|  | /* | 
|  | *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru | 
|  | *  Programm System Institute | 
|  | *  Pereslavl-Zalessky Russia | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  This file contains functions dealing with S+tree | 
|  | * | 
|  | * B_IS_IN_TREE | 
|  | * copy_item_head | 
|  | * comp_short_keys | 
|  | * comp_keys | 
|  | * comp_short_le_keys | 
|  | * le_key2cpu_key | 
|  | * comp_le_keys | 
|  | * bin_search | 
|  | * get_lkey | 
|  | * get_rkey | 
|  | * key_in_buffer | 
|  | * decrement_bcount | 
|  | * decrement_counters_in_path | 
|  | * reiserfs_check_path | 
|  | * pathrelse_and_restore | 
|  | * pathrelse | 
|  | * search_by_key_reada | 
|  | * search_by_key | 
|  | * search_for_position_by_key | 
|  | * comp_items | 
|  | * prepare_for_direct_item | 
|  | * prepare_for_direntry_item | 
|  | * prepare_for_delete_or_cut | 
|  | * calc_deleted_bytes_number | 
|  | * init_tb_struct | 
|  | * padd_item | 
|  | * reiserfs_delete_item | 
|  | * reiserfs_delete_solid_item | 
|  | * reiserfs_delete_object | 
|  | * maybe_indirect_to_direct | 
|  | * indirect_to_direct_roll_back | 
|  | * reiserfs_cut_from_item | 
|  | * truncate_directory | 
|  | * reiserfs_do_truncate | 
|  | * reiserfs_paste_into_item | 
|  | * reiserfs_insert_item | 
|  | */ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/reiserfs_fs.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/quotaops.h> | 
|  |  | 
|  | /* Does the buffer contain a disk block which is in the tree. */ | 
|  | inline int B_IS_IN_TREE(const struct buffer_head *p_s_bh) | 
|  | { | 
|  |  | 
|  | RFALSE(B_LEVEL(p_s_bh) > MAX_HEIGHT, | 
|  | "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh); | 
|  |  | 
|  | return (B_LEVEL(p_s_bh) != FREE_LEVEL); | 
|  | } | 
|  |  | 
|  | // | 
|  | // to gets item head in le form | 
|  | // | 
|  | inline void copy_item_head(struct item_head *p_v_to, | 
|  | const struct item_head *p_v_from) | 
|  | { | 
|  | memcpy(p_v_to, p_v_from, IH_SIZE); | 
|  | } | 
|  |  | 
|  | /* k1 is pointer to on-disk structure which is stored in little-endian | 
|  | form. k2 is pointer to cpu variable. For key of items of the same | 
|  | object this returns 0. | 
|  | Returns: -1 if key1 < key2 | 
|  | 0 if key1 == key2 | 
|  | 1 if key1 > key2 */ | 
|  | inline int comp_short_keys(const struct reiserfs_key *le_key, | 
|  | const struct cpu_key *cpu_key) | 
|  | { | 
|  | __u32 n; | 
|  | n = le32_to_cpu(le_key->k_dir_id); | 
|  | if (n < cpu_key->on_disk_key.k_dir_id) | 
|  | return -1; | 
|  | if (n > cpu_key->on_disk_key.k_dir_id) | 
|  | return 1; | 
|  | n = le32_to_cpu(le_key->k_objectid); | 
|  | if (n < cpu_key->on_disk_key.k_objectid) | 
|  | return -1; | 
|  | if (n > cpu_key->on_disk_key.k_objectid) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* k1 is pointer to on-disk structure which is stored in little-endian | 
|  | form. k2 is pointer to cpu variable. | 
|  | Compare keys using all 4 key fields. | 
|  | Returns: -1 if key1 < key2 0 | 
|  | if key1 = key2 1 if key1 > key2 */ | 
|  | static inline int comp_keys(const struct reiserfs_key *le_key, | 
|  | const struct cpu_key *cpu_key) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | retval = comp_short_keys(le_key, cpu_key); | 
|  | if (retval) | 
|  | return retval; | 
|  | if (le_key_k_offset(le_key_version(le_key), le_key) < | 
|  | cpu_key_k_offset(cpu_key)) | 
|  | return -1; | 
|  | if (le_key_k_offset(le_key_version(le_key), le_key) > | 
|  | cpu_key_k_offset(cpu_key)) | 
|  | return 1; | 
|  |  | 
|  | if (cpu_key->key_length == 3) | 
|  | return 0; | 
|  |  | 
|  | /* this part is needed only when tail conversion is in progress */ | 
|  | if (le_key_k_type(le_key_version(le_key), le_key) < | 
|  | cpu_key_k_type(cpu_key)) | 
|  | return -1; | 
|  |  | 
|  | if (le_key_k_type(le_key_version(le_key), le_key) > | 
|  | cpu_key_k_type(cpu_key)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline int comp_short_le_keys(const struct reiserfs_key *key1, | 
|  | const struct reiserfs_key *key2) | 
|  | { | 
|  | __u32 *p_s_1_u32, *p_s_2_u32; | 
|  | int n_key_length = REISERFS_SHORT_KEY_LEN; | 
|  |  | 
|  | p_s_1_u32 = (__u32 *) key1; | 
|  | p_s_2_u32 = (__u32 *) key2; | 
|  | for (; n_key_length--; ++p_s_1_u32, ++p_s_2_u32) { | 
|  | if (le32_to_cpu(*p_s_1_u32) < le32_to_cpu(*p_s_2_u32)) | 
|  | return -1; | 
|  | if (le32_to_cpu(*p_s_1_u32) > le32_to_cpu(*p_s_2_u32)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) | 
|  | { | 
|  | int version; | 
|  | to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); | 
|  | to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); | 
|  |  | 
|  | // find out version of the key | 
|  | version = le_key_version(from); | 
|  | to->version = version; | 
|  | to->on_disk_key.k_offset = le_key_k_offset(version, from); | 
|  | to->on_disk_key.k_type = le_key_k_type(version, from); | 
|  | } | 
|  |  | 
|  | // this does not say which one is bigger, it only returns 1 if keys | 
|  | // are not equal, 0 otherwise | 
|  | inline int comp_le_keys(const struct reiserfs_key *k1, | 
|  | const struct reiserfs_key *k2) | 
|  | { | 
|  | return memcmp(k1, k2, sizeof(struct reiserfs_key)); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | *  Binary search toolkit function                                        * | 
|  | *  Search for an item in the array by the item key                       * | 
|  | *  Returns:    1 if found,  0 if not found;                              * | 
|  | *        *p_n_pos = number of the searched element if found, else the    * | 
|  | *        number of the first element that is larger than p_v_key.        * | 
|  | **************************************************************************/ | 
|  | /* For those not familiar with binary search: n_lbound is the leftmost item that it | 
|  | could be, n_rbound the rightmost item that it could be.  We examine the item | 
|  | halfway between n_lbound and n_rbound, and that tells us either that we can increase | 
|  | n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that | 
|  | there are no possible items, and we have not found it. With each examination we | 
|  | cut the number of possible items it could be by one more than half rounded down, | 
|  | or we find it. */ | 
|  | static inline int bin_search(const void *p_v_key,	/* Key to search for.                   */ | 
|  | const void *p_v_base,	/* First item in the array.             */ | 
|  | int p_n_num,	/* Number of items in the array.        */ | 
|  | int p_n_width,	/* Item size in the array. | 
|  | searched. Lest the reader be | 
|  | confused, note that this is crafted | 
|  | as a general function, and when it | 
|  | is applied specifically to the array | 
|  | of item headers in a node, p_n_width | 
|  | is actually the item header size not | 
|  | the item size.                      */ | 
|  | int *p_n_pos	/* Number of the searched for element. */ | 
|  | ) | 
|  | { | 
|  | int n_rbound, n_lbound, n_j; | 
|  |  | 
|  | for (n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0)) / 2; | 
|  | n_lbound <= n_rbound; n_j = (n_rbound + n_lbound) / 2) | 
|  | switch (comp_keys | 
|  | ((struct reiserfs_key *)((char *)p_v_base + | 
|  | n_j * p_n_width), | 
|  | (struct cpu_key *)p_v_key)) { | 
|  | case -1: | 
|  | n_lbound = n_j + 1; | 
|  | continue; | 
|  | case 1: | 
|  | n_rbound = n_j - 1; | 
|  | continue; | 
|  | case 0: | 
|  | *p_n_pos = n_j; | 
|  | return ITEM_FOUND;	/* Key found in the array.  */ | 
|  | } | 
|  |  | 
|  | /* bin_search did not find given key, it returns position of key, | 
|  | that is minimal and greater than the given one. */ | 
|  | *p_n_pos = n_lbound; | 
|  | return ITEM_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | extern struct tree_balance *cur_tb; | 
|  | #endif | 
|  |  | 
|  | /* Minimal possible key. It is never in the tree. */ | 
|  | const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; | 
|  |  | 
|  | /* Maximal possible key. It is never in the tree. */ | 
|  | static const struct reiserfs_key MAX_KEY = { | 
|  | __constant_cpu_to_le32(0xffffffff), | 
|  | __constant_cpu_to_le32(0xffffffff), | 
|  | {{__constant_cpu_to_le32(0xffffffff), | 
|  | __constant_cpu_to_le32(0xffffffff)},} | 
|  | }; | 
|  |  | 
|  | /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom | 
|  | of the path, and going upwards.  We must check the path's validity at each step.  If the key is not in | 
|  | the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this | 
|  | case we return a special key, either MIN_KEY or MAX_KEY. */ | 
|  | static inline const struct reiserfs_key *get_lkey(const struct treepath | 
|  | *p_s_chk_path, | 
|  | const struct super_block | 
|  | *p_s_sb) | 
|  | { | 
|  | int n_position, n_path_offset = p_s_chk_path->path_length; | 
|  | struct buffer_head *p_s_parent; | 
|  |  | 
|  | RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5010: invalid offset in the path"); | 
|  |  | 
|  | /* While not higher in path than first element. */ | 
|  | while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { | 
|  |  | 
|  | RFALSE(!buffer_uptodate | 
|  | (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), | 
|  | "PAP-5020: parent is not uptodate"); | 
|  |  | 
|  | /* Parent at the path is not in the tree now. */ | 
|  | if (!B_IS_IN_TREE | 
|  | (p_s_parent = | 
|  | PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset))) | 
|  | return &MAX_KEY; | 
|  | /* Check whether position in the parent is correct. */ | 
|  | if ((n_position = | 
|  | PATH_OFFSET_POSITION(p_s_chk_path, | 
|  | n_path_offset)) > | 
