ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / |
| OPL->rate), |
| ((double) (EG_ENT << ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / |
| OPL->rate))); |
| } |
| #endif |
| } |
| |
| /* ---------- generic table initialize ---------- */ |
| static int |
| OPLOpenTable (void) |
| { |
| int s, t; |
| double rate; |
| int i, j; |
| double pom; |
| |
| /* allocate dynamic tables */ |
| if ((TL_TABLE = malloc (TL_MAX * 2 * sizeof (INT32))) == NULL) |
| return 0; |
| if ((SIN_TABLE = malloc (SIN_ENT * 4 * sizeof (INT32 *))) == NULL) { |
| free (TL_TABLE); |
| return 0; |
| } |
| if ((AMS_TABLE = malloc (AMS_ENT * 2 * sizeof (INT32))) == NULL) { |
| free (TL_TABLE); |
| free (SIN_TABLE); |
| return 0; |
| } |
| if ((VIB_TABLE = malloc (VIB_ENT * 2 * sizeof (INT32))) == NULL) { |
| free (TL_TABLE); |
| free (SIN_TABLE); |
| free (AMS_TABLE); |
| return 0; |
| } |
| /* make total level table */ |
| for (t = 0; t < EG_ENT - 1; t++) { |
| rate = ((1 << TL_BITS) - 1) / pow (10, EG_STEP * t / 20); /* dB -> voltage */ |
| TL_TABLE[t] = (int) rate; |
| TL_TABLE[TL_MAX + t] = -TL_TABLE[t]; |
| /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ |
| } |
| /* fill volume off area */ |
| for (t = EG_ENT - 1; t < TL_MAX; t++) { |
| TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0; |
| } |
| |
| /* make sinwave table (total level offet) */ |
| /* degree 0 = degree 180 = off */ |
| SIN_TABLE[0] = SIN_TABLE[SIN_ENT / 2] = &TL_TABLE[EG_ENT - 1]; |
| for (s = 1; s <= SIN_ENT / 4; s++) { |
| pom = sin (2 * PI * s / SIN_ENT); /* sin */ |
| pom = 20 * log10 (1 / pom); /* decibel */ |
| j = (int) (pom / EG_STEP); /* TL_TABLE steps */ |
| |
| /* degree 0 - 90 , degree 180 - 90 : plus section */ |
| SIN_TABLE[s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j]; |
| /* degree 180 - 270 , degree 360 - 270 : minus section */ |
| SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j]; |
| /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ |
| } |
| for (s = 0; s < SIN_ENT; s++) { |
| SIN_TABLE[SIN_ENT * 1 + s] = |
| s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; |
| SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)]; |
| SIN_TABLE[SIN_ENT * 3 + s] = |
| (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + |
| s]; |
| } |
| |
| /* envelope counter -> envelope output table */ |
| for (i = 0; i < EG_ENT; i++) { |
| /* ATTACK curve */ |
| pom = (float) pow (((double) (EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT; |
| /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ |
| ENV_CURVE[i] = (int) pom; |
| /* DECAY ,RELEASE curve */ |
| ENV_CURVE[(EG_DST >> ENV_BITS) + i] = i; |
| } |
| /* off */ |
| ENV_CURVE[EG_OFF >> ENV_BITS] = EG_ENT - 1; |
| /* make LFO ams table */ |
| for (i = 0; i < AMS_ENT; i++) { |
| pom = (1.0 + sin (2 * PI * i / AMS_ENT)) / 2; /* sin */ |
| AMS_TABLE[i] = (INT32) ((1.0 / EG_STEP) * pom); /* 1dB */ |
| AMS_TABLE[AMS_ENT + i] = (INT32) ((4.8 / EG_STEP) * pom); /* 4.8dB */ |
| } |
| /* make LFO vibrate table */ |
