| /* |
| * GStreamer |
| * Copyright (C) 2013 Miguel Casas-Sanchez <miguelecasassanchez@gmail.com> |
| * Except: Parts of code inside the preprocessor define CODE_FROM_OREILLY_BOOK, |
| * which are downloaded from O'Reilly website |
| * [http://examples.oreilly.com/9780596516130/] |
| * and adapted. Its license reads: |
| * "Oct. 3, 2008 |
| * Right to use this code in any way you want without warrenty, support or |
| * any guarentee of it working. " |
| * |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Alternatively, the contents of this file may be used under the |
| * GNU Lesser General Public License Version 2.1 (the "LGPL"), in |
| * which case the following provisions apply instead of the ones |
| * mentioned above: |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public |
| * License along with this library; if not, write to the |
| * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| #define CODE_FROM_OREILLY_BOOK |
| |
| /** |
| * SECTION:element-segmentation |
| * |
| * This element creates and updates a fg/bg model using one of several approaches. |
| * The one called "codebook" refers to the codebook approach following the opencv |
| * O'Reilly book [1] implementation of the algorithm described in K. Kim, |
| * T. H. Chalidabhongse, D. Harwood and L. Davis [2]. BackgroundSubtractorMOG [3], |
| * or MOG for shorts, refers to a Gaussian Mixture-based Background/Foreground |
| * Segmentation Algorithm. OpenCV MOG implements the algorithm described in [4]. |
| * BackgroundSubtractorMOG2 [5], refers to another Gaussian Mixture-based |
| * Background/Foreground segmentation algorithm. OpenCV MOG2 implements the |
| * algorithm described in [6] and [7]. |
| * |
| * [1] Learning OpenCV: Computer Vision with the OpenCV Library by Gary Bradski |
| * and Adrian Kaehler, Published by O'Reilly Media, October 3, 2008 |
| * [2] "Real-time Foreground-Background Segmentation using Codebook Model", |
| * Real-time Imaging, Volume 11, Issue 3, Pages 167-256, June 2005. |
| * [3] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog |
| * [4] P. KadewTraKuPong and R. Bowden, "An improved adaptive background |
| * mixture model for real-time tracking with shadow detection", Proc. 2nd |
| * European Workshop on Advanced Video-Based Surveillance Systems, 2001 |
| * [5] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog2 |
| * [6] Z.Zivkovic, "Improved adaptive Gausian mixture model for background |
| * subtraction", International Conference Pattern Recognition, UK, August, 2004. |
| * [7] Z.Zivkovic, F. van der Heijden, "Efficient Adaptive Density Estimation |
| * per Image Pixel for the Task of Background Subtraction", Pattern Recognition |
| * Letters, vol. 27, no. 7, pages 773-780, 2006. |
| * |
| * <refsect2> |
| * <title>Example launch line</title> |
| * |[ |
| * gst-launch-1.0 v4l2src device=/dev/video0 ! videoconvert ! video/x-raw,width=320,height=240 ! videoconvert ! segmentation test-mode=true method=2 ! videoconvert ! ximagesink |
| * ]| |
| * </refsect2> |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| #include "gstsegmentation.h" |
| #include <opencv2/imgproc/imgproc_c.h> |
| |
| GST_DEBUG_CATEGORY_STATIC (gst_segmentation_debug); |
| #define GST_CAT_DEFAULT gst_segmentation_debug |
| |
| using namespace cv; |
| #if (CV_MAJOR_VERSION >= 3) |
| using namespace cv::bgsegm; |
| #endif |
| /* Filter signals and args */ |
| enum |
| { |
| /* FILL ME */ |
| LAST_SIGNAL |
| }; |
| |
| enum |
| { |
| PROP_0, |
| PROP_TEST_MODE, |
| PROP_METHOD, |
| PROP_LEARNING_RATE |
| }; |
| typedef enum |
| { |
| METHOD_BOOK, |
| METHOD_MOG, |
| METHOD_MOG2 |
| } GstSegmentationMethod; |
| |
| #define DEFAULT_TEST_MODE FALSE |
