blob: be90c9e9e5bc133697e6cf47f65b7d4ae6b48d0e [file] [log] [blame] [edit]
/*
* Copyright (c) 2016-2017 Qualcomm Atheros, Inc. All rights reserved.
* Copyright (c) 2015 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include "core.h"
#include "debug.h"
#include "pci.h"
#include "ahb.h"
static const struct of_device_id ath10k_ahb_of_match[] = {
{ .compatible = "qcom,ipq4019-wifi",
.data = (void *)ATH10K_HW_QCA4019
},
{ }
};
MODULE_DEVICE_TABLE(of, ath10k_ahb_of_match);
#define QCA4019_SRAM_ADDR 0x000C0000
#define QCA4019_SRAM_LEN 0x00040000 /* 256 kb */
static inline struct ath10k_ahb *ath10k_ahb_priv(struct ath10k *ar)
{
return &((struct ath10k_pci *)ar->drv_priv)->ahb[0];
}
static void ath10k_ahb_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
iowrite32(value, ar_ahb->mem + offset);
}
static u32 ath10k_ahb_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
return ioread32(ar_ahb->mem + offset);
}
static u32 ath10k_ahb_gcc_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
return ioread32(ar_ahb->gcc_mem + offset);
}
static void ath10k_ahb_tcsr_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
iowrite32(value, ar_ahb->tcsr_mem + offset);
}
static u32 ath10k_ahb_tcsr_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
return ioread32(ar_ahb->tcsr_mem + offset);
}
static u32 ath10k_ahb_soc_read32(struct ath10k *ar, u32 addr)
{
return ath10k_ahb_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
}
static int ath10k_ahb_get_num_banks(struct ath10k *ar)
{
if (ar->hw_rev == ATH10K_HW_QCA4019)
return 1;
ath10k_warn(ar, "unknown number of banks, assuming 1\n");
return 1;
}
static int ath10k_ahb_clock_init(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct device *dev;
dev = &ar_ahb->pdev->dev;
ar_ahb->cmd_clk = devm_clk_get(dev, "wifi_wcss_cmd");
if (IS_ERR_OR_NULL(ar_ahb->cmd_clk)) {
ath10k_err(ar, "failed to get cmd clk: %ld\n",
PTR_ERR(ar_ahb->cmd_clk));
return ar_ahb->cmd_clk ? PTR_ERR(ar_ahb->cmd_clk) : -ENODEV;
}
ar_ahb->ref_clk = devm_clk_get(dev, "wifi_wcss_ref");
if (IS_ERR_OR_NULL(ar_ahb->ref_clk)) {
ath10k_err(ar, "failed to get ref clk: %ld\n",
PTR_ERR(ar_ahb->ref_clk));
return ar_ahb->ref_clk ? PTR_ERR(ar_ahb->ref_clk) : -ENODEV;
}
ar_ahb->rtc_clk = devm_clk_get(dev, "wifi_wcss_rtc");
if (IS_ERR_OR_NULL(ar_ahb->rtc_clk)) {
ath10k_err(ar, "failed to get rtc clk: %ld\n",
PTR_ERR(ar_ahb->rtc_clk));
return ar_ahb->rtc_clk ? PTR_ERR(ar_ahb->rtc_clk) : -ENODEV;
}
return 0;
}
static void ath10k_ahb_clock_deinit(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
ar_ahb->cmd_clk = NULL;
ar_ahb->ref_clk = NULL;
ar_ahb->rtc_clk = NULL;
}
static int ath10k_ahb_clock_enable(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
int ret;
if (IS_ERR_OR_NULL(ar_ahb->cmd_clk) ||
IS_ERR_OR_NULL(ar_ahb->ref_clk) ||
IS_ERR_OR_NULL(ar_ahb->rtc_clk)) {
ath10k_err(ar, "clock(s) is/are not initialized\n");
ret = -EIO;
goto out;
}
ret = clk_prepare_enable(ar_ahb->cmd_clk);