| for (i = 0; i < VIB_ENT; i++) { |
| /* 100cent = 1seminote = 6% ?? */ |
| pom = (double) VIB_RATE *0.06 * sin (2 * PI * i / VIB_ENT); /* +-100sect step */ |
| |
| VIB_TABLE[i] = VIB_RATE + (INT32) (pom * 0.07); /* +- 7cent */ |
| VIB_TABLE[VIB_ENT + i] = VIB_RATE + (INT32) (pom * 0.14); /* +-14cent */ |
| /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ |
| } |
| return 1; |
| } |
| |
| |
| static void |
| OPLCloseTable (void) |
| { |
| free (TL_TABLE); |
| free (SIN_TABLE); |
| free (AMS_TABLE); |
| free (VIB_TABLE); |
| } |
| |
| /* CSM Key Controll */ |
| INLINE void |
| CSMKeyControll (OPL_CH * CH) |
| { |
| OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; |
| OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; |
| |
| /* all key off */ |
| OPL_KEYOFF (slot1); |
| OPL_KEYOFF (slot2); |
| /* total level latch */ |
| slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl); |
| slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl); |
| /* key on */ |
| CH->op1_out[0] = CH->op1_out[1] = 0; |
| OPL_KEYON (slot1); |
| OPL_KEYON (slot2); |
| } |
| |
| /* ---------- opl initialize ---------- */ |
| static void |
| OPL_initalize (FM_OPL * OPL) |
| { |
| int fn; |
| |
| /* frequency base */ |
| OPL->freqbase = (OPL->rate) ? ((double) OPL->clock / OPL->rate) / 72 : 0; |
| /* Timer base time */ |
| OPL->TimerBase = 1.0 / ((double) OPL->clock / 72.0); |
| /* make time tables */ |
| init_timetables (OPL, OPL_ARRATE, OPL_DRRATE); |
| /* make fnumber -> increment counter table */ |
| for (fn = 0; fn < 1024; fn++) { |
| OPL->FN_TABLE[fn] = |
| (UINT32) (OPL->freqbase * fn * FREQ_RATE * (1 << 7) / 2); |
| } |
| /* LFO freq.table */ |
| OPL->amsIncr = |
| (INT32) (OPL->rate ? (double) AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * |
| 3.7 * ((double) OPL->clock / 3600000) : 0); |
| OPL->vibIncr = |
| (INT32) (OPL->rate ? (double) VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * |
| 6.4 * ((double) OPL->clock / 3600000) : 0); |
| } |
| |
| /* ---------- write a OPL registers ---------- */ |
| static void |
| OPLWriteReg (FM_OPL * OPL, int r, int v) |
| { |
| OPL_CH *CH; |
| int slot; |
| unsigned int block_fnum; |
| |
| switch (r & 0xe0) { |
| case 0x00: /* 00-1f:controll */ |
| switch (r & 0x1f) { |
| case 0x01: |
| /* wave selector enable */ |
| if (OPL->type & OPL_TYPE_WAVESEL) { |
| OPL->wavesel = v & 0x20; |
| if (!OPL->wavesel) { |
| /* preset compatible mode */ |
| int c; |
| |
| for (c = 0; c < OPL->max_ch; c++) { |
| OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; |
| OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; |
| } |
| } |
| } |
| return; |
| case 0x02: /* Timer 1 */ |
| OPL->T[0] = (256 - v) * 4; |
| break; |
| case 0x03: /* Timer 2 */ |
| OPL->T[1] = (256 - v) * 16; |
| return; |
| case 0x04: /* IRQ clear / mask and Timer enable */ |
| if (v & 0x80) { /* IRQ flag clear */ |
| OPL_STATUS_RESET (OPL, 0x7f); |
| } else { /* set IRQ mask ,timer enable */ |
| UINT8 st1 = v & 1; |
| UINT8 st2 = (v >> 1) & 1; |
| |