|  | B_NR_ITEMS(p_s_parent)) | 
|  | return &MAX_KEY; | 
|  | /* Check whether parent at the path really points to the child. */ | 
|  | if (B_N_CHILD_NUM(p_s_parent, n_position) != | 
|  | PATH_OFFSET_PBUFFER(p_s_chk_path, | 
|  | n_path_offset + 1)->b_blocknr) | 
|  | return &MAX_KEY; | 
|  | /* Return delimiting key if position in the parent is not equal to zero. */ | 
|  | if (n_position) | 
|  | return B_N_PDELIM_KEY(p_s_parent, n_position - 1); | 
|  | } | 
|  | /* Return MIN_KEY if we are in the root of the buffer tree. */ | 
|  | if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)-> | 
|  | b_blocknr == SB_ROOT_BLOCK(p_s_sb)) | 
|  | return &MIN_KEY; | 
|  | return &MAX_KEY; | 
|  | } | 
|  |  | 
|  | /* Get delimiting key of the buffer at the path and its right neighbor. */ | 
|  | inline const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path, | 
|  | const struct super_block *p_s_sb) | 
|  | { | 
|  | int n_position, n_path_offset = p_s_chk_path->path_length; | 
|  | struct buffer_head *p_s_parent; | 
|  |  | 
|  | RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5030: invalid offset in the path"); | 
|  |  | 
|  | while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { | 
|  |  | 
|  | RFALSE(!buffer_uptodate | 
|  | (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), | 
|  | "PAP-5040: parent is not uptodate"); | 
|  |  | 
|  | /* Parent at the path is not in the tree now. */ | 
|  | if (!B_IS_IN_TREE | 
|  | (p_s_parent = | 
|  | PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset))) | 
|  | return &MIN_KEY; | 
|  | /* Check whether position in the parent is correct. */ | 
|  | if ((n_position = | 
|  | PATH_OFFSET_POSITION(p_s_chk_path, | 
|  | n_path_offset)) > | 
|  | B_NR_ITEMS(p_s_parent)) | 
|  | return &MIN_KEY; | 
|  | /* Check whether parent at the path really points to the child. */ | 
|  | if (B_N_CHILD_NUM(p_s_parent, n_position) != | 
|  | PATH_OFFSET_PBUFFER(p_s_chk_path, | 
|  | n_path_offset + 1)->b_blocknr) | 
|  | return &MIN_KEY; | 
|  | /* Return delimiting key if position in the parent is not the last one. */ | 
|  | if (n_position != B_NR_ITEMS(p_s_parent)) | 
|  | return B_N_PDELIM_KEY(p_s_parent, n_position); | 
|  | } | 
|  | /* Return MAX_KEY if we are in the root of the buffer tree. */ | 
|  | if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)-> | 
|  | b_blocknr == SB_ROOT_BLOCK(p_s_sb)) | 
|  | return &MAX_KEY; | 
|  | return &MIN_KEY; | 
|  | } | 
|  |  | 
|  | /* Check whether a key is contained in the tree rooted from a buffer at a path. */ | 
|  | /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in | 
|  | the path.  These delimiting keys are stored at least one level above that buffer in the tree. If the | 
|  | buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in | 
|  | this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */ | 
|  | static inline int key_in_buffer(struct treepath *p_s_chk_path,	/* Path which should be checked.  */ | 
|  | const struct cpu_key *p_s_key,	/* Key which should be checked.   */ | 
|  | struct super_block *p_s_sb	/* Super block pointer.           */ | 
|  | ) | 
|  | { | 
|  |  | 
|  | RFALSE(!p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET | 
|  | || p_s_chk_path->path_length > MAX_HEIGHT, | 
|  | "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", | 
|  | p_s_key, p_s_chk_path->path_length); | 
|  | RFALSE(!PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev, | 
|  | "PAP-5060: device must not be NODEV"); | 
|  |  | 
|  | if (comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1) | 
|  | /* left delimiting key is bigger, that the key we look for */ | 
|  | return 0; | 
|  | //  if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 ) | 
|  | if (comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1) | 
|  | /* p_s_key must be less than right delimitiing key */ | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | inline void decrement_bcount(struct buffer_head *p_s_bh) | 
|  | { | 
|  | if (p_s_bh) { | 
|  | if (atomic_read(&(p_s_bh->b_count))) { | 
|  | put_bh(p_s_bh); | 
|  | return; | 
|  | } | 
|  | reiserfs_panic(NULL, | 
|  | "PAP-5070: decrement_bcount: trying to free free buffer %b", | 
|  | p_s_bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Decrement b_count field of the all buffers in the path. */ | 
|  | void decrement_counters_in_path(struct treepath *p_s_search_path) | 
|  | { | 
|  | int n_path_offset = p_s_search_path->path_length; | 
|  |  | 
|  | RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET || | 
|  | n_path_offset > EXTENDED_MAX_HEIGHT - 1, | 
|  | "PAP-5080: invalid path offset of %d", n_path_offset); | 
|  |  | 
|  | while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--); | 
|  | decrement_bcount(bh); | 
|  | } | 
|  | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  | int reiserfs_check_path(struct treepath *p) | 
|  | { | 
|  | RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "path not properly relsed"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Release all buffers in the path. Restore dirty bits clean | 
|  | ** when preparing the buffer for the log | 
|  | ** | 
|  | ** only called from fix_nodes() | 
|  | */ | 
|  | void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path) | 
|  | { | 
|  | int n_path_offset = p_s_search_path->path_length; | 
|  |  | 
|  | RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "clm-4000: invalid path offset"); | 
|  |  | 
|  | while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { | 
|  | reiserfs_restore_prepared_buffer(s, | 
|  | PATH_OFFSET_PBUFFER | 
|  | (p_s_search_path, | 
|  | n_path_offset)); | 
|  | brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); | 
|  | } | 
|  | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  | /* Release all buffers in the path. */ | 
|  | void pathrelse(struct treepath *p_s_search_path) | 
|  | { | 
|  | int n_path_offset = p_s_search_path->path_length; | 
|  |  | 
|  | RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5090: invalid path offset"); | 
|  |  | 
|  | while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) | 
|  | brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); | 
|  |  | 
|  | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  | static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) | 
|  | { | 
|  | struct block_head *blkh; | 
|  | struct item_head *ih; | 
|  | int used_space; | 
|  | int prev_location; | 
|  | int i; | 
|  | int nr; | 
|  |  | 
|  | blkh = (struct block_head *)buf; | 
|  | if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { | 
|  | reiserfs_warning(NULL, | 
|  | "is_leaf: this should be caught earlier"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nr = blkh_nr_item(blkh); | 
|  | if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { | 
|  | /* item number is too big or too small */ | 
|  | reiserfs_warning(NULL, "is_leaf: nr_item seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  | ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; | 
|  | used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); | 
|  | if (used_space != blocksize - blkh_free_space(blkh)) { | 
|  | /* free space does not match to calculated amount of use space */ | 
|  | reiserfs_warning(NULL, "is_leaf: free space seems wrong: %z", | 
|  | bh); | 
|  | return 0; | 
|  | } | 
|  | // FIXME: it is_leaf will hit performance too much - we may have | 
|  | // return 1 here | 
|  |  | 
|  | /* check tables of item heads */ | 
|  | ih = (struct item_head *)(buf + BLKH_SIZE); | 
|  | prev_location = blocksize; | 
|  | for (i = 0; i < nr; i++, ih++) { | 
|  | if (le_ih_k_type(ih) == TYPE_ANY) { | 
|  | reiserfs_warning(NULL, | 
|  | "is_leaf: wrong item type for item %h", | 
|  | ih); | 
|  | return 0; | 
|  | } | 
|  | if (ih_location(ih) >= blocksize | 
|  | || ih_location(ih) < IH_SIZE * nr) { | 
|  | reiserfs_warning(NULL, | 
|  | "is_leaf: item location seems wrong: %h", | 
|  | ih); | 
|  | return 0; | 
|  | } | 
|  | if (ih_item_len(ih) < 1 | 
|  | || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { | 
|  | reiserfs_warning(NULL, | 
|  | "is_leaf: item length seems wrong: %h", | 
|  | ih); | 
|  | return 0; | 
|  | } | 
|  | if (prev_location - ih_location(ih) != ih_item_len(ih)) { | 
|  | reiserfs_warning(NULL, | 
|  | "is_leaf: item location seems wrong (second one): %h", | 
|  | ih); | 
|  | return 0; | 
|  | } | 
|  | prev_location = ih_location(ih); | 
|  | } | 
|  |  | 
|  | // one may imagine much more checks | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* returns 1 if buf looks like an internal node, 0 otherwise */ | 
|  | static int is_internal(char *buf, int blocksize, struct buffer_head *bh) | 
|  | { | 
|  | struct block_head *blkh; | 
|  | int nr; | 
|  | int used_space; | 
|  |  | 
|  | blkh = (struct block_head *)buf; | 
|  | nr = blkh_level(blkh); | 
|  | if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { | 
|  | /* this level is not possible for internal nodes */ | 
|  | reiserfs_warning(NULL, | 
|  | "is_internal: this should be caught earlier"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nr = blkh_nr_item(blkh); | 
|  | if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { | 
|  | /* for internal which is not root we might check min number of keys */ | 
|  | reiserfs_warning(NULL, | 
|  | "is_internal: number of key seems wrong: %z", | 
|  | bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); | 
|  | if (used_space != blocksize - blkh_free_space(blkh)) { | 
|  | reiserfs_warning(NULL, | 