if (ret) {
ath10k_err(ar, "failed to enable cmd clk: %d\n", ret);
goto out;
}
ret = clk_prepare_enable(ar_ahb->ref_clk);
if (ret) {
ath10k_err(ar, "failed to enable ref clk: %d\n", ret);
goto err_cmd_clk_disable;
}
ret = clk_prepare_enable(ar_ahb->rtc_clk);
if (ret) {
ath10k_err(ar, "failed to enable rtc clk: %d\n", ret);
goto err_ref_clk_disable;
}
return 0;
err_ref_clk_disable:
clk_disable_unprepare(ar_ahb->ref_clk);
err_cmd_clk_disable:
clk_disable_unprepare(ar_ahb->cmd_clk);
out:
return ret;
}
static void ath10k_ahb_clock_disable(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
clk_disable_unprepare(ar_ahb->cmd_clk);
clk_disable_unprepare(ar_ahb->ref_clk);
clk_disable_unprepare(ar_ahb->rtc_clk);
}
static int ath10k_ahb_rst_ctrl_init(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct device *dev;
dev = &ar_ahb->pdev->dev;
ar_ahb->core_cold_rst = devm_reset_control_get_exclusive(dev,
"wifi_core_cold");
if (IS_ERR(ar_ahb->core_cold_rst)) {
ath10k_err(ar, "failed to get core cold rst ctrl: %ld\n",
PTR_ERR(ar_ahb->core_cold_rst));
return PTR_ERR(ar_ahb->core_cold_rst);
}
ar_ahb->radio_cold_rst = devm_reset_control_get_exclusive(dev,
"wifi_radio_cold");
if (IS_ERR(ar_ahb->radio_cold_rst)) {
ath10k_err(ar, "failed to get radio cold rst ctrl: %ld\n",
PTR_ERR(ar_ahb->radio_cold_rst));
return PTR_ERR(ar_ahb->radio_cold_rst);
}
ar_ahb->radio_warm_rst = devm_reset_control_get_exclusive(dev,
"wifi_radio_warm");
if (IS_ERR(ar_ahb->radio_warm_rst)) {
ath10k_err(ar, "failed to get radio warm rst ctrl: %ld\n",
PTR_ERR(ar_ahb->radio_warm_rst));
return PTR_ERR(ar_ahb->radio_warm_rst);
}
ar_ahb->radio_srif_rst = devm_reset_control_get_exclusive(dev,
"wifi_radio_srif");
if (IS_ERR(ar_ahb->radio_srif_rst)) {
ath10k_err(ar, "failed to get radio srif rst ctrl: %ld\n",
PTR_ERR(ar_ahb->radio_srif_rst));
return PTR_ERR(ar_ahb->radio_srif_rst);
}
ar_ahb->cpu_init_rst = devm_reset_control_get_exclusive(dev,
"wifi_cpu_init");
if (IS_ERR(ar_ahb->cpu_init_rst)) {
ath10k_err(ar, "failed to get cpu init rst ctrl: %ld\n",
PTR_ERR(ar_ahb->cpu_init_rst));
return PTR_ERR(ar_ahb->cpu_init_rst);
}
return 0;
}
static void ath10k_ahb_rst_ctrl_deinit(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
ar_ahb->core_cold_rst = NULL;
ar_ahb->radio_cold_rst = NULL;
ar_ahb->radio_warm_rst = NULL;
ar_ahb->radio_srif_rst = NULL;
ar_ahb->cpu_init_rst = NULL;
}
static int ath10k_ahb_release_reset(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
int ret;
if (IS_ERR_OR_NULL(ar_ahb->radio_cold_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_warm_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_srif_rst) ||
IS_ERR_OR_NULL(ar_ahb->cpu_init_rst)) {
ath10k_err(ar, "rst ctrl(s) is/are not initialized\n");
return -EINVAL;
}
ret = reset_control_deassert(ar_ahb->radio_cold_rst);
if (ret) {
ath10k_err(ar, "failed to deassert radio cold rst: %d\n", ret);
return ret;
}
ret = reset_control_deassert(ar_ahb->radio_warm_rst);