| /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ |
| OPL_STATUS_RESET (OPL, v & 0x78); |
| OPL_STATUSMASK_SET (OPL, ((~v) & 0x78) | 0x01); |
| /* timer 2 */ |
| if (OPL->st[1] != st2) { |
| double interval = st2 ? (double) OPL->T[1] * OPL->TimerBase : 0.0; |
| |
| OPL->st[1] = st2; |
| if (OPL->TimerHandler) |
| (OPL->TimerHandler) (OPL->TimerParam + 1, interval); |
| } |
| /* timer 1 */ |
| if (OPL->st[0] != st1) { |
| double interval = st1 ? (double) OPL->T[0] * OPL->TimerBase : 0.0; |
| |
| OPL->st[0] = st1; |
| if (OPL->TimerHandler) |
| (OPL->TimerHandler) (OPL->TimerParam + 0, interval); |
| } |
| } |
| return; |
| #if BUILD_Y8950 |
| case 0x06: /* Key Board OUT */ |
| if (OPL->type & OPL_TYPE_KEYBOARD) { |
| if (OPL->keyboardhandler_w) |
| OPL->keyboardhandler_w (OPL->keyboard_param, v); |
| else |
| LOG (LOG_WAR, ("OPL:write unmapped KEYBOARD port\n")); |
| } |
| return; |
| case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ |
| if (OPL->type & OPL_TYPE_ADPCM) |
| YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v); |
| return; |
| case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ |
| OPL->mode = v; |
| v &= 0x1f; /* for DELTA-T unit */ |
| case 0x09: /* START ADD */ |
| case 0x0a: |
| case 0x0b: /* STOP ADD */ |
| case 0x0c: |
| case 0x0d: /* PRESCALE */ |
| case 0x0e: |
| case 0x0f: /* ADPCM data */ |
| case 0x10: /* DELTA-N */ |
| case 0x11: /* DELTA-N */ |
| case 0x12: /* EG-CTRL */ |
| if (OPL->type & OPL_TYPE_ADPCM) |
| YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v); |
| return; |
| #if 0 |
| case 0x15: /* DAC data */ |
| case 0x16: |
| case 0x17: /* SHIFT */ |
| return; |
| case 0x18: /* I/O CTRL (Direction) */ |
| if (OPL->type & OPL_TYPE_IO) |
| OPL->portDirection = v & 0x0f; |
| return; |
| case 0x19: /* I/O DATA */ |
| if (OPL->type & OPL_TYPE_IO) { |
| OPL->portLatch = v; |
| if (OPL->porthandler_w) |
| OPL->porthandler_w (OPL->port_param, v & OPL->portDirection); |
| } |
| return; |
| case 0x1a: /* PCM data */ |
| return; |
| #endif |
| #endif |
| } |
| break; |
| case 0x20: /* am,vib,ksr,eg type,mul */ |
| slot = slot_array[r & 0x1f]; |
| if (slot == -1) |
| return; |
| set_mul (OPL, slot, v); |
| return; |
| case 0x40: |
| slot = slot_array[r & 0x1f]; |
| if (slot == -1) |
| return; |
| set_ksl_tl (OPL, slot, v); |
| return; |
| case 0x60: |
| slot = slot_array[r & 0x1f]; |
| if (slot == -1) |
| return; |
| set_ar_dr (OPL, slot, v); |
| return; |
| case 0x80: |
| slot = slot_array[r & 0x1f]; |
| if (slot == -1) |
| return; |
| set_sl_rr (OPL, slot, v); |
| return; |
| case 0xa0: |
| switch (r) { |
| case 0xbd: |
| /* amsep,vibdep,r,bd,sd,tom,tc,hh */ |
| { |
| UINT8 rkey = OPL->rythm ^ v; |
| |
| OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0]; |
| OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0]; |
| OPL->rythm = v & 0x3f; |
| if (OPL->rythm & 0x20) { |
| #if 0 |
| usrintf_showmessage ("OPL Rythm mode select"); |
| #endif |
| /* BD key on/off */ |
| if (rkey & 0x10) { |
| if (v & 0x10) { |
| OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; |
| OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT1]); |
| OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT2]); |
| } else { |
| OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT1]); |
| OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT2]); |
| } |
| } |
| /* SD key on/off */ |
| if (rkey & 0x08) { |
| if (v & 0x08) |
| OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT2]); |
| else |
| OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT2]); |
| } /* TAM key on/off */ |
| if (rkey & 0x04) { |
| if (v & 0x04) |
| OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT1]); |
| else |
| OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT1]); |
| } |
| /* TOP-CY key on/off */ |
| if (rkey & 0x02) { |
| if (v & 0x02) |
| OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT2]); |
| else |
| OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT2]); |
| } |
| /* HH key on/off */ |
| if (rkey & 0x01) { |
| if (v & 0x01) |
| OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT1]); |
| else |
| OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT1]); |
| } |
| } |
| } |
| return; |
| } |
| /* keyon,block,fnum */ |
| if ((r & 0x0f) > 8) |
| return; |
| CH = &OPL->P_CH[r & 0x0f]; |
| if (!(r & 0x10)) { /* a0-a8 */ |
| block_fnum = (CH->block_fnum & 0x1f00) | v; |
| } else { /* b0-b8 */ |
| int keyon = (v >> 5) & 1; |
| |
| block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff); |
| if (CH->keyon != keyon) { |
| if ((CH->keyon = keyon)) { |
| CH->op1_out[0] = CH->op1_out[1] = 0; |
| OPL_KEYON (&CH->SLOT[SLOT1]); |
| OPL_KEYON (&CH->SLOT[SLOT2]); |
| } else { |
| OPL_KEYOFF (&CH->SLOT[SLOT1]); |
| OPL_KEYOFF (&CH->SLOT[SLOT2]); |
| } |
| } |
| } |
| /* update */ |
| if (CH->block_fnum != block_fnum) { |
| int blockRv = 7 - (block_fnum >> 10); |
| int fnum = block_fnum & 0x3ff; |
| |
| CH->block_fnum = block_fnum; |
| |
| CH->ksl_base = KSL_TABLE[block_fnum >> 6]; |
| CH->fc = OPL->FN_TABLE[fnum] >> blockRv; |
| CH->kcode = CH->block_fnum >> 9; |
| if ((OPL->mode & 0x40) && CH->block_fnum & 0x100) |
| CH->kcode |= 1; |
| CALC_FCSLOT (CH, &CH->SLOT[SLOT1]); |
| CALC_FCSLOT (CH, &CH->SLOT[SLOT2]); |
| } |
| return; |
| case 0xc0: |
| /* FB,C */ |
| if ((r & 0x0f) > 8) |
| return; |
| CH = &OPL->P_CH[r & 0x0f]; |
| { |
| int feedback = (v >> 1) & 7; |
| |
| CH->FB = feedback ? (8 + 1) - feedback : 0; |
| CH->CON = v & 1; |
| set_algorythm (CH); |
| } |
| return; |
| case 0xe0: /* wave type */ |
| slot = slot_array[r & 0x1f]; |
| if (slot == -1) |
| return; |
| CH = &OPL->P_CH[slot / 2]; |
| if (OPL->wavesel) { |
| /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ |
| CH->SLOT[slot & 1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT]; |
| } |
| return; |
| } |
| } |
| |
| /* lock/unlock for common table */ |
| static int |
| OPL_LockTable (void) |
| { |
| num_lock++; |
| if (num_lock > 1) |
| return 0; |
| /* first time */ |
| cur_chip = NULL; |
| /* allocate total level table (128kb space) */ |
| if (!OPLOpenTable ()) { |
