| /* fix_fft.c - Fixed-point Fast Fourier Transform */ |
| /* |
| fix_fft() perform FFT or inverse FFT |
| window() applies a Hanning window to the (time) input |
| fix_loud() calculates the loudness of the signal, for |
| each freq point. Result is an integer array, |
| units are dB (values will be negative). |
| iscale() scale an integer value by (numer/denom). |
| fix_mpy() perform fixed-point multiplication. |
| Sinewave[1024] sinewave normalized to 32767 (= 1.0). |
| Loudampl[100] Amplitudes for lopudnesses from 0 to -99 dB. |
| Low_pass Low-pass filter, cutoff at sample_freq / 4. |
| |
| All data are fixed-point short integers, in which |
| -32768 to +32768 represent -1.0 to +1.0. Integer arithmetic |
| is used for speed, instead of the more natural floating-point. |
| |
| For the forward FFT (time -> freq), fixed scaling is |
| performed to prevent arithmetic overflow, and to map a 0dB |
| sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq |
| coefficients; the one in the lower half is reported as 0dB |
| by fix_loud(). The return value is always 0. |
| |
| For the inverse FFT (freq -> time), fixed scaling cannot be |
| done, as two 0dB coefficients would sum to a peak amplitude of |
| 64K, overflowing the 32k range of the fixed-point integers. |
| Thus, the fix_fft() routine performs variable scaling, and |
| returns a value which is the number of bits LEFT by which |
| the output must be shifted to get the actual amplitude |
| (i.e. if fix_fft() returns 3, each value of fr[] and fi[] |
| must be multiplied by 8 (2**3) for proper scaling. |
| Clearly, this cannot be done within the fixed-point short |
| integers. In practice, if the result is to be used as a |
| filter, the scale_shift can usually be ignored, as the |
| result will be approximately correctly normalized as is. |
| |
| TURBO C, any memory model; uses inline assembly for speed |
| and for carefully-scaled arithmetic. |
| |
| Written by: Tom Roberts 11/8/89 |
| Made portable: Malcolm Slaney 12/15/94 malcolm@interval.com |
| |
| Timing on a Macintosh PowerBook 180.... (using Symantec C6.0) |
| fix_fft (1024 points) 8 ticks |
| fft (1024 points - Using SANE) 112 Ticks |
| fft (1024 points - Using FPU) 11 |
| |
| */ |
| |
| #define fixed short |
| |
| /* FIX_MPY() - fixed-point multiplication macro. |
| This macro is a statement, not an expression (uses asm). |
| BEWARE: make sure _DX is not clobbered by evaluating (A) or DEST. |
| args are all of type fixed. |
| Scaling ensures that 32767*32767 = 32767. */ |
| |
| #define FIX_MPY(DEST,A,B) DEST = ((long)(A) * (long)(B))>>15 |
| |
| #define N_WAVE 1024 /* dimension of Sinewave[] */ |
| #define LOG2_N_WAVE 10 /* log2(N_WAVE) */ |
| #define N_LOUD 100 /* dimension of Loudampl[] */ |
| |
| extern fixed gst_spectrum_Sinewave[N_WAVE]; /* placed at end of this file for clarity */ |
| extern fixed gst_spectrum_Loudampl[N_LOUD]; |
| static int gst_spectrum_db_from_ampl(fixed re, fixed im); |
| static fixed gst_spectrum_fix_mpy(fixed a, fixed b); |
| |
| /* |
| fix_fft() - perform fast Fourier transform. |
| |
| if n>0 FFT is done, if n<0 inverse FFT is done |
| fr[n],fi[n] are real,imaginary arrays, INPUT AND RESULT. |
| size of data = 2**m |
| set inverse to 0=dft, 1=idft |
| */ |
| int gst_spectrum_fix_fft(fixed fr[], fixed fi[], int m, int inverse) { |
| int mr, nn, i, j, l, k, istep, n, scale, shift; |
| fixed qr, qi, tr, ti, wr, wi; |
| |
| n = 1 << m; |
| |
| if (n > N_WAVE) |
| return -1; |
| |
| mr = 0; |
| nn = n - 1; |
| scale = 0; |
| |
| /* decimation in time - re-order data */ |
| for (m = 1; m <= nn; ++m) |
| { |
| l = n; |
| do |
| { |
| l >>= 1; |
| } |
| while (mr + l > nn); |
| mr = (mr & (l - 1)) + l; |
| |
| if (mr <= m) |
| continue; |
| tr = fr[m]; |
| fr[m] = fr[mr]; |
| fr[mr] = tr; |
| ti = fi[m]; |
| fi[m] = fi[mr]; |
| fi[mr] = ti; |
| } |
| |
| l = 1; |
| k = LOG2_N_WAVE - 1; |
| while (l < n) |
| { |
| if (inverse) |
| { |
| /* variable scaling, depending upon data */ |
| shift = 0; |
| for (i = 0; i < n; ++i) |
| { |
| j = fr[i]; |
| if (j < 0) |
| j = -j; |
| m = fi[i]; |
| if (m < 0) |
| m = -m; |
| if (j > 16383 || m > 16383) |
| { |
| shift = 1; |
| break; |
| } |
| } |
| if (shift) |
| ++scale; |
| } |
| else |
| { |