| #define DEFAULT_METHOD METHOD_MOG2 |
| #define DEFAULT_LEARNING_RATE 0.01 |
| |
| #define GST_TYPE_SEGMENTATION_METHOD (gst_segmentation_method_get_type ()) |
| static GType |
| gst_segmentation_method_get_type (void) |
| { |
| static GType etype = 0; |
| if (etype == 0) { |
| static const GEnumValue values[] = { |
| {METHOD_BOOK, "Codebook-based segmentation (Bradski2008)", "codebook"}, |
| {METHOD_MOG, "Mixture-of-Gaussians segmentation (Bowden2001)", "mog"}, |
| {METHOD_MOG2, "Mixture-of-Gaussians segmentation (Zivkovic2004)", "mog2"}, |
| {0, NULL, NULL}, |
| }; |
| etype = g_enum_register_static ("GstSegmentationMethod", values); |
| } |
| return etype; |
| } |
| |
| G_DEFINE_TYPE (GstSegmentation, gst_segmentation, GST_TYPE_VIDEO_FILTER); |
| static GstStaticPadTemplate sink_factory = GST_STATIC_PAD_TEMPLATE ("sink", |
| GST_PAD_SINK, |
| GST_PAD_ALWAYS, |
| GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("RGBA"))); |
| |
| static GstStaticPadTemplate src_factory = GST_STATIC_PAD_TEMPLATE ("src", |
| GST_PAD_SRC, |
| GST_PAD_ALWAYS, |
| GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("RGBA"))); |
| |
| |
| static void gst_segmentation_set_property (GObject * object, guint prop_id, |
| const GValue * value, GParamSpec * pspec); |
| static void gst_segmentation_get_property (GObject * object, guint prop_id, |
| GValue * value, GParamSpec * pspec); |
| |
| static GstFlowReturn gst_segmentation_transform_ip (GstVideoFilter * btrans, |
| GstVideoFrame * frame); |
| |
| static gboolean gst_segmentation_stop (GstBaseTransform * basesrc); |
| static gboolean gst_segmentation_set_info (GstVideoFilter * filter, |
| GstCaps * incaps, GstVideoInfo * in_info, |
| GstCaps * outcaps, GstVideoInfo * out_info); |
| static void gst_segmentation_release_all_pointers (GstSegmentation * filter); |
| |
| /* Codebook algorithm + connected components functions*/ |
| static int update_codebook (unsigned char *p, codeBook * c, |
| unsigned *cbBounds, int numChannels); |
| static int clear_stale_entries (codeBook * c); |
| static unsigned char background_diff (unsigned char *p, codeBook * c, |
| int numChannels, int *minMod, int *maxMod); |
| static void find_connected_components (IplImage * mask, int poly1_hull0, |
| float perimScale, CvMemStorage * mem_storage, CvSeq * contours); |
| |
| /* MOG (Mixture-of-Gaussians functions */ |
| static int initialise_mog (GstSegmentation * filter); |
| static int run_mog_iteration (GstSegmentation * filter); |
| static int run_mog2_iteration (GstSegmentation * filter); |
| static int finalise_mog (GstSegmentation * filter); |
| |
| /* initialize the segmentation's class */ |
| static void |
| gst_segmentation_class_init (GstSegmentationClass * klass) |
| { |
| GObjectClass *gobject_class; |
| GstElementClass *element_class = GST_ELEMENT_CLASS (klass); |
| GstBaseTransformClass *basesrc_class = GST_BASE_TRANSFORM_CLASS (klass); |
| GstVideoFilterClass *video_class = (GstVideoFilterClass *) klass; |
| |
| gobject_class = (GObjectClass *) klass; |
| |
| gobject_class->set_property = gst_segmentation_set_property; |
| gobject_class->get_property = gst_segmentation_get_property; |
| |
| basesrc_class->stop = gst_segmentation_stop; |
| |
| video_class->transform_frame_ip = gst_segmentation_transform_ip; |
| video_class->set_info = gst_segmentation_set_info; |
| |
| g_object_class_install_property (gobject_class, PROP_METHOD, |
| g_param_spec_enum ("method", |
| "Segmentation method to use", |
| "Segmentation method to use", |
| GST_TYPE_SEGMENTATION_METHOD, DEFAULT_METHOD, |
| (GParamFlags) (G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS))); |
| |