| num_lock--; |
| return -1; |
| } |
| return 0; |
| } |
| |
| static void |
| OPL_UnLockTable (void) |
| { |
| if (num_lock) |
| num_lock--; |
| if (num_lock) |
| return; |
| /* last time */ |
| cur_chip = NULL; |
| OPLCloseTable (); |
| } |
| |
| #if (BUILD_YM3812 || BUILD_YM3526) |
| /*******************************************************************************/ |
| /* YM3812 local section */ |
| /*******************************************************************************/ |
| |
| /* ---------- update one of chip ----------- */ |
| void |
| YM3812UpdateOne (FM_OPL * OPL, INT16 * buffer, int length) |
| { |
| int i; |
| int data; |
| FMSAMPLE *buf = buffer; |
| UINT32 amsCnt = OPL->amsCnt; |
| UINT32 vibCnt = OPL->vibCnt; |
| UINT8 rythm = OPL->rythm & 0x20; |
| OPL_CH *CH, *R_CH; |
| |
| if ((void *) OPL != cur_chip) { |
| cur_chip = (void *) OPL; |
| /* channel pointers */ |
| S_CH = OPL->P_CH; |
| E_CH = &S_CH[9]; |
| /* rythm slot */ |
| SLOT7_1 = &S_CH[7].SLOT[SLOT1]; |
| SLOT7_2 = &S_CH[7].SLOT[SLOT2]; |
| SLOT8_1 = &S_CH[8].SLOT[SLOT1]; |
| SLOT8_2 = &S_CH[8].SLOT[SLOT2]; |
| /* LFO state */ |
| amsIncr = OPL->amsIncr; |
| vibIncr = OPL->vibIncr; |
| ams_table = OPL->ams_table; |
| vib_table = OPL->vib_table; |
| } |
| R_CH = rythm ? &S_CH[6] : E_CH; |
| for (i = 0; i < length; i++) { |
| /* channel A channel B channel C */ |
| /* LFO */ |
| ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT]; |
| vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT]; |
| outd[0] = 0; |
| /* FM part */ |
| for (CH = S_CH; CH < R_CH; CH++) |
| OPL_CALC_CH (CH); |
| /* Rythn part */ |
| if (rythm) |
| OPL_CALC_RH (S_CH); |
| /* limit check */ |
| data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT); |
| /* store to sound buffer */ |
| buf[i] = data >> OPL_OUTSB; |
| } |
| |
| OPL->amsCnt = amsCnt; |
| OPL->vibCnt = vibCnt; |
| } |
| #endif /* (BUILD_YM3812 || BUILD_YM3526) */ |
| |
| #if BUILD_Y8950 |
| |
| void |
| Y8950UpdateOne (FM_OPL * OPL, INT16 * buffer, int length) |
| { |
| int i; |
| int data; |
| FMSAMPLE *buf = buffer; |
| UINT32 amsCnt = OPL->amsCnt; |
| UINT32 vibCnt = OPL->vibCnt; |
| UINT8 rythm = OPL->rythm & 0x20; |
| OPL_CH *CH, *R_CH; |
| YM_DELTAT *DELTAT = OPL->deltat; |
| |
| /* setup DELTA-T unit */ |
| YM_DELTAT_DECODE_PRESET (DELTAT); |
| |
| if ((void *) OPL != cur_chip) { |
| cur_chip = (void *) OPL; |
| /* channel pointers */ |
| S_CH = OPL->P_CH; |
| E_CH = &S_CH[9]; |
| /* rythm slot */ |
| SLOT7_1 = &S_CH[7].SLOT[SLOT1]; |
| SLOT7_2 = &S_CH[7].SLOT[SLOT2]; |
| SLOT8_1 = &S_CH[8].SLOT[SLOT1]; |
| SLOT8_2 = &S_CH[8].SLOT[SLOT2]; |
| /* LFO state */ |
| amsIncr = OPL->amsIncr; |
| vibIncr = OPL->vibIncr; |
| ams_table = OPL->ams_table; |
| vib_table = OPL->vib_table; |
| } |
| R_CH = rythm ? &S_CH[6] : E_CH; |
| for (i = 0; i < length; i++) { |
| /* channel A channel B channel C */ |
| /* LFO */ |
| ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT]; |
| vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT]; |
| outd[0] = 0; |