|  | "is_internal: free space seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  | // one may imagine much more checks | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // make sure that bh contains formatted node of reiserfs tree of | 
|  | // 'level'-th level | 
|  | static int is_tree_node(struct buffer_head *bh, int level) | 
|  | { | 
|  | if (B_LEVEL(bh) != level) { | 
|  | reiserfs_warning(NULL, | 
|  | "is_tree_node: node level %d does not match to the expected one %d", | 
|  | B_LEVEL(bh), level); | 
|  | return 0; | 
|  | } | 
|  | if (level == DISK_LEAF_NODE_LEVEL) | 
|  | return is_leaf(bh->b_data, bh->b_size, bh); | 
|  |  | 
|  | return is_internal(bh->b_data, bh->b_size, bh); | 
|  | } | 
|  |  | 
|  | #define SEARCH_BY_KEY_READA 16 | 
|  |  | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | static void search_by_key_reada(struct super_block *s, | 
|  | struct buffer_head **bh, | 
|  | b_blocknr_t *b, int num) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | bh[i] = sb_getblk(s, b[i]); | 
|  | } | 
|  | for (j = 0; j < i; j++) { | 
|  | /* | 
|  | * note, this needs attention if we are getting rid of the BKL | 
|  | * you have to make sure the prepared bit isn't set on this buffer | 
|  | */ | 
|  | if (!buffer_uptodate(bh[j])) | 
|  | ll_rw_block(READA, 1, bh + j); | 
|  | brelse(bh[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * Algorithm   SearchByKey                                                * | 
|  | *             look for item in the Disk S+Tree by its key                * | 
|  | * Input:  p_s_sb   -  super block                                        * | 
|  | *         p_s_key  - pointer to the key to search                        * | 
|  | * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR                         * | 
|  | *         p_s_search_path - path from the root to the needed leaf        * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* This function fills up the path from the root to the leaf as it | 
|  | descends the tree looking for the key.  It uses reiserfs_bread to | 
|  | try to find buffers in the cache given their block number.  If it | 
|  | does not find them in the cache it reads them from disk.  For each | 
|  | node search_by_key finds using reiserfs_bread it then uses | 
|  | bin_search to look through that node.  bin_search will find the | 
|  | position of the block_number of the next node if it is looking | 
|  | through an internal node.  If it is looking through a leaf node | 
|  | bin_search will find the position of the item which has key either | 
|  | equal to given key, or which is the maximal key less than the given | 
|  | key.  search_by_key returns a path that must be checked for the | 
|  | correctness of the top of the path but need not be checked for the | 
|  | correctness of the bottom of the path */ | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | int search_by_key(struct super_block *p_s_sb, const struct cpu_key *p_s_key,	/* Key to search. */ | 
|  | struct treepath *p_s_search_path,/* This structure was | 
|  | allocated and initialized | 
|  | by the calling | 
|  | function. It is filled up | 
|  | by this function.  */ | 
|  | int n_stop_level	/* How far down the tree to search. To | 
|  | stop at leaf level - set to | 
|  | DISK_LEAF_NODE_LEVEL */ | 
|  | ) | 
|  | { | 
|  | b_blocknr_t n_block_number; | 
|  | int expected_level; | 
|  | struct buffer_head *p_s_bh; | 
|  | struct path_element *p_s_last_element; | 
|  | int n_node_level, n_retval; | 
|  | int right_neighbor_of_leaf_node; | 
|  | int fs_gen; | 
|  | struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; | 
|  | b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; | 
|  | int reada_count = 0; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | int n_repeat_counter = 0; | 
|  | #endif | 
|  |  | 
|  | PROC_INFO_INC(p_s_sb, search_by_key); | 
|  |  | 
|  | /* As we add each node to a path we increase its count.  This means that | 
|  | we must be careful to release all nodes in a path before we either | 
|  | discard the path struct or re-use the path struct, as we do here. */ | 
|  |  | 
|  | decrement_counters_in_path(p_s_search_path); | 
|  |  | 
|  | right_neighbor_of_leaf_node = 0; | 
|  |  | 
|  | /* With each iteration of this loop we search through the items in the | 
|  | current node, and calculate the next current node(next path element) | 
|  | for the next iteration of this loop.. */ | 
|  | n_block_number = SB_ROOT_BLOCK(p_s_sb); | 
|  | expected_level = -1; | 
|  | while (1) { | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (!(++n_repeat_counter % 50000)) | 
|  | reiserfs_warning(p_s_sb, "PAP-5100: search_by_key: %s:" | 
|  | "there were %d iterations of while loop " | 
|  | "looking for key %K", | 
|  | current->comm, n_repeat_counter, | 
|  | p_s_key); | 
|  | #endif | 
|  |  | 
|  | /* prep path to have another element added to it. */ | 
|  | p_s_last_element = | 
|  | PATH_OFFSET_PELEMENT(p_s_search_path, | 
|  | ++p_s_search_path->path_length); | 
|  | fs_gen = get_generation(p_s_sb); | 
|  |  | 
|  | /* Read the next tree node, and set the last element in the path to | 
|  | have a pointer to it. */ | 
|  | if ((p_s_bh = p_s_last_element->pe_buffer = | 
|  | sb_getblk(p_s_sb, n_block_number))) { | 
|  | if (!buffer_uptodate(p_s_bh) && reada_count > 1) { | 
|  | search_by_key_reada(p_s_sb, reada_bh, | 
|  | reada_blocks, reada_count); | 
|  | } | 
|  | ll_rw_block(READ, 1, &p_s_bh); | 
|  | wait_on_buffer(p_s_bh); | 
|  | if (!buffer_uptodate(p_s_bh)) | 
|  | goto io_error; | 
|  | } else { | 
|  | io_error: | 
|  | p_s_search_path->path_length--; | 
|  | pathrelse(p_s_search_path); | 
|  | return IO_ERROR; | 
|  | } | 
|  | reada_count = 0; | 
|  | if (expected_level == -1) | 
|  | expected_level = SB_TREE_HEIGHT(p_s_sb); | 
|  | expected_level--; | 
|  |  | 
|  | /* It is possible that schedule occurred. We must check whether the key | 
|  | to search is still in the tree rooted from the current buffer. If | 
|  | not then repeat search from the root. */ | 
|  | if (fs_changed(fs_gen, p_s_sb) && | 
|  | (!B_IS_IN_TREE(p_s_bh) || | 
|  | B_LEVEL(p_s_bh) != expected_level || | 
|  | !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) { | 
|  | PROC_INFO_INC(p_s_sb, search_by_key_fs_changed); | 
|  | PROC_INFO_INC(p_s_sb, search_by_key_restarted); | 
|  | PROC_INFO_INC(p_s_sb, | 
|  | sbk_restarted[expected_level - 1]); | 
|  | decrement_counters_in_path(p_s_search_path); | 
|  |  | 
|  | /* Get the root block number so that we can repeat the search | 
|  | starting from the root. */ | 
|  | n_block_number = SB_ROOT_BLOCK(p_s_sb); | 
|  | expected_level = -1; | 
|  | right_neighbor_of_leaf_node = 0; | 
|  |  | 
|  | /* repeat search from the root */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* only check that the key is in the buffer if p_s_key is not | 
|  | equal to the MAX_KEY. Latter case is only possible in | 
|  | "finish_unfinished()" processing during mount. */ | 
|  | RFALSE(comp_keys(&MAX_KEY, p_s_key) && | 
|  | !key_in_buffer(p_s_search_path, p_s_key, p_s_sb), | 
|  | "PAP-5130: key is not in the buffer"); | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (cur_tb) { | 
|  | print_cur_tb("5140"); | 
|  | reiserfs_panic(p_s_sb, | 
|  | "PAP-5140: search_by_key: schedule occurred in do_balance!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // make sure, that the node contents look like a node of | 
|  | // certain level | 
|  | if (!is_tree_node(p_s_bh, expected_level)) { | 
|  | reiserfs_warning(p_s_sb, "vs-5150: search_by_key: " | 
|  | "invalid format found in block %ld. Fsck?", | 
|  | p_s_bh->b_blocknr); | 
|  | pathrelse(p_s_search_path); | 
|  | return IO_ERROR; | 
|  | } | 
|  |  | 
|  | /* ok, we have acquired next formatted node in the tree */ | 
|  | n_node_level = B_LEVEL(p_s_bh); | 
|  |  | 
|  | PROC_INFO_BH_STAT(p_s_sb, p_s_bh, n_node_level - 1); | 
|  |  | 
|  | RFALSE(n_node_level < n_stop_level, | 
|  | "vs-5152: tree level (%d) is less than stop level (%d)", | 
|  | n_node_level, n_stop_level); | 
|  |  | 
|  | n_retval = bin_search(p_s_key, B_N_PITEM_HEAD(p_s_bh, 0), | 
|  | B_NR_ITEMS(p_s_bh), | 
|  | (n_node_level == | 
|  | DISK_LEAF_NODE_LEVEL) ? IH_SIZE : | 
|  | KEY_SIZE, | 
|  | &(p_s_last_element->pe_position)); | 
|  | if (n_node_level == n_stop_level) { | 
|  | return n_retval; | 
|  | } | 
|  |  | 
|  | /* we are not in the stop level */ | 
|  | if (n_retval == ITEM_FOUND) | 
|  | /* item has been found, so we choose the pointer which is to the right of the found one */ | 
|  | p_s_last_element->pe_position++; | 
|  |  | 
|  | /* if item was not found we choose the position which is to | 
|  | the left of the found item. This requires no code, | 
|  | bin_search did it already. */ | 
|  |  | 
|  | /* So we have chosen a position in the current node which is | 
|  | an internal node.  Now we calculate child block number by | 
|  | position in the node. */ | 
|  | n_block_number = | 
|  | B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position); | 
|  |  | 
|  | /* if we are going to read leaf nodes, try for read ahead as well */ | 
|  | if ((p_s_search_path->reada & PATH_READA) && | 
|  | n_node_level == DISK_LEAF_NODE_LEVEL + 1) { | 
|  | int pos = p_s_last_element->pe_position; | 
|  | int limit = B_NR_ITEMS(p_s_bh); | 
|  | struct reiserfs_key *le_key; | 
|  |  | 
|  | if (p_s_search_path->reada & PATH_READA_BACK) | 
|  | limit = 0; | 
|  | while (reada_count < SEARCH_BY_KEY_READA) { | 
|  | if (pos == limit) | 
|  | break; | 
|  | reada_blocks[reada_count++] = | 
|  | B_N_CHILD_NUM(p_s_bh, pos); | 