| g_object_class_install_property (gobject_class, PROP_TEST_MODE, |
| g_param_spec_boolean ("test-mode", "test-mode", |
| "If true, the output RGB is overwritten with the calculated foreground (white color)", |
| DEFAULT_TEST_MODE, (GParamFlags) |
| (GParamFlags) (G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS))); |
| |
| g_object_class_install_property (gobject_class, PROP_LEARNING_RATE, |
| g_param_spec_float ("learning-rate", "learning-rate", |
| "Speed with which a motionless foreground pixel would become background (inverse of number of frames)", |
| 0, 1, DEFAULT_LEARNING_RATE, (GParamFlags) (G_PARAM_READWRITE))); |
| |
| gst_element_class_set_static_metadata (element_class, |
| "Foreground/background video sequence segmentation", |
| "Filter/Effect/Video", |
| "Create a Foregound/Background mask applying a particular algorithm", |
| "Miguel Casas-Sanchez <miguelecasassanchez@gmail.com>"); |
| |
| gst_element_class_add_static_pad_template (element_class, &src_factory); |
| gst_element_class_add_static_pad_template (element_class, &sink_factory); |
| |
| } |
| |
| /* initialize the new element |
| * instantiate pads and add them to element |
| * set pad calback functions |
| * initialize instance structure |
| */ |
| static void |
| gst_segmentation_init (GstSegmentation * filter) |
| { |
| filter->method = DEFAULT_METHOD; |
| filter->test_mode = DEFAULT_TEST_MODE; |
| filter->framecount = 0; |
| filter->learning_rate = DEFAULT_LEARNING_RATE; |
| gst_base_transform_set_in_place (GST_BASE_TRANSFORM (filter), TRUE); |
| } |
| |
| |
| static void |
| gst_segmentation_set_property (GObject * object, guint prop_id, |
| const GValue * value, GParamSpec * pspec) |
| { |
| GstSegmentation *filter = GST_SEGMENTATION (object); |
| |
| switch (prop_id) { |
| case PROP_METHOD: |
| filter->method = g_value_get_enum (value); |
| break; |
| case PROP_TEST_MODE: |
| filter->test_mode = g_value_get_boolean (value); |
| break; |
| case PROP_LEARNING_RATE: |
| filter->learning_rate = g_value_get_float (value); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |
| |
| static void |
| gst_segmentation_get_property (GObject * object, guint prop_id, |
| GValue * value, GParamSpec * pspec) |
| { |
| GstSegmentation *filter = GST_SEGMENTATION (object); |
| |
| switch (prop_id) { |
| case PROP_METHOD: |
| g_value_set_enum (value, filter->method); |
| break; |
| case PROP_TEST_MODE: |
| g_value_set_boolean (value, filter->test_mode); |
| break; |
| case PROP_LEARNING_RATE: |
| g_value_set_float (value, filter->learning_rate); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |
| |
| /* GstElement vmethod implementations */ |
| /* this function handles the link with other elements */ |
| static gboolean |
| gst_segmentation_set_info (GstVideoFilter * filter, |
| GstCaps * incaps, GstVideoInfo * in_info, |
| GstCaps * outcaps, GstVideoInfo * out_info) |
| { |
| GstSegmentation *segmentation = GST_SEGMENTATION (filter); |
| CvSize size; |
| |
| size = cvSize (in_info->width, in_info->height); |
| segmentation->width = in_info->width; |
| segmentation->height = in_info->height; |
| /* If cvRGB is already allocated, it means there's a cap modification, */ |
| /* so release first all the images. */ |
| if (NULL != segmentation->cvRGBA) |
| gst_segmentation_release_all_pointers (segmentation); |
| |
| segmentation->cvRGBA = cvCreateImageHeader (size, IPL_DEPTH_8U, 4); |
| |
| segmentation->cvRGB = cvCreateImage (size, IPL_DEPTH_8U, 3); |
| segmentation->cvYUV = cvCreateImage (size, IPL_DEPTH_8U, 3); |
| |
| segmentation->cvFG = cvCreateImage (size, IPL_DEPTH_8U, 1); |
| cvZero (segmentation->cvFG); |
| |
| segmentation->ch1 = cvCreateImage (size, IPL_DEPTH_8U, 1); |