if (ret) {
ath10k_err(ar, "failed to deassert radio warm rst: %d\n", ret);
return ret;
}
ret = reset_control_deassert(ar_ahb->radio_srif_rst);
if (ret) {
ath10k_err(ar, "failed to deassert radio srif rst: %d\n", ret);
return ret;
}
ret = reset_control_deassert(ar_ahb->cpu_init_rst);
if (ret) {
ath10k_err(ar, "failed to deassert cpu init rst: %d\n", ret);
return ret;
}
return 0;
}
static void ath10k_ahb_halt_axi_bus(struct ath10k *ar, u32 haltreq_reg,
u32 haltack_reg)
{
unsigned long timeout;
u32 val;
/* Issue halt axi bus request */
val = ath10k_ahb_tcsr_read32(ar, haltreq_reg);
val |= AHB_AXI_BUS_HALT_REQ;
ath10k_ahb_tcsr_write32(ar, haltreq_reg, val);
/* Wait for axi bus halted ack */
timeout = jiffies + msecs_to_jiffies(ATH10K_AHB_AXI_BUS_HALT_TIMEOUT);
do {
val = ath10k_ahb_tcsr_read32(ar, haltack_reg);
if (val & AHB_AXI_BUS_HALT_ACK)
break;
mdelay(1);
} while (time_before(jiffies, timeout));
if (!(val & AHB_AXI_BUS_HALT_ACK)) {
ath10k_err(ar, "failed to halt axi bus: %d\n", val);
return;
}
ath10k_dbg(ar, ATH10K_DBG_AHB, "axi bus halted\n");
}
static void ath10k_ahb_halt_chip(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
u32 core_id, glb_cfg_reg, haltreq_reg, haltack_reg;
u32 val;
int ret;
if (IS_ERR_OR_NULL(ar_ahb->core_cold_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_cold_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_warm_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_srif_rst) ||
IS_ERR_OR_NULL(ar_ahb->cpu_init_rst)) {
ath10k_err(ar, "rst ctrl(s) is/are not initialized\n");
return;
}
core_id = ath10k_ahb_read32(ar, ATH10K_AHB_WLAN_CORE_ID_REG);
switch (core_id) {
case 0:
glb_cfg_reg = ATH10K_AHB_TCSR_WIFI0_GLB_CFG;
haltreq_reg = ATH10K_AHB_TCSR_WCSS0_HALTREQ;
haltack_reg = ATH10K_AHB_TCSR_WCSS0_HALTACK;
break;
case 1:
glb_cfg_reg = ATH10K_AHB_TCSR_WIFI1_GLB_CFG;
haltreq_reg = ATH10K_AHB_TCSR_WCSS1_HALTREQ;
haltack_reg = ATH10K_AHB_TCSR_WCSS1_HALTACK;
break;
default:
ath10k_err(ar, "invalid core id %d found, skipping reset sequence\n",
core_id);
return;
}
ath10k_ahb_halt_axi_bus(ar, haltreq_reg, haltack_reg);
val = ath10k_ahb_tcsr_read32(ar, glb_cfg_reg);
val |= TCSR_WIFIX_GLB_CFG_DISABLE_CORE_CLK;
ath10k_ahb_tcsr_write32(ar, glb_cfg_reg, val);
ret = reset_control_assert(ar_ahb->core_cold_rst);
if (ret)
ath10k_err(ar, "failed to assert core cold rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->radio_cold_rst);
if (ret)
ath10k_err(ar, "failed to assert radio cold rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->radio_warm_rst);
if (ret)
ath10k_err(ar, "failed to assert radio warm rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->radio_srif_rst);
if (ret)
ath10k_err(ar, "failed to assert radio srif rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->cpu_init_rst);
if (ret)
ath10k_err(ar, "failed to assert cpu init rst: %d\n", ret);
msleep(10);
/* Clear halt req and core clock disable req before
* deasserting wifi core reset.
