blob: adb37e5e1b19ebcbe4b784eb3797b2ded037ff70 [file] [log] [blame]
/*
* Copyright 2018 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_common.h"
#include "serial_manager.h"
#include "serial_port_internal.h"
#if (defined(SERIAL_PORT_TYPE_UART) && (SERIAL_PORT_TYPE_UART > 0U))
#include "uart.h"
#include "serial_port_uart.h"
/*******************************************************************************
* Definitions
******************************************************************************/
#ifndef NDEBUG
#if (defined(DEBUG_CONSOLE_ASSERT_DISABLE) && (DEBUG_CONSOLE_ASSERT_DISABLE > 0U))
#undef assert
#define assert(n)
#endif
#endif
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#define SERIAL_PORT_UART_RECEIVE_DATA_LENGTH 1U
typedef struct _serial_uart_send_state
{
serial_manager_callback_t callback;
void *callbackParam;
uint8_t *buffer;
uint32_t length;
volatile uint8_t busy;
} serial_uart_send_state_t;
typedef struct _serial_uart_recv_state
{
serial_manager_callback_t callback;
void *callbackParam;
volatile uint8_t busy;
uint8_t readBuffer[SERIAL_PORT_UART_RECEIVE_DATA_LENGTH];
} serial_uart_recv_state_t;
#endif
typedef struct _serial_uart_state
{
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
serial_uart_send_state_t tx;
serial_uart_recv_state_t rx;
#endif
UART_HANDLE_DEFINE(usartHandleBuffer);
} serial_uart_state_t;
/*******************************************************************************
* Prototypes
******************************************************************************/
/*******************************************************************************
* Code
******************************************************************************/
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
/* UART user callback */
static void Serial_UartCallback(hal_uart_handle_t handle, hal_uart_status_t status, void *userData)
{
serial_uart_state_t *serialUartHandle;
serial_manager_callback_message_t msg;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
hal_uart_transfer_t transfer;
#endif
if (NULL == userData)
{
return;
}
serialUartHandle = (serial_uart_state_t *)userData;
if ((hal_uart_status_t)kStatus_HAL_UartRxIdle == status)
{
if ((NULL != serialUartHandle->rx.callback))
{
msg.buffer = &serialUartHandle->rx.readBuffer[0];
msg.length = sizeof(serialUartHandle->rx.readBuffer);
serialUartHandle->rx.callback(serialUartHandle->rx.callbackParam, &msg, kStatus_SerialManager_Success);
}
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
transfer.data = &serialUartHandle->rx.readBuffer[0];
transfer.dataSize = sizeof(serialUartHandle->rx.readBuffer);
if (kStatus_HAL_UartSuccess ==
HAL_UartTransferReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), &transfer))
#else
if ((hal_uart_status_t)kStatus_HAL_UartSuccess ==
HAL_UartReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
&serialUartHandle->rx.readBuffer[0], sizeof(serialUartHandle->rx.readBuffer)))
#endif
{
serialUartHandle->rx.busy = 1U;
}
else
{
serialUartHandle->rx.busy = 0U;
}
}
else if ((hal_uart_status_t)kStatus_HAL_UartTxIdle == status)
{
if (0U != serialUartHandle->tx.busy)
{
serialUartHandle->tx.busy = 0U;
if ((NULL != serialUartHandle->tx.callback))
{
msg.buffer = serialUartHandle->tx.buffer;
msg.length = serialUartHandle->tx.length;
serialUartHandle->tx.callback(serialUartHandle->tx.callbackParam, &msg, kStatus_SerialManager_Success);
}
}
}
else
{
}
}
#endif
serial_manager_status_t Serial_UartInit(serial_handle_t serialHandle, void *serialConfig)
{
serial_uart_state_t *serialUartHandle;
serial_port_uart_config_t *uartConfig;
hal_uart_config_t config;
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
hal_uart_transfer_t transfer;
#endif
#endif
assert(serialConfig);
assert(serialHandle);
assert(SERIAL_PORT_UART_HANDLE_SIZE >= sizeof(serial_uart_state_t));
uartConfig = (serial_port_uart_config_t *)serialConfig;
serialUartHandle = (serial_uart_state_t *)serialHandle;
config.baudRate_Bps = uartConfig->baudRate;
config.parityMode = (hal_uart_parity_mode_t)uartConfig->parityMode;
config.stopBitCount = (hal_uart_stop_bit_count_t)uartConfig->stopBitCount;
config.enableRx = uartConfig->enableRx;
config.enableTx = uartConfig->enableTx;
config.srcClock_Hz = uartConfig->clockRate;
config.instance = uartConfig->instance;
if (kStatus_HAL_UartSuccess != HAL_UartInit(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), &config))
{
return kStatus_SerialManager_Error;
}
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
if (kStatus_HAL_UartSuccess !=
HAL_UartTransferInstallCallback(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
Serial_UartCallback, serialUartHandle))
#else
if (kStatus_HAL_UartSuccess != HAL_UartInstallCallback(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
Serial_UartCallback, serialUartHandle))
#endif
{
return kStatus_SerialManager_Error;
}
if (0U != uartConfig->enableRx)
{
serialUartHandle->rx.busy = 1U;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
transfer.data = &serialUartHandle->rx.readBuffer[0];
transfer.dataSize = sizeof(serialUartHandle->rx.readBuffer);
if (kStatus_HAL_UartSuccess !=
HAL_UartTransferReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), &transfer))
#else
if (kStatus_HAL_UartSuccess !=
HAL_UartReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