|  | if (p_s_search_path->reada & PATH_READA_BACK) | 
|  | pos--; | 
|  | else | 
|  | pos++; | 
|  |  | 
|  | /* | 
|  | * check to make sure we're in the same object | 
|  | */ | 
|  | le_key = B_N_PDELIM_KEY(p_s_bh, pos); | 
|  | if (le32_to_cpu(le_key->k_objectid) != | 
|  | p_s_key->on_disk_key.k_objectid) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Form the path to an item and position in this item which contains | 
|  | file byte defined by p_s_key. If there is no such item | 
|  | corresponding to the key, we point the path to the item with | 
|  | maximal key less than p_s_key, and *p_n_pos_in_item is set to one | 
|  | past the last entry/byte in the item.  If searching for entry in a | 
|  | directory item, and it is not found, *p_n_pos_in_item is set to one | 
|  | entry more than the entry with maximal key which is less than the | 
|  | sought key. | 
|  |  | 
|  | Note that if there is no entry in this same node which is one more, | 
|  | then we point to an imaginary entry.  for direct items, the | 
|  | position is in units of bytes, for indirect items the position is | 
|  | in units of blocknr entries, for directory items the position is in | 
|  | units of directory entries.  */ | 
|  |  | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | int search_for_position_by_key(struct super_block *p_s_sb,	/* Pointer to the super block.          */ | 
|  | const struct cpu_key *p_cpu_key,	/* Key to search (cpu variable)         */ | 
|  | struct treepath *p_s_search_path	/* Filled up by this function.          */ | 
|  | ) | 
|  | { | 
|  | struct item_head *p_le_ih;	/* pointer to on-disk structure */ | 
|  | int n_blk_size; | 
|  | loff_t item_offset, offset; | 
|  | struct reiserfs_dir_entry de; | 
|  | int retval; | 
|  |  | 
|  | /* If searching for directory entry. */ | 
|  | if (is_direntry_cpu_key(p_cpu_key)) | 
|  | return search_by_entry_key(p_s_sb, p_cpu_key, p_s_search_path, | 
|  | &de); | 
|  |  | 
|  | /* If not searching for directory entry. */ | 
|  |  | 
|  | /* If item is found. */ | 
|  | retval = search_item(p_s_sb, p_cpu_key, p_s_search_path); | 
|  | if (retval == IO_ERROR) | 
|  | return retval; | 
|  | if (retval == ITEM_FOUND) { | 
|  |  | 
|  | RFALSE(!ih_item_len | 
|  | (B_N_PITEM_HEAD | 
|  | (PATH_PLAST_BUFFER(p_s_search_path), | 
|  | PATH_LAST_POSITION(p_s_search_path))), | 
|  | "PAP-5165: item length equals zero"); | 
|  |  | 
|  | pos_in_item(p_s_search_path) = 0; | 
|  | return POSITION_FOUND; | 
|  | } | 
|  |  | 
|  | RFALSE(!PATH_LAST_POSITION(p_s_search_path), | 
|  | "PAP-5170: position equals zero"); | 
|  |  | 
|  | /* Item is not found. Set path to the previous item. */ | 
|  | p_le_ih = | 
|  | B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), | 
|  | --PATH_LAST_POSITION(p_s_search_path)); | 
|  | n_blk_size = p_s_sb->s_blocksize; | 
|  |  | 
|  | if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) { | 
|  | return FILE_NOT_FOUND; | 
|  | } | 
|  | // FIXME: quite ugly this far | 
|  |  | 
|  | item_offset = le_ih_k_offset(p_le_ih); | 
|  | offset = cpu_key_k_offset(p_cpu_key); | 
|  |  | 
|  | /* Needed byte is contained in the item pointed to by the path. */ | 
|  | if (item_offset <= offset && | 
|  | item_offset + op_bytes_number(p_le_ih, n_blk_size) > offset) { | 
|  | pos_in_item(p_s_search_path) = offset - item_offset; | 
|  | if (is_indirect_le_ih(p_le_ih)) { | 
|  | pos_in_item(p_s_search_path) /= n_blk_size; | 
|  | } | 
|  | return POSITION_FOUND; | 
|  | } | 
|  |  | 
|  | /* Needed byte is not contained in the item pointed to by the | 
|  | path. Set pos_in_item out of the item. */ | 
|  | if (is_indirect_le_ih(p_le_ih)) | 
|  | pos_in_item(p_s_search_path) = | 
|  | ih_item_len(p_le_ih) / UNFM_P_SIZE; | 
|  | else | 
|  | pos_in_item(p_s_search_path) = ih_item_len(p_le_ih); | 
|  |  | 
|  | return POSITION_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | /* Compare given item and item pointed to by the path. */ | 
|  | int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path) | 
|  | { | 
|  | struct buffer_head *p_s_bh; | 
|  | struct item_head *ih; | 
|  |  | 
|  | /* Last buffer at the path is not in the tree. */ | 
|  | if (!B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path))) | 
|  | return 1; | 
|  |  | 
|  | /* Last path position is invalid. */ | 
|  | if (PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh)) | 
|  | return 1; | 
|  |  | 
|  | /* we need only to know, whether it is the same item */ | 
|  | ih = get_ih(p_s_path); | 
|  | return memcmp(stored_ih, ih, IH_SIZE); | 
|  | } | 
|  |  | 
|  | /* unformatted nodes are not logged anymore, ever.  This is safe | 
|  | ** now | 
|  | */ | 
|  | #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) | 
|  |  | 
|  | // block can not be forgotten as it is in I/O or held by someone | 
|  | #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) | 
|  |  | 
|  | // prepare for delete or cut of direct item | 
|  | static inline int prepare_for_direct_item(struct treepath *path, | 
|  | struct item_head *le_ih, | 
|  | struct inode *inode, | 
|  | loff_t new_file_length, int *cut_size) | 
|  | { | 
|  | loff_t round_len; | 
|  |  | 
|  | if (new_file_length == max_reiserfs_offset(inode)) { | 
|  | /* item has to be deleted */ | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  | // new file gets truncated | 
|  | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { | 
|  | // | 
|  | round_len = ROUND_UP(new_file_length); | 
|  | /* this was n_new_file_length < le_ih ... */ | 
|  | if (round_len < le_ih_k_offset(le_ih)) { | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE;	/* Delete this item. */ | 
|  | } | 
|  | /* Calculate first position and size for cutting from item. */ | 
|  | pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); | 
|  | *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); | 
|  |  | 
|  | return M_CUT;	/* Cut from this item. */ | 
|  | } | 
|  |  | 
|  | // old file: items may have any length | 
|  |  | 
|  | if (new_file_length < le_ih_k_offset(le_ih)) { | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE;	/* Delete this item. */ | 
|  | } | 
|  | /* Calculate first position and size for cutting from item. */ | 
|  | *cut_size = -(ih_item_len(le_ih) - | 
|  | (pos_in_item(path) = | 
|  | new_file_length + 1 - le_ih_k_offset(le_ih))); | 
|  | return M_CUT;		/* Cut from this item. */ | 
|  | } | 
|  |  | 
|  | static inline int prepare_for_direntry_item(struct treepath *path, | 
|  | struct item_head *le_ih, | 
|  | struct inode *inode, | 
|  | loff_t new_file_length, | 
|  | int *cut_size) | 
|  | { | 
|  | if (le_ih_k_offset(le_ih) == DOT_OFFSET && | 
|  | new_file_length == max_reiserfs_offset(inode)) { | 
|  | RFALSE(ih_entry_count(le_ih) != 2, | 
|  | "PAP-5220: incorrect empty directory item (%h)", le_ih); | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE;	/* Delete the directory item containing "." and ".." entry. */ | 
|  | } | 
|  |  | 
|  | if (ih_entry_count(le_ih) == 1) { | 
|  | /* Delete the directory item such as there is one record only | 
|  | in this item */ | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  | /* Cut one record from the directory item. */ | 
|  | *cut_size = | 
|  | -(DEH_SIZE + | 
|  | entry_length(get_last_bh(path), le_ih, pos_in_item(path))); | 
|  | return M_CUT; | 
|  | } | 
|  |  | 
|  | #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) | 
|  |  | 
|  | /*  If the path points to a directory or direct item, calculate mode and the size cut, for balance. | 
|  | If the path points to an indirect item, remove some number of its unformatted nodes. | 
|  | In case of file truncate calculate whether this item must be deleted/truncated or last | 
|  | unformatted node of this item will be converted to a direct item. | 
|  | This function returns a determination of what balance mode the calling function should employ. */ | 
|  | static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *p_s_path, const struct cpu_key *p_s_item_key, int *p_n_removed,	/* Number of unformatted nodes which were removed | 
|  | from end of the file. */ | 
|  | int *p_n_cut_size, unsigned long long n_new_file_length	/* MAX_KEY_OFFSET in case of delete. */ | 
|  | ) | 
|  | { | 
|  | struct super_block *p_s_sb = inode->i_sb; | 
|  | struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_path); | 
|  | struct buffer_head *p_s_bh = PATH_PLAST_BUFFER(p_s_path); | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | /* Stat_data item. */ | 
|  | if (is_statdata_le_ih(p_le_ih)) { | 
|  |  | 
|  | RFALSE(n_new_file_length != max_reiserfs_offset(inode), | 
|  | "PAP-5210: mode must be M_DELETE"); | 
|  |  | 
|  | *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  | /* Directory item. */ | 
|  | if (is_direntry_le_ih(p_le_ih)) | 
|  | return prepare_for_direntry_item(p_s_path, p_le_ih, inode, | 
|  | n_new_file_length, | 
|  | p_n_cut_size); | 
|  |  | 
|  | /* Direct item. */ | 
|  | if (is_direct_le_ih(p_le_ih)) | 
|  | return prepare_for_direct_item(p_s_path, p_le_ih, inode, | 
|  | n_new_file_length, p_n_cut_size); | 
|  |  | 
|  | /* Case of an indirect item. */ | 
|  | { | 
|  | int blk_size = p_s_sb->s_blocksize; | 
|  | struct item_head s_ih; | 
|  | int need_re_search; | 
|  | int delete = 0; | 
|  | int result = M_CUT; | 
|  | int pos = 0; | 
|  |  | 
|  | if ( n_new_file_length == max_reiserfs_offset (inode) ) { | 
|  | /* prepare_for_delete_or_cut() is called by | 
|  | * reiserfs_delete_item() */ | 
|  | n_new_file_length = 0; | 
|  | delete = 1; | 
|  | } | 
|  |  | 
|  | do { | 
|  | need_re_search = 0; | 
|  | *p_n_cut_size = 0; | 