| segmentation->ch2 = cvCreateImage (size, IPL_DEPTH_8U, 1); |
| segmentation->ch3 = cvCreateImage (size, IPL_DEPTH_8U, 1); |
| |
| /* Codebook method */ |
| segmentation->TcodeBook = (codeBook *) |
| g_malloc (sizeof (codeBook) * |
| (segmentation->width * segmentation->height + 1)); |
| for (int j = 0; j < segmentation->width * segmentation->height; j++) { |
| segmentation->TcodeBook[j].numEntries = 0; |
| segmentation->TcodeBook[j].t = 0; |
| } |
| segmentation->learning_interval = (int) (1.0 / segmentation->learning_rate); |
| |
| /* Mixture-of-Gaussians (mog) methods */ |
| initialise_mog (segmentation); |
| |
| return TRUE; |
| } |
| |
| /* Clean up */ |
| static gboolean |
| gst_segmentation_stop (GstBaseTransform * basesrc) |
| { |
| GstSegmentation *filter = GST_SEGMENTATION (basesrc); |
| |
| if (filter->cvRGBA != NULL) |
| gst_segmentation_release_all_pointers (filter); |
| |
| return TRUE; |
| } |
| |
| static void |
| gst_segmentation_release_all_pointers (GstSegmentation * filter) |
| { |
| cvReleaseImage (&filter->cvRGBA); |
| cvReleaseImage (&filter->cvRGB); |
| cvReleaseImage (&filter->cvYUV); |
| cvReleaseImage (&filter->cvFG); |
| cvReleaseImage (&filter->ch1); |
| cvReleaseImage (&filter->ch2); |
| cvReleaseImage (&filter->ch3); |
| |
| cvReleaseMemStorage (&filter->mem_storage); |
| |
| g_free (filter->TcodeBook); |
| finalise_mog (filter); |
| } |
| |
| static GstFlowReturn |
| gst_segmentation_transform_ip (GstVideoFilter * btrans, GstVideoFrame * frame) |
| { |
| GstSegmentation *filter = GST_SEGMENTATION (btrans); |
| int j; |
| |
| /* get image data from the input, which is RGBA */ |
| filter->cvRGBA->imageData = (char *) GST_VIDEO_FRAME_COMP_DATA (frame, 0); |
| filter->cvRGBA->widthStep = GST_VIDEO_FRAME_COMP_STRIDE (frame, 0); |
| filter->framecount++; |
| |
| /* Image preprocessing: color space conversion etc */ |
| cvCvtColor (filter->cvRGBA, filter->cvRGB, CV_RGBA2RGB); |
| cvCvtColor (filter->cvRGB, filter->cvYUV, CV_RGB2YCrCb); |
| |
| /* Create and update a fg/bg model using a codebook approach following the |
| * opencv O'Reilly book [1] implementation of the algo described in [2]. |
| * |
| * [1] Learning OpenCV: Computer Vision with the OpenCV Library by Gary |
| * Bradski and Adrian Kaehler, Published by O'Reilly Media, October 3, 2008 |
| * [2] "Real-time Foreground-Background Segmentation using Codebook Model", |
| * Real-time Imaging, Volume 11, Issue 3, Pages 167-256, June 2005. */ |
| if (METHOD_BOOK == filter->method) { |
| unsigned cbBounds[3] = { 10, 5, 5 }; |
| int minMod[3] = { 20, 20, 20 }, maxMod[3] = { |
| 20, 20, 20}; |
| |
| if (filter->framecount < 30) { |
| /* Learning background phase: update_codebook on every frame */ |
| for (j = 0; j < filter->width * filter->height; j++) { |
| update_codebook ((unsigned char *) filter->cvYUV->imageData + j * 3, |
| (codeBook *) & (filter->TcodeBook[j]), cbBounds, 3); |
| } |
| } else { |
| /* this updating is responsible for FG becoming BG again */ |
| if (filter->framecount % filter->learning_interval == 0) { |
| for (j = 0; j < filter->width * filter->height; j++) { |
| update_codebook ((uchar *) filter->cvYUV->imageData + j * 3, |
| (codeBook *) & (filter->TcodeBook[j]), cbBounds, 3); |
| } |
| } |
| if (filter->framecount % 60 == 0) { |
| for (j = 0; j < filter->width * filter->height; j++) |
| clear_stale_entries ((codeBook *) & (filter->TcodeBook[j])); |
| } |
| |
| for (j = 0; j < filter->width * filter->height; j++) { |
| if (background_diff |
| ((uchar *) filter->cvYUV->imageData + j * 3, |
| (codeBook *) & (filter->TcodeBook[j]), 3, minMod, maxMod)) { |
| filter->cvFG->imageData[j] = 255; |