| /* fixed scaling, for proper normalization - |
| there will be log2(n) passes, so this |
| results in an overall factor of 1/n, |
| distributed to maximize arithmetic accuracy. */ |
| shift = 1; |
| } |
| /* it may not be obvious, but the shift will be performed |
| on each data point exactly once, during this pass. */ |
| istep = l << 1; |
| for (m = 0; m < l; ++m) |
| { |
| j = m << k; |
| /* 0 <= j < N_WAVE/2 */ |
| wr = gst_spectrum_Sinewave[j + N_WAVE / 4]; |
| wi = -gst_spectrum_Sinewave[j]; |
| if (inverse) |
| wi = -wi; |
| if (shift) |
| { |
| wr >>= 1; |
| wi >>= 1; |
| } |
| for (i = m; i < n; i += istep) |
| { |
| j = i + l; |
| tr = gst_spectrum_fix_mpy(wr, fr[j]) - |
| gst_spectrum_fix_mpy(wi, fi[j]); |
| ti = gst_spectrum_fix_mpy(wr, fi[j]) + |
| gst_spectrum_fix_mpy(wi, fr[j]); |
| qr = fr[i]; |
| qi = fi[i]; |
| if (shift) |
| { |
| qr >>= 1; |
| qi >>= 1; |
| } |
| fr[j] = qr - tr; |
| fi[j] = qi - ti; |
| fr[i] = qr + tr; |
| fi[i] = qi + ti; |
| } |
| } |
| --k; |
| l = istep; |
| } |
| |
| return scale; |
| } |
| |
| /* window() - apply a Hanning window */ |
| void gst_spectrum_window(fixed fr[], int n) { |
| int i, j, k; |
| |
| j = N_WAVE / n; |
| n >>= 1; |
| for (i = 0, k = N_WAVE / 4; i < n; ++i, k += j) |
| FIX_MPY(fr[i], fr[i], 16384 - (gst_spectrum_Sinewave[k] >> 1)); |
| n <<= 1; |
| for (k -= j; i < n; ++i, k -= j) |
| FIX_MPY(fr[i], fr[i], 16384 - (gst_spectrum_Sinewave[k] >> 1)); |
| } |
| |
| /* fix_loud() - compute loudness of freq-vis components. |
| n should be ntot/2, where ntot was passed to fix_fft(); |
| 6 dB is added to account for the omitted alias components. |
| scale_shift should be the result of fix_fft(), if the time-series |
| was obtained from an inverse FFT, 0 otherwise. |
| loud[] is the loudness, in dB wrt 32767; will be +10 to -N_LOUD. |
| */ |
| void gst_spectrum_fix_loud(fixed loud[], fixed fr[], fixed fi[], int n, int scale_shift) { |
| int i, max; |
| |
| max = 0; |
| if (scale_shift > 0) |
| max = 10; |
| scale_shift = (scale_shift + 1) * 6; |
| |
| for (i = 0; i < n; ++i) |
| { |
| loud[i] = gst_spectrum_db_from_ampl(fr[i], fi[i]) + scale_shift; |
| if (loud[i] > max) |
| loud[i] = max; |
| } |
| } |
| |
| /* db_from_ampl() - find loudness (in dB) from |
| the complex amplitude. |
| */ |
| int gst_spectrum_db_from_ampl(fixed re, fixed im) { |
| static long loud2[N_LOUD] = |
| {0}; |
| long v; |
| int i; |
| |
| if (loud2[0] == 0) |
| { |
| loud2[0] = (long) gst_spectrum_Loudampl[0] * (long) gst_spectrum_Loudampl[0]; |
| for (i = 1; i < N_LOUD; ++i) |
| { |
| v = (long) gst_spectrum_Loudampl[i] * (long) gst_spectrum_Loudampl[i]; |
| loud2[i] = v; |
| loud2[i - 1] = (loud2[i - 1] + v) / 2; |
| } |
| } |
| |
| v = (long) re *(long) re + (long) im *(long) im; |
| |
| for (i = 0; i < N_LOUD; ++i) |
| if (loud2[i] <= v) |
| break; |
| |
| return (-i); |
| } |
| |
| /* |
| fix_mpy() - fixed-point multiplication |
| */ |
| fixed gst_spectrum_fix_mpy(fixed a, fixed b) { |
| FIX_MPY(a, a, b); |
| return a; |
| } |
| |
| /* |
| iscale() - scale an integer value by (numer/denom) |
| */ |
| int gst_spectrum_iscale(int value, int numer, int denom) { |
| return (long) value *(long) numer / (long) denom; |
| } |
| |
| /* |
| fix_dot() - dot product of two fixed arrays |
| */ |
| fixed gst_spectrum_fix_dot(fixed * hpa, fixed * pb, int n) { |
| fixed *pa = hpa; /* FIXME */ |
| long sum; |
| register fixed a, b; |
| |
| /* seg = FP_SEG(hpa); |
| off = FP_OFF(hpa); |
| seg += off>>4; |
| off &= 0x000F; |
| pa = MK_FP(seg,off); |
| */ |
| sum = 0L; |
| while (n--) |
| { |
| a = *pa++; |
| b = *pb++; |
| FIX_MPY(a, a, b); |
| sum += a; |
| } |
| |
| if (sum > 0x7FFF) |
| sum = 0x7FFF; |
| else if (sum < -0x7FFF) |
| sum = -0x7FFF; |
| |
| return (fixed) sum; |
| |
| } |
| |
| #if N_WAVE != 1024 |
| ERROR:N_WAVE != 1024 |
| #endif |
| fixed gst_spectrum_Sinewave[1024] = { |
| 0, 201, 402, 603, 804, 1005, 1206, 1406, |
| 1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011, |
| 3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608, |
| 4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195, |
| 6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766, |
| 7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319, |