*/
val = ath10k_ahb_tcsr_read32(ar, haltreq_reg);
val &= ~AHB_AXI_BUS_HALT_REQ;
ath10k_ahb_tcsr_write32(ar, haltreq_reg, val);
val = ath10k_ahb_tcsr_read32(ar, glb_cfg_reg);
val &= ~TCSR_WIFIX_GLB_CFG_DISABLE_CORE_CLK;
ath10k_ahb_tcsr_write32(ar, glb_cfg_reg, val);
ret = reset_control_deassert(ar_ahb->core_cold_rst);
if (ret)
ath10k_err(ar, "failed to deassert core cold rst: %d\n", ret);
ath10k_dbg(ar, ATH10K_DBG_AHB, "core %d reset done\n", core_id);
}
static irqreturn_t ath10k_ahb_interrupt_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
if (!ath10k_pci_irq_pending(ar))
return IRQ_NONE;
ath10k_pci_disable_and_clear_legacy_irq(ar);
ath10k_pci_irq_msi_fw_mask(ar);
napi_schedule(&ar->napi);
return IRQ_HANDLED;
}
static int ath10k_ahb_request_irq_legacy(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
int ret;
ret = request_irq(ar_ahb->irq,
ath10k_ahb_interrupt_handler,
IRQF_SHARED, "ath10k_ahb", ar);
if (ret) {
ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
ar_ahb->irq, ret);
return ret;
}
ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
return 0;
}
static void ath10k_ahb_release_irq_legacy(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
free_irq(ar_ahb->irq, ar);
}
static void ath10k_ahb_irq_disable(struct ath10k *ar)
{
ath10k_ce_disable_interrupts(ar);
ath10k_pci_disable_and_clear_legacy_irq(ar);
}
static int ath10k_ahb_resource_init(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct platform_device *pdev;
struct resource *res;
int ret;
pdev = ar_ahb->pdev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ath10k_err(ar, "failed to get memory resource\n");
ret = -ENXIO;
goto out;
}
ar_ahb->mem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ar_ahb->mem)) {
ath10k_err(ar, "mem ioremap error\n");
ret = PTR_ERR(ar_ahb->mem);
goto out;
}
ar_ahb->mem_len = resource_size(res);
ar_ahb->gcc_mem = ioremap_nocache(ATH10K_GCC_REG_BASE,
ATH10K_GCC_REG_SIZE);
if (!ar_ahb->gcc_mem) {
ath10k_err(ar, "gcc mem ioremap error\n");
ret = -ENOMEM;
goto err_mem_unmap;
}
ar_ahb->tcsr_mem = ioremap_nocache(ATH10K_TCSR_REG_BASE,
ATH10K_TCSR_REG_SIZE);
if (!ar_ahb->tcsr_mem) {
ath10k_err(ar, "tcsr mem ioremap error\n");
ret = -ENOMEM;
goto err_gcc_mem_unmap;
}
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err(ar, "failed to set 32-bit dma mask: %d\n", ret);
goto err_tcsr_mem_unmap;
}
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err(ar, "failed to set 32-bit consistent dma: %d\n",
ret);
goto err_tcsr_mem_unmap;
}
ret = ath10k_ahb_clock_init(ar);
if (ret)
goto err_tcsr_mem_unmap;
ret = ath10k_ahb_rst_ctrl_init(ar);
if (ret)
goto err_clock_deinit;
ar_ahb->irq = platform_get_irq_byname(pdev, "legacy");
if (ar_ahb->irq < 0) {
ath10k_err(ar, "failed to get irq number: %d\n", ar_ahb->irq);
ret = ar_ahb->irq;
goto err_clock_deinit;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "irq: %d\n", ar_ahb->irq);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "mem: 0x%pK mem_len: %lu gcc mem: 0x%pK tcsr_mem: 0x%pK\n",
ar_ahb->mem, ar_ahb->mem_len,
ar_ahb->gcc_mem, ar_ahb->tcsr_mem);
return 0;
err_clock_deinit:
ath10k_ahb_clock_deinit(ar);
err_tcsr_mem_unmap:
iounmap(ar_ahb->tcsr_mem);
err_gcc_mem_unmap:
ar_ahb->tcsr_mem = NULL;
iounmap(ar_ahb->gcc_mem);
err_mem_unmap:
ar_ahb->gcc_mem = NULL;
devm_iounmap(&pdev->dev, ar_ahb->mem);
out:
ar_ahb->mem = NULL;
return ret;
}
static void ath10k_ahb_resource_deinit(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct device *dev;
dev = &ar_ahb->pdev->dev;
if (ar_ahb->mem)
devm_iounmap(dev, ar_ahb->mem);
if (ar_ahb->gcc_mem)
iounmap(ar_ahb->gcc_mem);
if (ar_ahb->tcsr_mem)
iounmap(ar_ahb->tcsr_mem);
ar_ahb->mem = NULL;
ar_ahb->gcc_mem = NULL;
ar_ahb->tcsr_mem = NULL;
ath10k_ahb_clock_deinit(ar);
ath10k_ahb_rst_ctrl_deinit(ar);
}
static int ath10k_ahb_prepare_device(struct ath10k *ar)
{
u32 val;
int ret;
ret = ath10k_ahb_clock_enable(ar);
if (ret) {
ath10k_err(ar, "failed to enable clocks\n");
return ret;
}
/* Clock for the target is supplied from outside of target (ie,
* external clock module controlled by the host). Target needs
* to know what frequency target cpu is configured which is needed
* for target internal use. Read target cpu frequency info from
* gcc register and write into target's scratch register where
* target expects this information.