| } else { |
| filter->cvFG->imageData[j] = 0; |
| } |
| } |
| } |
| |
| /* 3rd param is the smallest area to show: (w+h)/param , in pixels */ |
| find_connected_components (filter->cvFG, 1, 10000, |
| filter->mem_storage, filter->contours); |
| |
| } |
| /* Create the foreground and background masks using BackgroundSubtractorMOG [1], |
| * Gaussian Mixture-based Background/Foreground segmentation algorithm. OpenCV |
| * MOG implements the algorithm described in [2]. |
| * |
| * [1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog |
| * [2] P. KadewTraKuPong and R. Bowden, "An improved adaptive background |
| * mixture model for real-time tracking with shadow detection", Proc. 2nd |
| * European Workshop on Advanced Video-Based Surveillance Systems, 2001 |
| */ |
| else if (METHOD_MOG == filter->method) { |
| run_mog_iteration (filter); |
| } |
| /* Create the foreground and background masks using BackgroundSubtractorMOG2 |
| * [1], Gaussian Mixture-based Background/Foreground segmentation algorithm. |
| * OpenCV MOG2 implements the algorithm described in [2] and [3]. |
| * |
| * [1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog2 |
| * [2] Z.Zivkovic, "Improved adaptive Gausian mixture model for background |
| * subtraction", International Conference Pattern Recognition, UK, Aug 2004. |
| * [3] Z.Zivkovic, F. van der Heijden, "Efficient Adaptive Density Estimation |
| * per Image Pixel for the Task of Background Subtraction", Pattern |
| * Recognition Letters, vol. 27, no. 7, pages 773-780, 2006. */ |
| else if (METHOD_MOG2 == filter->method) { |
| run_mog2_iteration (filter); |
| } |
| |
| /* if we want to test_mode, just overwrite the output */ |
| if (filter->test_mode) { |
| cvCvtColor (filter->cvFG, filter->cvRGB, CV_GRAY2RGB); |
| |
| cvSplit (filter->cvRGB, filter->ch1, filter->ch2, filter->ch3, NULL); |
| } else |
| cvSplit (filter->cvRGBA, filter->ch1, filter->ch2, filter->ch3, NULL); |
| |
| /* copy anyhow the fg/bg to the alpha channel in the output image */ |
| cvMerge (filter->ch1, filter->ch2, filter->ch3, filter->cvFG, filter->cvRGBA); |
| |
| |
| return GST_FLOW_OK; |
| } |
| |
| /* entry point to initialize the plug-in |
| * initialize the plug-in itself |
| * register the element factories and other features |
| */ |
| gboolean |
| gst_segmentation_plugin_init (GstPlugin * plugin) |
| { |
| GST_DEBUG_CATEGORY_INIT (gst_segmentation_debug, "segmentation", |
| 0, "Performs Foreground/Background segmentation in video sequences"); |
| |
| return gst_element_register (plugin, "segmentation", GST_RANK_NONE, |
| GST_TYPE_SEGMENTATION); |
| } |
| |
| |
| |
| #ifdef CODE_FROM_OREILLY_BOOK /* See license at the beginning of the page */ |
| /* |
| int update_codebook(uchar *p, codeBook &c, unsigned cbBounds) |
| Updates the codebook entry with a new data point |
| |
| p Pointer to a YUV or HSI pixel |
| c Codebook for this pixel |
| cbBounds Learning bounds for codebook (Rule of thumb: 10) |
| numChannels Number of color channels we¡¯re learning |
| |
| NOTES: |
| cvBounds must be of length equal to numChannels |
| |
| RETURN |
| codebook index |
| */ |
| int |
| update_codebook (unsigned char *p, codeBook * c, unsigned *cbBounds, |
| int numChannels) |
| { |
| /* c->t+=1; */ |
| unsigned int high[3], low[3]; |
| int n, i; |
| int matchChannel; |
| |
| for (n = 0; n < numChannels; n++) { |
| high[n] = p[n] + cbBounds[n]; |
| if (high[n] > 255) |
| high[n] = 255; |
| |
| if (p[n] > cbBounds[n]) |
| low[n] = p[n] - cbBounds[n]; |
| else |
| low[n] = 0; |
| } |
| |
| /* SEE IF THIS FITS AN EXISTING CODEWORD */ |
| for (i = 0; i < c->numEntries; i++) { |
| matchChannel = 0; |
| for (n = 0; n < numChannels; n++) { |