|  | p_s_bh = PATH_PLAST_BUFFER(p_s_path); | 
|  | copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); | 
|  | pos = I_UNFM_NUM(&s_ih); | 
|  |  | 
|  | while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > n_new_file_length) { | 
|  | __le32 *unfm; | 
|  | __u32 block; | 
|  |  | 
|  | /* Each unformatted block deletion may involve one additional | 
|  | * bitmap block into the transaction, thereby the initial | 
|  | * journal space reservation might not be enough. */ | 
|  | if (!delete && (*p_n_cut_size) != 0 && | 
|  | reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | unfm = (__le32 *)B_I_PITEM(p_s_bh, &s_ih) + pos - 1; | 
|  | block = get_block_num(unfm, 0); | 
|  |  | 
|  | if (block != 0) { | 
|  | reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1); | 
|  | put_block_num(unfm, 0, 0); | 
|  | journal_mark_dirty (th, p_s_sb, p_s_bh); | 
|  | reiserfs_free_block(th, inode, block, 1); | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (item_moved (&s_ih, p_s_path))  { | 
|  | need_re_search = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pos --; | 
|  | (*p_n_removed) ++; | 
|  | (*p_n_cut_size) -= UNFM_P_SIZE; | 
|  |  | 
|  | if (pos == 0) { | 
|  | (*p_n_cut_size) -= IH_SIZE; | 
|  | result = M_DELETE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* a trick.  If the buffer has been logged, this will do nothing.  If | 
|  | ** we've broken the loop without logging it, it will restore the | 
|  | ** buffer */ | 
|  | reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh); | 
|  | } while (need_re_search && | 
|  | search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND); | 
|  | pos_in_item(p_s_path) = pos * UNFM_P_SIZE; | 
|  |  | 
|  | if (*p_n_cut_size == 0) { | 
|  | /* Nothing were cut. maybe convert last unformatted node to the | 
|  | * direct item? */ | 
|  | result = M_CONVERT; | 
|  | } | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate number of bytes which will be deleted or cut during balance */ | 
|  | static int calc_deleted_bytes_number(struct tree_balance *p_s_tb, char c_mode) | 
|  | { | 
|  | int n_del_size; | 
|  | struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path); | 
|  |  | 
|  | if (is_statdata_le_ih(p_le_ih)) | 
|  | return 0; | 
|  |  | 
|  | n_del_size = | 
|  | (c_mode == | 
|  | M_DELETE) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0]; | 
|  | if (is_direntry_le_ih(p_le_ih)) { | 
|  | // return EMPTY_DIR_SIZE; /* We delete emty directoris only. */ | 
|  | // we can't use EMPTY_DIR_SIZE, as old format dirs have a different | 
|  | // empty size.  ick. FIXME, is this right? | 
|  | // | 
|  | return n_del_size; | 
|  | } | 
|  |  | 
|  | if (is_indirect_le_ih(p_le_ih)) | 
|  | n_del_size = (n_del_size / UNFM_P_SIZE) * (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size);	// - get_ih_free_space (p_le_ih); | 
|  | return n_del_size; | 
|  | } | 
|  |  | 
|  | static void init_tb_struct(struct reiserfs_transaction_handle *th, | 
|  | struct tree_balance *p_s_tb, | 
|  | struct super_block *p_s_sb, | 
|  | struct treepath *p_s_path, int n_size) | 
|  | { | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | memset(p_s_tb, '\0', sizeof(struct tree_balance)); | 
|  | p_s_tb->transaction_handle = th; | 
|  | p_s_tb->tb_sb = p_s_sb; | 
|  | p_s_tb->tb_path = p_s_path; | 
|  | PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; | 
|  | PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; | 
|  | p_s_tb->insert_size[0] = n_size; | 
|  | } | 
|  |  | 
|  | void padd_item(char *item, int total_length, int length) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = total_length; i > length;) | 
|  | item[--i] = 0; | 
|  | } | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | char key2type(struct reiserfs_key *ih) | 
|  | { | 
|  | if (is_direntry_le_key(2, ih)) | 
|  | return 'd'; | 
|  | if (is_direct_le_key(2, ih)) | 
|  | return 'D'; | 
|  | if (is_indirect_le_key(2, ih)) | 
|  | return 'i'; | 
|  | if (is_statdata_le_key(2, ih)) | 
|  | return 's'; | 
|  | return 'u'; | 
|  | } | 
|  |  | 
|  | char head2type(struct item_head *ih) | 
|  | { | 
|  | if (is_direntry_le_ih(ih)) | 
|  | return 'd'; | 
|  | if (is_direct_le_ih(ih)) | 
|  | return 'D'; | 
|  | if (is_indirect_le_ih(ih)) | 
|  | return 'i'; | 
|  | if (is_statdata_le_ih(ih)) | 
|  | return 's'; | 
|  | return 'u'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Delete object item. */ | 
|  | int reiserfs_delete_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_path,	/* Path to the deleted item. */ | 
|  | const struct cpu_key *p_s_item_key,	/* Key to search for the deleted item.  */ | 
|  | struct inode *p_s_inode,	/* inode is here just to update i_blocks and quotas */ | 
|  | struct buffer_head *p_s_un_bh) | 
|  | {				/* NULL or unformatted node pointer.    */ | 
|  | struct super_block *p_s_sb = p_s_inode->i_sb; | 
|  | struct tree_balance s_del_balance; | 
|  | struct item_head s_ih; | 
|  | struct item_head *q_ih; | 
|  | int quota_cut_bytes; | 
|  | int n_ret_value, n_del_size, n_removed; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | char c_mode; | 
|  | int n_iter = 0; | 
|  | #endif | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path, | 
|  | 0 /*size is unknown */ ); | 
|  |  | 
|  | while (1) { | 
|  | n_removed = 0; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | n_iter++; | 
|  | c_mode = | 
|  | #endif | 
|  | prepare_for_delete_or_cut(th, p_s_inode, p_s_path, | 
|  | p_s_item_key, &n_removed, | 
|  | &n_del_size, | 
|  | max_reiserfs_offset(p_s_inode)); | 
|  |  | 
|  | RFALSE(c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); | 
|  |  | 
|  | copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); | 
|  | s_del_balance.insert_size[0] = n_del_size; | 
|  |  | 
|  | n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); | 
|  | if (n_ret_value != REPEAT_SEARCH) | 
|  | break; | 
|  |  | 
|  | PROC_INFO_INC(p_s_sb, delete_item_restarted); | 
|  |  | 
|  | // file system changed, repeat search | 
|  | n_ret_value = | 
|  | search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); | 
|  | if (n_ret_value == IO_ERROR) | 
|  | break; | 
|  | if (n_ret_value == FILE_NOT_FOUND) { | 
|  | reiserfs_warning(p_s_sb, | 
|  | "vs-5340: reiserfs_delete_item: " | 
|  | "no items of the file %K found", | 
|  | p_s_item_key); | 
|  | break; | 
|  | } | 
|  | }			/* while (1) */ | 
|  |  | 
|  | if (n_ret_value != CARRY_ON) { | 
|  | unfix_nodes(&s_del_balance); | 
|  | return 0; | 
|  | } | 
|  | // reiserfs_delete_item returns item length when success | 
|  | n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); | 
|  | q_ih = get_ih(p_s_path); | 
|  | quota_cut_bytes = ih_item_len(q_ih); | 
|  |  | 
|  | /* hack so the quota code doesn't have to guess if the file | 
|  | ** has a tail.  On tail insert, we allocate quota for 1 unformatted node. | 
|  | ** We test the offset because the tail might have been | 
|  | ** split into multiple items, and we only want to decrement for | 
|  | ** the unfm node once | 
|  | */ | 
|  | if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(q_ih)) { | 
|  | if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) { | 
|  | quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE; | 
|  | } else { | 
|  | quota_cut_bytes = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (p_s_un_bh) { | 
|  | int off; | 
|  | char *data; | 
|  |  | 
|  | /* We are in direct2indirect conversion, so move tail contents | 
|  | to the unformatted node */ | 
|  | /* note, we do the copy before preparing the buffer because we | 
|  | ** don't care about the contents of the unformatted node yet. | 
|  | ** the only thing we really care about is the direct item's data | 
|  | ** is in the unformatted node. | 
|  | ** | 
|  | ** Otherwise, we would have to call reiserfs_prepare_for_journal on | 
|  | ** the unformatted node, which might schedule, meaning we'd have to | 
|  | ** loop all the way back up to the start of the while loop. | 
|  | ** | 
|  | ** The unformatted node must be dirtied later on.  We can't be | 
|  | ** sure here if the entire tail has been deleted yet. | 
|  | ** | 
|  | ** p_s_un_bh is from the page cache (all unformatted nodes are | 
|  | ** from the page cache) and might be a highmem page.  So, we | 
|  | ** can't use p_s_un_bh->b_data. | 
|  | ** -clm | 
|  | */ | 
|  |  | 
|  | data = kmap_atomic(p_s_un_bh->b_page, KM_USER0); | 
|  | off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); | 
|  | memcpy(data + off, | 
|  | B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih), | 
|  | n_ret_value); | 
|  | kunmap_atomic(data, KM_USER0); | 
|  | } | 
|  | /* Perform balancing after all resources have been collected at once. */ | 
|  | do_balance(&s_del_balance, NULL, NULL, M_DELETE); | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(p_s_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota delete_item(): freeing %u, id=%u type=%c", | 
|  | quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih)); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); | 
|  |  | 
|  | /* Return deleted body length */ | 
|  | return n_ret_value; | 
|  | } | 
|  |  | 
|  | /* Summary Of Mechanisms For Handling Collisions Between Processes: | 
|  |  | 
|  | deletion of the body of the object is performed by iput(), with the | 
|  | result that if multiple processes are operating on a file, the | 
|  | deletion of the body of the file is deferred until the last process | 
|  | that has an open inode performs its iput(). | 
|  |  | 
|  | writes and truncates are protected from collisions by use of | 