*/
val = ath10k_ahb_gcc_read32(ar, ATH10K_AHB_GCC_FEPLL_PLL_DIV);
ath10k_ahb_write32(ar, ATH10K_AHB_WIFI_SCRATCH_5_REG, val);
ret = ath10k_ahb_release_reset(ar);
if (ret)
goto err_clk_disable;
ath10k_ahb_irq_disable(ar);
ath10k_ahb_write32(ar, FW_INDICATOR_ADDRESS, FW_IND_HOST_READY);
ret = ath10k_pci_wait_for_target_init(ar);
if (ret)
goto err_halt_chip;
return 0;
err_halt_chip:
ath10k_ahb_halt_chip(ar);
err_clk_disable:
ath10k_ahb_clock_disable(ar);
return ret;
}
static int ath10k_ahb_chip_reset(struct ath10k *ar)
{
int ret;
ath10k_ahb_halt_chip(ar);
ath10k_ahb_clock_disable(ar);
ret = ath10k_ahb_prepare_device(ar);
if (ret)
return ret;
return 0;
}
static int ath10k_ahb_wake_target_cpu(struct ath10k *ar)
{
u32 addr, val;
addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
val = ath10k_ahb_read32(ar, addr);
val |= ATH10K_AHB_CORE_CTRL_CPU_INTR_MASK;
ath10k_ahb_write32(ar, addr, val);
return 0;
}
static int ath10k_ahb_hif_start(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ahb hif start\n");
napi_enable(&ar->napi);
ath10k_ce_enable_interrupts(ar);
ath10k_pci_enable_legacy_irq(ar);
ath10k_pci_rx_post(ar);
return 0;
}
static void ath10k_ahb_hif_stop(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ahb hif stop\n");
ath10k_ahb_irq_disable(ar);
synchronize_irq(ar_ahb->irq);
napi_synchronize(&ar->napi);
napi_disable(&ar->napi);
ath10k_pci_flush(ar);
}
static int ath10k_ahb_hif_power_up(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ahb hif power up\n");
ret = ath10k_ahb_chip_reset(ar);
if (ret) {
ath10k_err(ar, "failed to reset chip: %d\n", ret);
goto out;
}
ret = ath10k_pci_init_pipes(ar);
if (ret) {
ath10k_err(ar, "failed to initialize CE: %d\n", ret);
goto out;
}
ret = ath10k_pci_init_config(ar);
if (ret) {
ath10k_err(ar, "failed to setup init config: %d\n", ret);
goto err_ce_deinit;
}
ret = ath10k_ahb_wake_target_cpu(ar);
if (ret) {
ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
goto err_ce_deinit;
}
return 0;
err_ce_deinit:
ath10k_pci_ce_deinit(ar);
out:
return ret;
}
static u32 ath10k_ahb_qca4019_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
u32 val = 0, region = addr & 0xfffff;
val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
if (region >= QCA4019_SRAM_ADDR && region <=
(QCA4019_SRAM_ADDR + QCA4019_SRAM_LEN)) {
/* SRAM contents for QCA4019 can be directly accessed and
* no conversions are required
*/
val |= region;
} else {
val |= 0x100000 | region;
}
return val;
}
static const struct ath10k_hif_ops ath10k_ahb_hif_ops = {
.tx_sg = ath10k_pci_hif_tx_sg,
.diag_read = ath10k_pci_hif_diag_read,
.diag_write = ath10k_pci_diag_write_mem,
.exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
.start = ath10k_ahb_hif_start,
.stop = ath10k_ahb_hif_stop,
.map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
.get_default_pipe = ath10k_pci_hif_get_default_pipe,
.send_complete_check = ath10k_pci_hif_send_complete_check,
.get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
.power_up = ath10k_ahb_hif_power_up,
.power_down = ath10k_pci_hif_power_down,
.read32 = ath10k_ahb_read32,
.write32 = ath10k_ahb_write32,
};
static const struct ath10k_bus_ops ath10k_ahb_bus_ops = {