| if ((c->cb[i]->learnLow[n] <= *(p + n)) && |
| /* Found an entry for this channel */ |
| (*(p + n) <= c->cb[i]->learnHigh[n])) { |
| matchChannel++; |
| } |
| } |
| if (matchChannel == numChannels) { /* If an entry was found */ |
| c->cb[i]->t_last_update = c->t; |
| /* adjust this codeword for the first channel */ |
| for (n = 0; n < numChannels; n++) { |
| if (c->cb[i]->max[n] < *(p + n)) { |
| c->cb[i]->max[n] = *(p + n); |
| } else if (c->cb[i]->min[n] > *(p + n)) { |
| c->cb[i]->min[n] = *(p + n); |
| } |
| } |
| break; |
| } |
| } |
| /* OVERHEAD TO TRACK POTENTIAL STALE ENTRIES */ |
| for (int s = 0; s < c->numEntries; s++) { |
| /* Track which codebook entries are going stale: */ |
| int negRun = c->t - c->cb[s]->t_last_update; |
| if (c->cb[s]->stale < negRun) |
| c->cb[s]->stale = negRun; |
| } |
| /* ENTER A NEW CODEWORD IF NEEDED */ |
| if (i == c->numEntries) { /* if no existing codeword found, make one */ |
| code_element **foo = |
| (code_element **) g_malloc (sizeof (code_element *) * |
| (c->numEntries + 1)); |
| for (int ii = 0; ii < c->numEntries; ii++) { |
| foo[ii] = c->cb[ii]; /* copy all pointers */ |
| } |
| foo[c->numEntries] = (code_element *) g_malloc (sizeof (code_element)); |
| if (c->numEntries) |
| g_free (c->cb); |
| c->cb = foo; |
| for (n = 0; n < numChannels; n++) { |
| c->cb[c->numEntries]->learnHigh[n] = high[n]; |
| c->cb[c->numEntries]->learnLow[n] = low[n]; |
| c->cb[c->numEntries]->max[n] = *(p + n); |
| c->cb[c->numEntries]->min[n] = *(p + n); |
| } |
| c->cb[c->numEntries]->t_last_update = c->t; |
| c->cb[c->numEntries]->stale = 0; |
| c->numEntries += 1; |
| } |
| /* SLOWLY ADJUST LEARNING BOUNDS */ |
| for (n = 0; n < numChannels; n++) { |
| if (c->cb[i]->learnHigh[n] < high[n]) |
| c->cb[i]->learnHigh[n] += 1; |
| if (c->cb[i]->learnLow[n] > low[n]) |
| c->cb[i]->learnLow[n] -= 1; |
| } |
| return (i); |
| } |
| |
| |
| |
| |
| |
| /* |
| int clear_stale_entries(codeBook &c) |
| During learning, after you've learned for some period of time, |
| periodically call this to clear out stale codebook entries |
| |
| c Codebook to clean up |
| |
| Return |
| number of entries cleared |
| */ |
| int |
| clear_stale_entries (codeBook * c) |
| { |
| int staleThresh = c->t >> 1; |
| int *keep = (int *) g_malloc (sizeof (int) * (c->numEntries)); |
| int keepCnt = 0; |
| code_element **foo; |
| int k; |
| int numCleared; |
| /* SEE WHICH CODEBOOK ENTRIES ARE TOO STALE */ |
| for (int i = 0; i < c->numEntries; i++) { |
| if (c->cb[i]->stale > staleThresh) |
| keep[i] = 0; /* Mark for destruction */ |
| else { |
| keep[i] = 1; /* Mark to keep */ |
| keepCnt += 1; |
| } |
| } |
| /* KEEP ONLY THE GOOD */ |
| c->t = 0; /* Full reset on stale tracking */ |
| foo = (code_element **) g_malloc (sizeof (code_element *) * keepCnt); |
| k = 0; |
| for (int ii = 0; ii < c->numEntries; ii++) { |
| if (keep[ii]) { |
| foo[k] = c->cb[ii]; |
| /* We have to refresh these entries for next clearStale */ |
| foo[k]->t_last_update = 0; |
| k++; |
| } |
| } |
| /* CLEAN UP */ |
| g_free (keep); |
| g_free (c->cb); |
| c->cb = foo; |
| numCleared = c->numEntries - keepCnt; |
| c->numEntries = keepCnt; |
| return (numCleared); |
| } |
| |
| |
| |
| /* |
| uchar background_diff( uchar *p, codeBook &c, |
| int minMod, int maxMod) |
| Given a pixel and a codebook, determine if the pixel is |
| covered by the codebook |
| |
| p Pixel pointer (YUV interleaved) |
| c Codebook reference |
| numChannels Number of channels we are testing |
| maxMod Add this (possibly negative) number onto |
| |
| max level when determining if new pixel is foreground |
| minMod Subract this (possibly negative) number from |