|  | semaphores. | 
|  |  | 
|  | creates, linking, and mknod are protected from collisions with other | 
|  | processes by making the reiserfs_add_entry() the last step in the | 
|  | creation, and then rolling back all changes if there was a collision. | 
|  | - Hans | 
|  | */ | 
|  |  | 
|  | /* this deletes item which never gets split */ | 
|  | void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct reiserfs_key *key) | 
|  | { | 
|  | struct tree_balance tb; | 
|  | INITIALIZE_PATH(path); | 
|  | int item_len = 0; | 
|  | int tb_init = 0; | 
|  | struct cpu_key cpu_key; | 
|  | int retval; | 
|  | int quota_cut_bytes = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | le_key2cpu_key(&cpu_key, key); | 
|  |  | 
|  | while (1) { | 
|  | retval = search_item(th->t_super, &cpu_key, &path); | 
|  | if (retval == IO_ERROR) { | 
|  | reiserfs_warning(th->t_super, | 
|  | "vs-5350: reiserfs_delete_solid_item: " | 
|  | "i/o failure occurred trying to delete %K", | 
|  | &cpu_key); | 
|  | break; | 
|  | } | 
|  | if (retval != ITEM_FOUND) { | 
|  | pathrelse(&path); | 
|  | // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir | 
|  | if (! | 
|  | ((unsigned long long) | 
|  | GET_HASH_VALUE(le_key_k_offset | 
|  | (le_key_version(key), key)) == 0 | 
|  | && (unsigned long long) | 
|  | GET_GENERATION_NUMBER(le_key_k_offset | 
|  | (le_key_version(key), | 
|  | key)) == 1)) | 
|  | reiserfs_warning(th->t_super, | 
|  | "vs-5355: reiserfs_delete_solid_item: %k not found", | 
|  | key); | 
|  | break; | 
|  | } | 
|  | if (!tb_init) { | 
|  | tb_init = 1; | 
|  | item_len = ih_item_len(PATH_PITEM_HEAD(&path)); | 
|  | init_tb_struct(th, &tb, th->t_super, &path, | 
|  | -(IH_SIZE + item_len)); | 
|  | } | 
|  | quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)); | 
|  |  | 
|  | retval = fix_nodes(M_DELETE, &tb, NULL, NULL); | 
|  | if (retval == REPEAT_SEARCH) { | 
|  | PROC_INFO_INC(th->t_super, delete_solid_item_restarted); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (retval == CARRY_ON) { | 
|  | do_balance(&tb, NULL, NULL, M_DELETE); | 
|  | if (inode) {	/* Should we count quota for item? (we don't count quotas for save-links) */ | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, | 
|  | "reiserquota delete_solid_item(): freeing %u id=%u type=%c", | 
|  | quota_cut_bytes, inode->i_uid, | 
|  | key2type(key)); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(inode, | 
|  | quota_cut_bytes); | 
|  | } | 
|  | break; | 
|  | } | 
|  | // IO_ERROR, NO_DISK_SPACE, etc | 
|  | reiserfs_warning(th->t_super, | 
|  | "vs-5360: reiserfs_delete_solid_item: " | 
|  | "could not delete %K due to fix_nodes failure", | 
|  | &cpu_key); | 
|  | unfix_nodes(&tb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | reiserfs_check_path(&path); | 
|  | } | 
|  |  | 
|  | int reiserfs_delete_object(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode) | 
|  | { | 
|  | int err; | 
|  | inode->i_size = 0; | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | /* for directory this deletes item containing "." and ".." */ | 
|  | err = | 
|  | reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | #if defined( USE_INODE_GENERATION_COUNTER ) | 
|  | if (!old_format_only(th->t_super)) { | 
|  | __le32 *inode_generation; | 
|  |  | 
|  | inode_generation = | 
|  | &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; | 
|  | le32_add_cpu(inode_generation, 1); | 
|  | } | 
|  | /* USE_INODE_GENERATION_COUNTER */ | 
|  | #endif | 
|  | reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void unmap_buffers(struct page *page, loff_t pos) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | struct buffer_head *head; | 
|  | struct buffer_head *next; | 
|  | unsigned long tail_index; | 
|  | unsigned long cur_index; | 
|  |  | 
|  | if (page) { | 
|  | if (page_has_buffers(page)) { | 
|  | tail_index = pos & (PAGE_CACHE_SIZE - 1); | 
|  | cur_index = 0; | 
|  | head = page_buffers(page); | 
|  | bh = head; | 
|  | do { | 
|  | next = bh->b_this_page; | 
|  |  | 
|  | /* we want to unmap the buffers that contain the tail, and | 
|  | ** all the buffers after it (since the tail must be at the | 
|  | ** end of the file).  We don't want to unmap file data | 
|  | ** before the tail, since it might be dirty and waiting to | 
|  | ** reach disk | 
|  | */ | 
|  | cur_index += bh->b_size; | 
|  | if (cur_index > tail_index) { | 
|  | reiserfs_unmap_buffer(bh); | 
|  | } | 
|  | bh = next; | 
|  | } while (bh != head); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, | 
|  | struct inode *p_s_inode, | 
|  | struct page *page, | 
|  | struct treepath *p_s_path, | 
|  | const struct cpu_key *p_s_item_key, | 
|  | loff_t n_new_file_size, char *p_c_mode) | 
|  | { | 
|  | struct super_block *p_s_sb = p_s_inode->i_sb; | 
|  | int n_block_size = p_s_sb->s_blocksize; | 
|  | int cut_bytes; | 
|  | BUG_ON(!th->t_trans_id); | 
|  | BUG_ON(n_new_file_size != p_s_inode->i_size); | 
|  |  | 
|  | /* the page being sent in could be NULL if there was an i/o error | 
|  | ** reading in the last block.  The user will hit problems trying to | 
|  | ** read the file, but for now we just skip the indirect2direct | 
|  | */ | 
|  | if (atomic_read(&p_s_inode->i_count) > 1 || | 
|  | !tail_has_to_be_packed(p_s_inode) || | 
|  | !page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) { | 
|  | // leave tail in an unformatted node | 
|  | *p_c_mode = M_SKIP_BALANCING; | 
|  | cut_bytes = | 
|  | n_block_size - (n_new_file_size & (n_block_size - 1)); | 
|  | pathrelse(p_s_path); | 
|  | return cut_bytes; | 
|  | } | 
|  | /* Permorm the conversion to a direct_item. */ | 
|  | /*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode); */ | 
|  | return indirect2direct(th, p_s_inode, page, p_s_path, p_s_item_key, | 
|  | n_new_file_size, p_c_mode); | 
|  | } | 
|  |  | 
|  | /* we did indirect_to_direct conversion. And we have inserted direct | 
|  | item successesfully, but there were no disk space to cut unfm | 
|  | pointer being converted. Therefore we have to delete inserted | 
|  | direct item(s) */ | 
|  | static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct treepath *path) | 
|  | { | 
|  | struct cpu_key tail_key; | 
|  | int tail_len; | 
|  | int removed; | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);	// !!!! | 
|  | tail_key.key_length = 4; | 
|  |  | 
|  | tail_len = | 
|  | (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; | 
|  | while (tail_len) { | 
|  | /* look for the last byte of the tail */ | 
|  | if (search_for_position_by_key(inode->i_sb, &tail_key, path) == | 
|  | POSITION_NOT_FOUND) | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "vs-5615: indirect_to_direct_roll_back: found invalid item"); | 
|  | RFALSE(path->pos_in_item != | 
|  | ih_item_len(PATH_PITEM_HEAD(path)) - 1, | 
|  | "vs-5616: appended bytes found"); | 
|  | PATH_LAST_POSITION(path)--; | 
|  |  | 
|  | removed = | 
|  | reiserfs_delete_item(th, path, &tail_key, inode, | 
|  | NULL /*unbh not needed */ ); | 
|  | RFALSE(removed <= 0 | 
|  | || removed > tail_len, | 
|  | "vs-5617: there was tail %d bytes, removed item length %d bytes", | 
|  | tail_len, removed); | 
|  | tail_len -= removed; | 
|  | set_cpu_key_k_offset(&tail_key, | 
|  | cpu_key_k_offset(&tail_key) - removed); | 
|  | } | 
|  | reiserfs_warning(inode->i_sb, | 
|  | "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space"); | 
|  | //mark_file_without_tail (inode); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  |  | 
|  | /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ | 
|  | int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *p_s_path, | 
|  | struct cpu_key *p_s_item_key, | 
|  | struct inode *p_s_inode, | 
|  | struct page *page, loff_t n_new_file_size) | 
|  | { | 
|  | struct super_block *p_s_sb = p_s_inode->i_sb; | 
|  | /* Every function which is going to call do_balance must first | 
|  | create a tree_balance structure.  Then it must fill up this | 
|  | structure by using the init_tb_struct and fix_nodes functions. | 
|  | After that we can make tree balancing. */ | 
|  | struct tree_balance s_cut_balance; | 
|  | struct item_head *p_le_ih; | 
|  | int n_cut_size = 0,	/* Amount to be cut. */ | 
|  | n_ret_value = CARRY_ON, n_removed = 0,	/* Number of the removed unformatted nodes. */ | 
|  | n_is_inode_locked = 0; | 
|  | char c_mode;		/* Mode of the balance. */ | 
|  | int retval2 = -1; | 
|  | int quota_cut_bytes; | 
|  | loff_t tail_pos = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path, | 
|  | n_cut_size); | 
|  |  | 
|  | /* Repeat this loop until we either cut the item without needing | 
|  | to balance, or we fix_nodes without schedule occurring */ | 
|  | while (1) { | 
|  | /* Determine the balance mode, position of the first byte to | 
|  | be cut, and size to be cut.  In case of the indirect item | 
|  | free unformatted nodes which are pointed to by the cut | 
|  | pointers. */ | 
|  |  | 
|  | c_mode = | 
|  | prepare_for_delete_or_cut(th, p_s_inode, p_s_path, | 
|  | p_s_item_key, &n_removed, | 
|  | &n_cut_size, n_new_file_size); | 
|  | if (c_mode == M_CONVERT) { | 
|  | /* convert last unformatted node to direct item or leave | 
|  | tail in the unformatted node */ | 
|  | RFALSE(n_ret_value != CARRY_ON, | 
|  | "PAP-5570: can not convert twice"); | 
|  |  | 
|  | n_ret_value = | 
|  | maybe_indirect_to_direct(th, p_s_inode, page, | 
|  | p_s_path, p_s_item_key, | 
|  | n_new_file_size, &c_mode); | 
|  | if (c_mode == M_SKIP_BALANCING) | 
|  | /* tail has been left in the unformatted node */ | 