.read32 = ath10k_ahb_read32,
.write32 = ath10k_ahb_write32,
.get_num_banks = ath10k_ahb_get_num_banks,
};
static int ath10k_ahb_probe(struct platform_device *pdev)
{
struct ath10k *ar;
struct ath10k_ahb *ar_ahb;
struct ath10k_pci *ar_pci;
const struct of_device_id *of_id;
enum ath10k_hw_rev hw_rev;
size_t size;
int ret;
u32 chip_id;
of_id = of_match_device(ath10k_ahb_of_match, &pdev->dev);
if (!of_id) {
dev_err(&pdev->dev, "failed to find matching device tree id\n");
return -EINVAL;
}
hw_rev = (enum ath10k_hw_rev)of_id->data;
size = sizeof(*ar_pci) + sizeof(*ar_ahb);
ar = ath10k_core_create(size, &pdev->dev, ATH10K_BUS_AHB,
hw_rev, &ath10k_ahb_hif_ops);
if (!ar) {
dev_err(&pdev->dev, "failed to allocate core\n");
return -ENOMEM;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "ahb probe\n");
ar_pci = ath10k_pci_priv(ar);
ar_ahb = ath10k_ahb_priv(ar);
ar_ahb->pdev = pdev;
platform_set_drvdata(pdev, ar);
ret = ath10k_ahb_resource_init(ar);
if (ret)
goto err_core_destroy;
ar->dev_id = 0;
ar_pci->mem = ar_ahb->mem;
ar_pci->mem_len = ar_ahb->mem_len;
ar_pci->ar = ar;
ar_pci->ce.bus_ops = &ath10k_ahb_bus_ops;
ar_pci->targ_cpu_to_ce_addr = ath10k_ahb_qca4019_targ_cpu_to_ce_addr;
ar->ce_priv = &ar_pci->ce;
ret = ath10k_pci_setup_resource(ar);
if (ret) {
ath10k_err(ar, "failed to setup resource: %d\n", ret);
goto err_resource_deinit;
}
ath10k_pci_init_napi(ar);
ret = ath10k_ahb_request_irq_legacy(ar);
if (ret)
goto err_free_pipes;
ret = ath10k_ahb_prepare_device(ar);
if (ret)
goto err_free_irq;
ath10k_pci_ce_deinit(ar);
chip_id = ath10k_ahb_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
if (chip_id == 0xffffffff) {
ath10k_err(ar, "failed to get chip id\n");
ret = -ENODEV;
goto err_halt_device;
}
ret = ath10k_core_register(ar, chip_id);
if (ret) {
ath10k_err(ar, "failed to register driver core: %d\n", ret);
goto err_halt_device;
}
return 0;
err_halt_device:
ath10k_ahb_halt_chip(ar);
ath10k_ahb_clock_disable(ar);
err_free_irq:
ath10k_ahb_release_irq_legacy(ar);
err_free_pipes:
ath10k_pci_free_pipes(ar);
err_resource_deinit:
ath10k_ahb_resource_deinit(ar);
err_core_destroy:
ath10k_core_destroy(ar);
platform_set_drvdata(pdev, NULL);
return ret;
}
static int ath10k_ahb_remove(struct platform_device *pdev)
{
struct ath10k *ar = platform_get_drvdata(pdev);
struct ath10k_ahb *ar_ahb;
if (!ar)
return -EINVAL;
ar_ahb = ath10k_ahb_priv(ar);
if (!ar_ahb)
return -EINVAL;
ath10k_dbg(ar, ATH10K_DBG_AHB, "ahb remove\n");
ath10k_core_unregister(ar);
ath10k_ahb_irq_disable(ar);
ath10k_ahb_release_irq_legacy(ar);
ath10k_pci_release_resource(ar);
ath10k_ahb_halt_chip(ar);
ath10k_ahb_clock_disable(ar);
ath10k_ahb_resource_deinit(ar);
ath10k_core_destroy(ar);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver ath10k_ahb_driver = {
.driver = {
.name = "ath10k_ahb",
.of_match_table = ath10k_ahb_of_match,
},
.probe = ath10k_ahb_probe,
.remove = ath10k_ahb_remove,
};
int ath10k_ahb_init(void)
{
int ret;
ret = platform_driver_register(&ath10k_ahb_driver);
if (ret)
printk(KERN_ERR "failed to register ath10k ahb driver: %d\n",
ret);
return ret;
}
void ath10k_ahb_exit(void)
{
platform_driver_unregister(&ath10k_ahb_driver);
}