| min level when determining if new pixel is foreground |
| |
| NOTES: |
| minMod and maxMod must have length numChannels, |
| e.g. 3 channels => minMod[3], maxMod[3]. There is one min and |
| one max threshold per channel. |
| |
| Return |
| 0 => background, 255 => foreground |
| */ |
| unsigned char |
| background_diff (unsigned char *p, codeBook * c, int numChannels, |
| int *minMod, int *maxMod) |
| { |
| int matchChannel; |
| /* SEE IF THIS FITS AN EXISTING CODEWORD */ |
| int i; |
| for (i = 0; i < c->numEntries; i++) { |
| matchChannel = 0; |
| for (int n = 0; n < numChannels; n++) { |
| if ((c->cb[i]->min[n] - minMod[n] <= *(p + n)) && |
| (*(p + n) <= c->cb[i]->max[n] + maxMod[n])) { |
| matchChannel++; /* Found an entry for this channel */ |
| } else { |
| break; |
| } |
| } |
| if (matchChannel == numChannels) { |
| break; /* Found an entry that matched all channels */ |
| } |
| } |
| if (i >= c->numEntries) |
| return (255); |
| return (0); |
| } |
| |
| |
| |
| |
| /* |
| void find_connected_components(IplImage *mask, int poly1_hull0, |
| float perimScale, int *num, |
| CvRect *bbs, CvPoint *centers) |
| This cleans up the foreground segmentation mask derived from calls |
| to backgroundDiff |
| |
| mask Is a grayscale (8-bit depth) “raw†mask image that |
| will be cleaned up |
| |
| OPTIONAL PARAMETERS: |
| poly1_hull0 If set, approximate connected component by |
| (DEFAULT) polygon, or else convex hull (0) |
| perimScale Len = image (width+height)/perimScale. If contour |
| len < this, delete that contour (DEFAULT: 4) |
| num Maximum number of rectangles and/or centers to |
| return; on return, will contain number filled |
| (DEFAULT: NULL) |
| bbs Pointer to bounding box rectangle vector of |
| length num. (DEFAULT SETTING: NULL) |
| centers Pointer to contour centers vector of length |
| num (DEFAULT: NULL) |
| */ |
| |
| /* Approx.threshold - the bigger it is, the simpler is the boundary */ |
| #define CVCONTOUR_APPROX_LEVEL 1 |
| /* How many iterations of erosion and/or dilation there should be */ |
| #define CVCLOSE_ITR 1 |
| static void |
| find_connected_components (IplImage * mask, int poly1_hull0, float perimScale, |
| CvMemStorage * mem_storage, CvSeq * contours) |
| { |
| CvContourScanner scanner; |
| CvSeq *c; |
| int numCont = 0; |
| /* Just some convenience variables */ |
| const CvScalar CVX_WHITE = CV_RGB (0xff, 0xff, 0xff); |
| const CvScalar CVX_BLACK = CV_RGB (0x00, 0x00, 0x00); |
| |
| /* CLEAN UP RAW MASK */ |
| cvMorphologyEx (mask, mask, 0, 0, CV_MOP_OPEN, CVCLOSE_ITR); |
| cvMorphologyEx (mask, mask, 0, 0, CV_MOP_CLOSE, CVCLOSE_ITR); |
| /* FIND CONTOURS AROUND ONLY BIGGER REGIONS */ |
| if (mem_storage == NULL) { |
| mem_storage = cvCreateMemStorage (0); |
| } else { |
| cvClearMemStorage (mem_storage); |
| } |
| |
| scanner = cvStartFindContours (mask, mem_storage, sizeof (CvContour), |
| CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cvPoint (0, 0)); |
| |
| while ((c = cvFindNextContour (scanner)) != NULL) { |
| double len = cvContourArea (c, CV_WHOLE_SEQ, 0); |
| /* calculate perimeter len threshold: */ |
| double q = (mask->height + mask->width) / perimScale; |
| /* Get rid of blob if its perimeter is too small: */ |
| if (len < q) { |
| cvSubstituteContour (scanner, NULL); |
| } else { |
| /* Smooth its edges if its large enough */ |
| CvSeq *c_new; |
| if (poly1_hull0) { |
| /* Polygonal approximation */ |
| c_new = |
| cvApproxPoly (c, sizeof (CvContour), mem_storage, CV_POLY_APPROX_DP, |
| CVCONTOUR_APPROX_LEVEL, 0); |
| } else { |
| /* Convex Hull of the segmentation */ |
| c_new = cvConvexHull2 (c, mem_storage, CV_CLOCKWISE, 1); |
| } |