| /* deltaT ADPCM */ |
| if (DELTAT->flag) |
| YM_DELTAT_ADPCM_CALC (DELTAT); |
| /* FM part */ |
| for (CH = S_CH; CH < R_CH; CH++) |
| OPL_CALC_CH (CH); |
| /* Rythn part */ |
| if (rythm) |
| OPL_CALC_RH (S_CH); |
| /* limit check */ |
| data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT); |
| /* store to sound buffer */ |
| buf[i] = data >> OPL_OUTSB; |
| } |
| OPL->amsCnt = amsCnt; |
| OPL->vibCnt = vibCnt; |
| /* deltaT START flag */ |
| if (!DELTAT->flag) |
| OPL->status &= 0xfe; |
| } |
| #endif |
| |
| /* ---------- reset one of chip ---------- */ |
| void |
| OPLResetChip (FM_OPL * OPL) |
| { |
| int c, s; |
| int i; |
| |
| /* reset chip */ |
| OPL->mode = 0; /* normal mode */ |
| OPL_STATUS_RESET (OPL, 0x7f); |
| /* reset with register write */ |
| OPLWriteReg (OPL, 0x01, 0); /* wabesel disable */ |
| OPLWriteReg (OPL, 0x02, 0); /* Timer1 */ |
| OPLWriteReg (OPL, 0x03, 0); /* Timer2 */ |
| OPLWriteReg (OPL, 0x04, 0); /* IRQ mask clear */ |
| for (i = 0xff; i >= 0x20; i--) |
| OPLWriteReg (OPL, i, 0); |
| /* reset OPerator paramater */ |
| for (c = 0; c < OPL->max_ch; c++) { |
| OPL_CH *CH = &OPL->P_CH[c]; |
| |
| /* OPL->P_CH[c].PAN = OPN_CENTER; */ |
| for (s = 0; s < 2; s++) { |
| /* wave table */ |
| CH->SLOT[s].wavetable = &SIN_TABLE[0]; |
| /* CH->SLOT[s].evm = ENV_MOD_RR; */ |
| CH->SLOT[s].evc = EG_OFF; |
| CH->SLOT[s].eve = EG_OFF + 1; |
| CH->SLOT[s].evs = 0; |
| } |
| } |
| #if BUILD_Y8950 |
| if (OPL->type & OPL_TYPE_ADPCM) { |
| YM_DELTAT *DELTAT = OPL->deltat; |
| |
| DELTAT->freqbase = OPL->freqbase; |
| DELTAT->output_pointer = outd; |
| DELTAT->portshift = 5; |
| DELTAT->output_range = DELTAT_MIXING_LEVEL << TL_BITS; |
| YM_DELTAT_ADPCM_Reset (DELTAT, 0); |
| } |
| #endif |
| } |
| |
| /* ---------- Create one of vietual YM3812 ---------- */ |
| /* 'rate' is sampling rate and 'bufsiz' is the size of the */ |
| FM_OPL * |
| OPLCreate (int type, int clock, int rate) |
| { |
| char *ptr; |
| FM_OPL *OPL; |
| int state_size; |
| int max_ch = 9; /* normaly 9 channels */ |
| |
| if (OPL_LockTable () == -1) |
| return NULL; |
| /* allocate OPL state space */ |
| state_size = sizeof (FM_OPL); |
| state_size += sizeof (OPL_CH) * max_ch; |
| #if BUILD_Y8950 |
| if (type & OPL_TYPE_ADPCM) |
| state_size += sizeof (YM_DELTAT); |
| #endif |
| /* allocate memory block */ |
| ptr = malloc (state_size); |
| if (ptr == NULL) |
| return NULL; |
| /* clear */ |
| memset (ptr, 0, state_size); |
| OPL = (FM_OPL *) ptr; |
| ptr += sizeof (FM_OPL); |
| OPL->P_CH = (OPL_CH *) ptr; |
| ptr += sizeof (OPL_CH) * max_ch; |
| #if BUILD_Y8950 |
| if (type & OPL_TYPE_ADPCM) |
| OPL->deltat = (YM_DELTAT *) ptr; |
| ptr += sizeof (YM_DELTAT); |
| #endif |
| /* set channel state pointer */ |
| OPL->type = type; |
| OPL->clock = clock; |
| OPL->rate = rate; |
| OPL->max_ch = max_ch; |
| /* init grobal tables */ |
| OPL_initalize (OPL); |
| /* reset chip */ |
| OPLResetChip (OPL); |
| return OPL; |
| } |
| |
| /* ---------- Destroy one of vietual YM3812 ---------- */ |