|  | return n_ret_value; | 
|  |  | 
|  | n_is_inode_locked = 1; | 
|  |  | 
|  | /* removing of last unformatted node will change value we | 
|  | have to return to truncate. Save it */ | 
|  | retval2 = n_ret_value; | 
|  | /*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1)); */ | 
|  |  | 
|  | /* So, we have performed the first part of the conversion: | 
|  | inserting the new direct item.  Now we are removing the | 
|  | last unformatted node pointer. Set key to search for | 
|  | it. */ | 
|  | set_cpu_key_k_type(p_s_item_key, TYPE_INDIRECT); | 
|  | p_s_item_key->key_length = 4; | 
|  | n_new_file_size -= | 
|  | (n_new_file_size & (p_s_sb->s_blocksize - 1)); | 
|  | tail_pos = n_new_file_size; | 
|  | set_cpu_key_k_offset(p_s_item_key, n_new_file_size + 1); | 
|  | if (search_for_position_by_key | 
|  | (p_s_sb, p_s_item_key, | 
|  | p_s_path) == POSITION_NOT_FOUND) { | 
|  | print_block(PATH_PLAST_BUFFER(p_s_path), 3, | 
|  | PATH_LAST_POSITION(p_s_path) - 1, | 
|  | PATH_LAST_POSITION(p_s_path) + 1); | 
|  | reiserfs_panic(p_s_sb, | 
|  | "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)", | 
|  | p_s_item_key); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (n_cut_size == 0) { | 
|  | pathrelse(p_s_path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | s_cut_balance.insert_size[0] = n_cut_size; | 
|  |  | 
|  | n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL); | 
|  | if (n_ret_value != REPEAT_SEARCH) | 
|  | break; | 
|  |  | 
|  | PROC_INFO_INC(p_s_sb, cut_from_item_restarted); | 
|  |  | 
|  | n_ret_value = | 
|  | search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); | 
|  | if (n_ret_value == POSITION_FOUND) | 
|  | continue; | 
|  |  | 
|  | reiserfs_warning(p_s_sb, | 
|  | "PAP-5610: reiserfs_cut_from_item: item %K not found", | 
|  | p_s_item_key); | 
|  | unfix_nodes(&s_cut_balance); | 
|  | return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT; | 
|  | }			/* while */ | 
|  |  | 
|  | // check fix_nodes results (IO_ERROR or NO_DISK_SPACE) | 
|  | if (n_ret_value != CARRY_ON) { | 
|  | if (n_is_inode_locked) { | 
|  | // FIXME: this seems to be not needed: we are always able | 
|  | // to cut item | 
|  | indirect_to_direct_roll_back(th, p_s_inode, p_s_path); | 
|  | } | 
|  | if (n_ret_value == NO_DISK_SPACE) | 
|  | reiserfs_warning(p_s_sb, "NO_DISK_SPACE"); | 
|  | unfix_nodes(&s_cut_balance); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* go ahead and perform balancing */ | 
|  |  | 
|  | RFALSE(c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode"); | 
|  |  | 
|  | /* Calculate number of bytes that need to be cut from the item. */ | 
|  | quota_cut_bytes = | 
|  | (c_mode == | 
|  | M_DELETE) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance. | 
|  | insert_size[0]; | 
|  | if (retval2 == -1) | 
|  | n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode); | 
|  | else | 
|  | n_ret_value = retval2; | 
|  |  | 
|  | /* For direct items, we only change the quota when deleting the last | 
|  | ** item. | 
|  | */ | 
|  | p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path); | 
|  | if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) { | 
|  | if (c_mode == M_DELETE && | 
|  | (le_ih_k_offset(p_le_ih) & (p_s_sb->s_blocksize - 1)) == | 
|  | 1) { | 
|  | // FIXME: this is to keep 3.5 happy | 
|  | REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX; | 
|  | quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE; | 
|  | } else { | 
|  | quota_cut_bytes = 0; | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (n_is_inode_locked) { | 
|  | struct item_head *le_ih = | 
|  | PATH_PITEM_HEAD(s_cut_balance.tb_path); | 
|  | /* we are going to complete indirect2direct conversion. Make | 
|  | sure, that we exactly remove last unformatted node pointer | 
|  | of the item */ | 
|  | if (!is_indirect_le_ih(le_ih)) | 
|  | reiserfs_panic(p_s_sb, | 
|  | "vs-5652: reiserfs_cut_from_item: " | 
|  | "item must be indirect %h", le_ih); | 
|  |  | 
|  | if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) | 
|  | reiserfs_panic(p_s_sb, | 
|  | "vs-5653: reiserfs_cut_from_item: " | 
|  | "completing indirect2direct conversion indirect item %h " | 
|  | "being deleted must be of 4 byte long", | 
|  | le_ih); | 
|  |  | 
|  | if (c_mode == M_CUT | 
|  | && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { | 
|  | reiserfs_panic(p_s_sb, | 
|  | "vs-5654: reiserfs_cut_from_item: " | 
|  | "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)", | 
|  | le_ih, s_cut_balance.insert_size[0]); | 
|  | } | 
|  | /* it would be useful to make sure, that right neighboring | 
|  | item is direct item of this file */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | do_balance(&s_cut_balance, NULL, NULL, c_mode); | 
|  | if (n_is_inode_locked) { | 
|  | /* we've done an indirect->direct conversion.  when the data block | 
|  | ** was freed, it was removed from the list of blocks that must | 
|  | ** be flushed before the transaction commits, make sure to | 
|  | ** unmap and invalidate it | 
|  | */ | 
|  | unmap_buffers(page, tail_pos); | 
|  | REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask; | 
|  | } | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(p_s_inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota cut_from_item(): freeing %u id=%u type=%c", | 
|  | quota_cut_bytes, p_s_inode->i_uid, '?'); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); | 
|  | return n_ret_value; | 
|  | } | 
|  |  | 
|  | static void truncate_directory(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode) | 
|  | { | 
|  | BUG_ON(!th->t_trans_id); | 
|  | if (inode->i_nlink) | 
|  | reiserfs_warning(inode->i_sb, | 
|  | "vs-5655: truncate_directory: link count != 0"); | 
|  |  | 
|  | set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); | 
|  | set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); | 
|  | reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); | 
|  | reiserfs_update_sd(th, inode); | 
|  | set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); | 
|  | set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); | 
|  | } | 
|  |  | 
|  | /* Truncate file to the new size. Note, this must be called with a transaction | 
|  | already started */ | 
|  | int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, struct inode *p_s_inode,	/* ->i_size contains new | 
|  | size */ | 
|  | struct page *page,	/* up to date for last block */ | 
|  | int update_timestamps	/* when it is called by | 
|  | file_release to convert | 
|  | the tail - no timestamps | 
|  | should be updated */ | 
|  | ) | 
|  | { | 
|  | INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */ | 
|  | struct item_head *p_le_ih;	/* Pointer to an item header. */ | 
|  | struct cpu_key s_item_key;	/* Key to search for a previous file item. */ | 
|  | loff_t n_file_size,	/* Old file size. */ | 
|  | n_new_file_size;	/* New file size. */ | 
|  | int n_deleted;		/* Number of deleted or truncated bytes. */ | 
|  | int retval; | 
|  | int err = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  | if (! | 
|  | (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode) | 
|  | || S_ISLNK(p_s_inode->i_mode))) | 
|  | return 0; | 
|  |  | 
|  | if (S_ISDIR(p_s_inode->i_mode)) { | 
|  | // deletion of directory - no need to update timestamps | 
|  | truncate_directory(th, p_s_inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get new file size. */ | 
|  | n_new_file_size = p_s_inode->i_size; | 
|  |  | 
|  | // FIXME: note, that key type is unimportant here | 
|  | make_cpu_key(&s_item_key, p_s_inode, max_reiserfs_offset(p_s_inode), | 
|  | TYPE_DIRECT, 3); | 
|  |  | 
|  | retval = | 
|  | search_for_position_by_key(p_s_inode->i_sb, &s_item_key, | 
|  | &s_search_path); | 
|  | if (retval == IO_ERROR) { | 
|  | reiserfs_warning(p_s_inode->i_sb, | 
|  | "vs-5657: reiserfs_do_truncate: " | 
|  | "i/o failure occurred trying to truncate %K", | 
|  | &s_item_key); | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { | 
|  | reiserfs_warning(p_s_inode->i_sb, | 
|  | "PAP-5660: reiserfs_do_truncate: " | 
|  | "wrong result %d of search for %K", retval, | 
|  | &s_item_key); | 
|  |  | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | s_search_path.pos_in_item--; | 
|  |  | 
|  | /* Get real file size (total length of all file items) */ | 
|  | p_le_ih = PATH_PITEM_HEAD(&s_search_path); | 
|  | if (is_statdata_le_ih(p_le_ih)) | 
|  | n_file_size = 0; | 
|  | else { | 
|  | loff_t offset = le_ih_k_offset(p_le_ih); | 
|  | int bytes = | 
|  | op_bytes_number(p_le_ih, p_s_inode->i_sb->s_blocksize); | 
|  |  | 
|  | /* this may mismatch with real file size: if last direct item | 
|  | had no padding zeros and last unformatted node had no free | 
|  | space, this file would have this file size */ | 
|  | n_file_size = offset + bytes - 1; | 
|  | } | 
|  | /* | 
|  | * are we doing a full truncate or delete, if so | 
|  | * kick in the reada code | 
|  | */ | 
|  | if (n_new_file_size == 0) | 
|  | s_search_path.reada = PATH_READA | PATH_READA_BACK; | 
|  |  | 
|  | if (n_file_size == 0 || n_file_size < n_new_file_size) { | 
|  | goto update_and_out; | 
|  | } | 
|  |  | 
|  | /* Update key to search for the last file item. */ | 
|  | set_cpu_key_k_offset(&s_item_key, n_file_size); | 
|  |  | 
|  | do { | 
|  | /* Cut or delete file item. */ | 
|  | n_deleted = | 
|  | reiserfs_cut_from_item(th, &s_search_path, &s_item_key, | 
|  | p_s_inode, page, n_new_file_size); | 
|  | if (n_deleted < 0) { | 
|  | reiserfs_warning(p_s_inode->i_sb, | 
|  | "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed"); | 