| cvSubstituteContour (scanner, c_new); |
| numCont++; |
| } |
| } |
| contours = cvEndFindContours (&scanner); |
| |
| /* PAINT THE FOUND REGIONS BACK INTO THE IMAGE */ |
| cvZero (mask); |
| /* DRAW PROCESSED CONTOURS INTO THE MASK */ |
| for (c = contours; c != NULL; c = c->h_next) |
| cvDrawContours (mask, c, CVX_WHITE, CVX_BLACK, -1, CV_FILLED, 8, cvPoint (0, |
| 0)); |
| } |
| #endif /*ifdef CODE_FROM_OREILLY_BOOK */ |
| |
| |
| int |
| initialise_mog (GstSegmentation * filter) |
| { |
| filter->img_input_as_cvMat = (void *) new Mat (cvarrToMat (filter->cvYUV, false)); |
| filter->img_fg_as_cvMat = (void *) new Mat (cvarrToMat(filter->cvFG, false)); |
| |
| #if (CV_MAJOR_VERSION >= 3) |
| filter->mog = bgsegm::createBackgroundSubtractorMOG (); |
| filter->mog2 = createBackgroundSubtractorMOG2 (); |
| #else |
| filter->mog = (void *) new BackgroundSubtractorMOG (); |
| filter->mog2 = (void *) new BackgroundSubtractorMOG2 (); |
| #endif |
| |
| return (0); |
| } |
| |
| int |
| run_mog_iteration (GstSegmentation * filter) |
| { |
| ((cv::Mat *) filter->img_input_as_cvMat)->data = |
| (uchar *) filter->cvYUV->imageData; |
| ((cv::Mat *) filter->img_fg_as_cvMat)->data = |
| (uchar *) filter->cvFG->imageData; |
| |
| /* |
| BackgroundSubtractorMOG [1], Gaussian Mixture-based Background/Foreground |
| Segmentation Algorithm. OpenCV MOG implements the algorithm described in [2]. |
| |
| [1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog |
| [2] P. KadewTraKuPong and R. Bowden, "An improved adaptive background |
| mixture model for real-time tracking with shadow detection", Proc. 2nd |
| European Workshop on Advanced Video-Based Surveillance Systems, 2001 |
| */ |
| |
| #if (CV_MAJOR_VERSION >= 3) |
| filter->mog->apply (*((Mat *) filter-> |
| img_input_as_cvMat), *((Mat *) filter->img_fg_as_cvMat), |
| filter->learning_rate); |
| #else |
| (*((BackgroundSubtractorMOG *) filter->mog)) (*((Mat *) filter-> |
| img_input_as_cvMat), *((Mat *) filter->img_fg_as_cvMat), |
| filter->learning_rate); |
| #endif |
| |
| return (0); |
| } |
| |
| int |
| run_mog2_iteration (GstSegmentation * filter) |
| { |
| ((Mat *) filter->img_input_as_cvMat)->data = |
| (uchar *) filter->cvYUV->imageData; |
| ((Mat *) filter->img_fg_as_cvMat)->data = |
| (uchar *) filter->cvFG->imageData; |
| |
| /* |
| BackgroundSubtractorMOG2 [1], Gaussian Mixture-based Background/Foreground |
| segmentation algorithm. OpenCV MOG2 implements the algorithm described in |
| [2] and [3]. |
| |
| [1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog2 |
| [2] Z.Zivkovic, "Improved adaptive Gausian mixture model for background |
| subtraction", International Conference Pattern Recognition, UK, August, 2004. |
| [3] Z.Zivkovic, F. van der Heijden, "Efficient Adaptive Density Estimation per |
| Image Pixel for the Task of Background Subtraction", Pattern Recognition |
| Letters, vol. 27, no. 7, pages 773-780, 2006. |
| */ |
| |
| #if (CV_MAJOR_VERSION >= 3) |
| filter->mog2->apply (*((Mat *) filter-> |
| img_input_as_cvMat), *((Mat *) filter->img_fg_as_cvMat), |
| filter->learning_rate); |
| #else |
| (*((BackgroundSubtractorMOG *) filter->mog2)) (*((Mat *) filter-> |
| img_input_as_cvMat), *((Mat *) filter->img_fg_as_cvMat), |
| filter->learning_rate); |
| #endif |
| |
| return (0); |
| } |
| |
| int |
| finalise_mog (GstSegmentation * filter) |
| { |
| delete (Mat *) filter->img_input_as_cvMat; |
| delete (Mat *) filter->img_fg_as_cvMat; |
| #if (CV_MAJOR_VERSION >= 3) |
| filter->mog.release (); |
| filter->mog2.release (); |
| #else |
| delete (BackgroundSubtractorMOG *) filter->mog; |
| delete (BackgroundSubtractorMOG2 *) filter->mog2; |
| #endif |
| return (0); |
| } |