| 9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849, |
| 11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353, |
| 12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827, |
| 14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268, |
| 15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672, |
| 16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036, |
| 18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357, |
| 19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631, |
| 20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855, |
| 22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027, |
| 23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143, |
| 24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201, |
| 25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198, |
| 26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132, |
| 27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001, |
| 28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802, |
| 28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534, |
| 29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195, |
| 30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783, |
| 30851, 30918, 30984, 31049, |
| 31113, 31175, 31236, 31297, |
| 31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735, |
| 31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097, |
| 32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382, |
| 32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588, |
| 32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717, |
| 32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766, |
| 32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736, |
| 32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628, |
| 32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441, |
| 32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176, |
| 32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833, |
| 31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413, |
| 31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918, |
| 30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349, |
| 30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706, |
| 29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992, |
| 28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208, |
| 28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355, |
| 27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437, |
| 26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456, |
| 25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413, |
| 24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311, |
| 23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153, |
| 22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942, |
| 20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680, |
| 19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371, |
| 18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017, |
| 16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623, |
| 15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191, |
| 14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724, |
| 12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227, |
| 11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703, |
| 9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156, |
| 7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589, |
| 6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006, |
| 4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411, |
| 3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808, |
| 1607, 1406, 1206, 1005, 804, 603, 402, 201, |
| 0, -201, -402, -603, -804, -1005, -1206, -1406, |
| -1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011, |
| -3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608, |
| -4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195, |
| -6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766, |
| -7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319, |
| -9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849, |
| -11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353, |
| -12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827, |