|  | reiserfs_check_path(&s_search_path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | RFALSE(n_deleted > n_file_size, | 
|  | "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", | 
|  | n_deleted, n_file_size, &s_item_key); | 
|  |  | 
|  | /* Change key to search the last file item. */ | 
|  | n_file_size -= n_deleted; | 
|  |  | 
|  | set_cpu_key_k_offset(&s_item_key, n_file_size); | 
|  |  | 
|  | /* While there are bytes to truncate and previous file item is presented in the tree. */ | 
|  |  | 
|  | /* | 
|  | ** This loop could take a really long time, and could log | 
|  | ** many more blocks than a transaction can hold.  So, we do a polite | 
|  | ** journal end here, and if the transaction needs ending, we make | 
|  | ** sure the file is consistent before ending the current trans | 
|  | ** and starting a new one | 
|  | */ | 
|  | if (journal_transaction_should_end(th, 0) || | 
|  | reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { | 
|  | int orig_len_alloc = th->t_blocks_allocated; | 
|  | decrement_counters_in_path(&s_search_path); | 
|  |  | 
|  | if (update_timestamps) { | 
|  | p_s_inode->i_mtime = p_s_inode->i_ctime = | 
|  | CURRENT_TIME_SEC; | 
|  | } | 
|  | reiserfs_update_sd(th, p_s_inode); | 
|  |  | 
|  | err = journal_end(th, p_s_inode->i_sb, orig_len_alloc); | 
|  | if (err) | 
|  | goto out; | 
|  | err = journal_begin(th, p_s_inode->i_sb, | 
|  | JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; | 
|  | if (err) | 
|  | goto out; | 
|  | reiserfs_update_inode_transaction(p_s_inode); | 
|  | } | 
|  | } while (n_file_size > ROUND_UP(n_new_file_size) && | 
|  | search_for_position_by_key(p_s_inode->i_sb, &s_item_key, | 
|  | &s_search_path) == POSITION_FOUND); | 
|  |  | 
|  | RFALSE(n_file_size > ROUND_UP(n_new_file_size), | 
|  | "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d", | 
|  | n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid); | 
|  |  | 
|  | update_and_out: | 
|  | if (update_timestamps) { | 
|  | // this is truncate, not file closing | 
|  | p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC; | 
|  | } | 
|  | reiserfs_update_sd(th, p_s_inode); | 
|  |  | 
|  | out: | 
|  | pathrelse(&s_search_path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | // this makes sure, that we __append__, not overwrite or add holes | 
|  | static void check_research_for_paste(struct treepath *path, | 
|  | const struct cpu_key *p_s_key) | 
|  | { | 
|  | struct item_head *found_ih = get_ih(path); | 
|  |  | 
|  | if (is_direct_le_ih(found_ih)) { | 
|  | if (le_ih_k_offset(found_ih) + | 
|  | op_bytes_number(found_ih, | 
|  | get_last_bh(path)->b_size) != | 
|  | cpu_key_k_offset(p_s_key) | 
|  | || op_bytes_number(found_ih, | 
|  | get_last_bh(path)->b_size) != | 
|  | pos_in_item(path)) | 
|  | reiserfs_panic(NULL, | 
|  | "PAP-5720: check_research_for_paste: " | 
|  | "found direct item %h or position (%d) does not match to key %K", | 
|  | found_ih, pos_in_item(path), p_s_key); | 
|  | } | 
|  | if (is_indirect_le_ih(found_ih)) { | 
|  | if (le_ih_k_offset(found_ih) + | 
|  | op_bytes_number(found_ih, | 
|  | get_last_bh(path)->b_size) != | 
|  | cpu_key_k_offset(p_s_key) | 
|  | || I_UNFM_NUM(found_ih) != pos_in_item(path) | 
|  | || get_ih_free_space(found_ih) != 0) | 
|  | reiserfs_panic(NULL, | 
|  | "PAP-5730: check_research_for_paste: " | 
|  | "found indirect item (%h) or position (%d) does not match to key (%K)", | 
|  | found_ih, pos_in_item(path), p_s_key); | 
|  | } | 
|  | } | 
|  | #endif				/* config reiserfs check */ | 
|  |  | 
|  | /* Paste bytes to the existing item. Returns bytes number pasted into the item. */ | 
|  | int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_search_path,	/* Path to the pasted item.          */ | 
|  | const struct cpu_key *p_s_key,	/* Key to search for the needed item. */ | 
|  | struct inode *inode,	/* Inode item belongs to */ | 
|  | const char *p_c_body,	/* Pointer to the bytes to paste.    */ | 
|  | int n_pasted_size) | 
|  | {				/* Size of pasted bytes.             */ | 
|  | struct tree_balance s_paste_balance; | 
|  | int retval; | 
|  | int fs_gen; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | fs_gen = get_generation(inode->i_sb); | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota paste_into_item(): allocating %u id=%u type=%c", | 
|  | n_pasted_size, inode->i_uid, | 
|  | key2type(&(p_s_key->on_disk_key))); | 
|  | #endif | 
|  |  | 
|  | if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) { | 
|  | pathrelse(p_s_search_path); | 
|  | return -EDQUOT; | 
|  | } | 
|  | init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path, | 
|  | n_pasted_size); | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | s_paste_balance.key = p_s_key->on_disk_key; | 
|  | #endif | 
|  |  | 
|  | /* DQUOT_* can schedule, must check before the fix_nodes */ | 
|  | if (fs_changed(fs_gen, inode->i_sb)) { | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | while ((retval = | 
|  | fix_nodes(M_PASTE, &s_paste_balance, NULL, | 
|  | p_c_body)) == REPEAT_SEARCH) { | 
|  | search_again: | 
|  | /* file system changed while we were in the fix_nodes */ | 
|  | PROC_INFO_INC(th->t_super, paste_into_item_restarted); | 
|  | retval = | 
|  | search_for_position_by_key(th->t_super, p_s_key, | 
|  | p_s_search_path); | 
|  | if (retval == IO_ERROR) { | 
|  | retval = -EIO; | 
|  | goto error_out; | 
|  | } | 
|  | if (retval == POSITION_FOUND) { | 
|  | reiserfs_warning(inode->i_sb, | 
|  | "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists", | 
|  | p_s_key); | 
|  | retval = -EEXIST; | 
|  | goto error_out; | 
|  | } | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | check_research_for_paste(p_s_search_path, p_s_key); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Perform balancing after all resources are collected by fix_nodes, and | 
|  | accessing them will not risk triggering schedule. */ | 
|  | if (retval == CARRY_ON) { | 
|  | do_balance(&s_paste_balance, NULL /*ih */ , p_c_body, M_PASTE); | 
|  | return 0; | 
|  | } | 
|  | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | 
|  | error_out: | 
|  | /* this also releases the path */ | 
|  | unfix_nodes(&s_paste_balance); | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota paste_into_item(): freeing %u id=%u type=%c", | 
|  | n_pasted_size, inode->i_uid, | 
|  | key2type(&(p_s_key->on_disk_key))); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Insert new item into the buffer at the path. */ | 
|  | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_path,	/* Path to the inserteded item.         */ | 
|  | const struct cpu_key *key, struct item_head *p_s_ih,	/* Pointer to the item header to insert. */ | 
|  | struct inode *inode, const char *p_c_body) | 
|  | {				/* Pointer to the bytes to insert.      */ | 
|  | struct tree_balance s_ins_balance; | 
|  | int retval; | 
|  | int fs_gen = 0; | 
|  | int quota_bytes = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | if (inode) {		/* Do we count quotas for item? */ | 
|  | fs_gen = get_generation(inode->i_sb); | 
|  | quota_bytes = ih_item_len(p_s_ih); | 
|  |  | 
|  | /* hack so the quota code doesn't have to guess if the file has | 
|  | ** a tail, links are always tails, so there's no guessing needed | 
|  | */ | 
|  | if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_s_ih)) { | 
|  | quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; | 
|  | } | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota insert_item(): allocating %u id=%u type=%c", | 
|  | quota_bytes, inode->i_uid, head2type(p_s_ih)); | 
|  | #endif | 
|  | /* We can't dirty inode here. It would be immediately written but | 
|  | * appropriate stat item isn't inserted yet... */ | 
|  | if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) { | 
|  | pathrelse(p_s_path); | 
|  | return -EDQUOT; | 
|  | } | 
|  | } | 
|  | init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path, | 
|  | IH_SIZE + ih_item_len(p_s_ih)); | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | s_ins_balance.key = key->on_disk_key; | 
|  | #endif | 
|  | /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */ | 
|  | if (inode && fs_changed(fs_gen, inode->i_sb)) { | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | while ((retval = | 
|  | fix_nodes(M_INSERT, &s_ins_balance, p_s_ih, | 
|  | p_c_body)) == REPEAT_SEARCH) { | 
|  | search_again: | 
|  | /* file system changed while we were in the fix_nodes */ | 
|  | PROC_INFO_INC(th->t_super, insert_item_restarted); | 
|  | retval = search_item(th->t_super, key, p_s_path); | 
|  | if (retval == IO_ERROR) { | 
|  | retval = -EIO; | 
|  | goto error_out; | 
|  | } | 
|  | if (retval == ITEM_FOUND) { | 
|  | reiserfs_warning(th->t_super, | 
|  | "PAP-5760: reiserfs_insert_item: " | 
|  | "key %K already exists in the tree", | 
|  | key); | 
|  | retval = -EEXIST; | 
|  | goto error_out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make balancing after all resources will be collected at a time */ | 
|  | if (retval == CARRY_ON) { | 
|  | do_balance(&s_ins_balance, p_s_ih, p_c_body, M_INSERT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | 
|  | error_out: | 
|  | /* also releases the path */ | 
|  | unfix_nodes(&s_ins_balance); | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, | 
|  | "reiserquota insert_item(): freeing %u id=%u type=%c", | 
|  | quota_bytes, inode->i_uid, head2type(p_s_ih)); | 
|  | #endif | 
|  | if (inode) | 
|  | DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes); | 
|  | return retval; | 
|  | } |