| void |
| OPLDestroy (FM_OPL * OPL) |
| { |
| OPL_UnLockTable (); |
| free (OPL); |
| } |
| |
| /* ---------- Option handlers ---------- */ |
| |
| void |
| OPLSetTimerHandler (FM_OPL * OPL, OPL_TIMERHANDLER TimerHandler, |
| int channelOffset) |
| { |
| OPL->TimerHandler = TimerHandler; |
| OPL->TimerParam = channelOffset; |
| } |
| |
| void |
| OPLSetIRQHandler (FM_OPL * OPL, OPL_IRQHANDLER IRQHandler, int param) |
| { |
| OPL->IRQHandler = IRQHandler; |
| OPL->IRQParam = param; |
| } |
| |
| void |
| OPLSetUpdateHandler (FM_OPL * OPL, OPL_UPDATEHANDLER UpdateHandler, int param) |
| { |
| OPL->UpdateHandler = UpdateHandler; |
| OPL->UpdateParam = param; |
| } |
| |
| #if BUILD_Y8950 |
| void |
| OPLSetPortHandler (FM_OPL * OPL, OPL_PORTHANDLER_W PortHandler_w, |
| OPL_PORTHANDLER_R PortHandler_r, int param) |
| { |
| OPL->porthandler_w = PortHandler_w; |
| OPL->porthandler_r = PortHandler_r; |
| OPL->port_param = param; |
| } |
| |
| void |
| OPLSetKeyboardHandler (FM_OPL * OPL, OPL_PORTHANDLER_W KeyboardHandler_w, |
| OPL_PORTHANDLER_R KeyboardHandler_r, int param) |
| { |
| OPL->keyboardhandler_w = KeyboardHandler_w; |
| OPL->keyboardhandler_r = KeyboardHandler_r; |
| OPL->keyboard_param = param; |
| } |
| #endif |
| /* ---------- YM3812 I/O interface ---------- */ |
| int |
| OPLWrite (FM_OPL * OPL, int a, int v) |
| { |
| if (!(a & 1)) { /* address port */ |
| OPL->address = v & 0xff; |
| } else { /* data port */ |
| if (OPL->UpdateHandler) |
| OPL->UpdateHandler (OPL->UpdateParam, 0); |
| OPLWriteReg (OPL, OPL->address, v); |
| } |
| return OPL->status >> 7; |
| } |
| |
| unsigned char |
| OPLRead (FM_OPL * OPL, int a) |
| { |
| if (!(a & 1)) { /* status port */ |
| return OPL->status & (OPL->statusmask | 0x80); |
| } |
| /* data port */ |
| switch (OPL->address) { |
| case 0x05: /* KeyBoard IN */ |
| if (OPL->type & OPL_TYPE_KEYBOARD) { |
| if (OPL->keyboardhandler_r) |
| return OPL->keyboardhandler_r (OPL->keyboard_param); |
| else |
| LOG (LOG_WAR, ("OPL:read unmapped KEYBOARD port\n")); |
| } |
| return 0; |
| #if 0 |
| case 0x0f: /* ADPCM-DATA */ |
| return 0; |
| #endif |
| case 0x19: /* I/O DATA */ |
| if (OPL->type & OPL_TYPE_IO) { |
| if (OPL->porthandler_r) |
| return OPL->porthandler_r (OPL->port_param); |
| else |
| LOG (LOG_WAR, ("OPL:read unmapped I/O port\n")); |
| } |
| return 0; |
| case 0x1a: /* PCM-DATA */ |
| return 0; |
| } |
| return 0; |
| } |
| |
| int |
| OPLTimerOver (FM_OPL * OPL, int c) |
| { |
| if (c) { /* Timer B */ |
| OPL_STATUS_SET (OPL, 0x20); |
| } else { /* Timer A */ |
| OPL_STATUS_SET (OPL, 0x40); |
| /* CSM mode key,TL controll */ |
| if (OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */ |
| int ch; |
| |
| if (OPL->UpdateHandler) |
| OPL->UpdateHandler (OPL->UpdateParam, 0); |
| for (ch = 0; ch < 9; ch++) |
| CSMKeyControll (&OPL->P_CH[ch]); |
| } |
| } |
| /* reload timer */ |
| if (OPL->TimerHandler) |
| (OPL->TimerHandler) (OPL->TimerParam + c, |
| (double) OPL->T[c] * OPL->TimerBase); |
| return OPL->status >> 7; |
| } |