&serialUartHandle->rx.readBuffer[0], sizeof(serialUartHandle->rx.readBuffer)))
#endif
{
serialUartHandle->rx.busy = 0U;
return kStatus_SerialManager_Error;
}
}
#endif
return kStatus_SerialManager_Success;
}
serial_manager_status_t Serial_UartDeinit(serial_handle_t serialHandle)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
serialUartHandle = (serial_uart_state_t *)serialHandle;
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
(void)HAL_UartTransferAbortReceive(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#else
(void)HAL_UartAbortReceive(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#endif
#endif
(void)HAL_UartDeinit(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
serialUartHandle->tx.busy = 0U;
serialUartHandle->rx.busy = 0U;
#endif
return kStatus_SerialManager_Success;
}
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
serial_manager_status_t Serial_UartWrite(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
serial_uart_state_t *serialUartHandle;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
hal_uart_transfer_t transfer;
#endif
assert(serialHandle);
assert(buffer);
assert(length);
serialUartHandle = (serial_uart_state_t *)serialHandle;
if (0U != serialUartHandle->tx.busy)
{
return kStatus_SerialManager_Busy;
}
serialUartHandle->tx.busy = 1U;
serialUartHandle->tx.buffer = buffer;
serialUartHandle->tx.length = length;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
transfer.data = buffer;
transfer.dataSize = length;
if (kStatus_HAL_UartSuccess !=
HAL_UartTransferSendNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), &transfer))
#else
if (kStatus_HAL_UartSuccess !=
HAL_UartSendNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), buffer, length))
#endif
{
serialUartHandle->tx.busy = 0U;
return kStatus_SerialManager_Error;
}
return kStatus_SerialManager_Success;
}
#else
serial_manager_status_t Serial_UartWrite(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
assert(buffer);
assert(length);
serialUartHandle = (serial_uart_state_t *)serialHandle;
return (serial_manager_status_t)HAL_UartSendBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
buffer, length);
}
serial_manager_status_t Serial_UartRead(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
assert(buffer);
assert(length);
serialUartHandle = (serial_uart_state_t *)serialHandle;
return (serial_manager_status_t)HAL_UartReceiveBlocking(
((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), buffer, length);
}
#endif
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
serial_manager_status_t Serial_UartCancelWrite(serial_handle_t serialHandle)
{
serial_uart_state_t *serialUartHandle;
serial_manager_callback_message_t msg;
uint32_t primask;
uint8_t isBusy = 0U;
assert(serialHandle);
serialUartHandle = (serial_uart_state_t *)serialHandle;
primask = DisableGlobalIRQ();
isBusy = serialUartHandle->tx.busy;
serialUartHandle->tx.busy = 0U;
EnableGlobalIRQ(primask);
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
(void)HAL_UartTransferAbortSend(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#else
(void)HAL_UartAbortSend(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#endif
if (0U != isBusy)
{
if ((NULL != serialUartHandle->tx.callback))
{
msg.buffer = serialUartHandle->tx.buffer;
msg.length = serialUartHandle->tx.length;
serialUartHandle->tx.callback(serialUartHandle->tx.callbackParam, &msg, kStatus_SerialManager_Canceled);
}
}
return kStatus_SerialManager_Success;
}
serial_manager_status_t Serial_UartInstallTxCallback(serial_handle_t serialHandle,
serial_manager_callback_t callback,
void *callbackParam)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
serialUartHandle = (serial_uart_state_t *)serialHandle;
serialUartHandle->tx.callback = callback;
serialUartHandle->tx.callbackParam = callbackParam;
return kStatus_SerialManager_Success;
}
serial_manager_status_t Serial_UartInstallRxCallback(serial_handle_t serialHandle,
serial_manager_callback_t callback,
void *callbackParam)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
serialUartHandle = (serial_uart_state_t *)serialHandle;
serialUartHandle->rx.callback = callback;
serialUartHandle->rx.callbackParam = callbackParam;
return kStatus_SerialManager_Success;
}
void Serial_UartIsrFunction(serial_handle_t serialHandle)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
serialUartHandle = (serial_uart_state_t *)serialHandle;
HAL_UartIsrFunction(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
}
#endif
serial_manager_status_t Serial_UartEnterLowpower(serial_handle_t serialHandle)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
serialUartHandle = (serial_uart_state_t *)serialHandle;
if (kStatus_HAL_UartSuccess != HAL_UartEnterLowpower(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0])))
{
return kStatus_SerialManager_Error;
}
return kStatus_SerialManager_Success;
}
serial_manager_status_t Serial_UartExitLowpower(serial_handle_t serialHandle)
{
serial_uart_state_t *serialUartHandle;
assert(serialHandle);
serialUartHandle = (serial_uart_state_t *)serialHandle;
if (kStatus_HAL_UartSuccess != HAL_UartExitLowpower(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0])))
{
return kStatus_SerialManager_Error;
}
return kStatus_SerialManager_Success;
}
#endif