| -14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268, |
| -15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672, |
| -16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036, |
| -18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357, |
| -19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631, |
| -20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855, |
| -22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027, |
| -23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143, |
| -24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201, |
| -25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198, |
| -26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132, |
| -27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001, |
| -28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802, |
| -28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534, |
| -29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195, |
| -30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783, |
| -30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297, |
| -31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735, |
| -31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097, |
| -32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382, |
| -32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588, |
| -32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717, |
| -32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766, |
| -32767, -32766, -32764, -32761, -32757, -32751, -32744, -32736, |
| -32727, -32717, -32705, -32692, -32678, -32662, -32646, -32628, |
| -32609, -32588, -32567, -32544, -32520, -32495, -32468, -32441, |
| -32412, -32382, -32350, -32318, -32284, -32249, -32213, -32176, |
| -32137, -32097, -32056, -32014, -31970, -31926, -31880, -31833, |
| -31785, -31735, -31684, -31633, -31580, -31525, -31470, -31413, |
| -31356, -31297, -31236, -31175, -31113, -31049, -30984, -30918, |
| -30851, -30783, -30713, -30643, -30571, -30498, -30424, -30349, |
| -30272, -30195, -30116, -30036, -29955, -29873, -29790, -29706, |
| -29621, -29534, -29446, -29358, -29268, -29177, -29085, -28992, |
| -28897, -28802, -28706, -28608, -28510, -28410, -28309, -28208, |
| -28105, -28001, -27896, -27790, -27683, -27575, -27466, -27355, |
| -27244, -27132, -27019, -26905, -26789, -26673, -26556, -26437, |
| -26318, -26198, -26077, -25954, -25831, -25707, -25582, -25456, |
| -25329, -25201, -25072, -24942, -24811, -24679, -24546, -24413, |
| -24278, -24143, -24006, -23869, -23731, -23592, -23452, -23311, |
| -23169, -23027, -22883, -22739, -22594, -22448, -22301, -22153, |
| -22004, -21855, -21705, -21554, -21402, -21249, -21096, -20942, |
| -20787, -20631, -20474, -20317, -20159, -20000, -19840, -19680, |
| -19519, -19357, -19194, -19031, -18867, -18702, -18537, -18371, |
| -18204, -18036, -17868, -17699, -17530, -17360, -17189, -17017, |
| -16845, -16672, -16499, -16325, -16150, -15975, -15799, -15623, |
| -15446, -15268, -15090, -14911, -14732, -14552, -14372, -14191, |
| -14009, -13827, -13645, -13462, -13278, -13094, -12909, -12724, |
| -12539, -12353, -12166, -11980, -11792, -11604, -11416, -11227, |
| -11038, -10849, -10659, -10469, -10278, -10087, -9895, -9703, |
| -9511, -9319, -9126, -8932, -8739, -8545, -8351, -8156, |
| -7961, -7766, -7571, -7375, -7179, -6982, -6786, -6589, |
| -6392, -6195, -5997, -5799, -5601, -5403, -5205, -5006, |
| -4807, -4608, -4409, -4210, -4011, -3811, -3611, -3411, |
| -3211, -3011, -2811, -2610, -2410, -2209, -2009, -1808, |
| -1607, -1406, -1206, -1005, -804, -603, -402, -201, |
| }; |
| |
| #if N_LOUD != 100 |
| ERROR:N_LOUD != 100 |
| #endif |
| fixed gst_spectrum_Loudampl[100] = { |
| 32767, 29203, 26027, 23197, 20674, 18426, 16422, 14636, |
| 13044, 11626, 10361, 9234, 8230, 7335, 6537, 5826, |
| 5193, 4628, 4125, 3676, 3276, 2920, 2602, 2319, |
| 2067, 1842, 1642, 1463, 1304, 1162, 1036, 923, |
| 823, 733, 653, 582, 519, 462, 412, 367, |
| 327, 292, 260, 231, 206, 184, 164, 146, |
| 130, 116, 103, 92, 82, 73, 65, 58, |
| 51, 46, 41, 36, 32, 29, 26, 23, |
| 20, 18, 16, 14, 13, 11, 10, 9, |
| 8, 7, 6, 5, 5, 4, 4, 3, |
| 3, 2, 2, 2, 2, 1, 1, 1, |
| 1, 1, 1, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, |
| }; |