|  | /* | 
|  | * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin | 
|  | * cleaned up code to current version of sparse and added the slicing-by-8 | 
|  | * algorithm to the closely similar existing slicing-by-4 algorithm. | 
|  | * | 
|  | * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
|  | * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks! | 
|  | * Code was from the public domain, copyright abandoned.  Code was | 
|  | * subsequently included in the kernel, thus was re-licensed under the | 
|  | * GNU GPL v2. | 
|  | * | 
|  | * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
|  | * Same crc32 function was used in 5 other places in the kernel. | 
|  | * I made one version, and deleted the others. | 
|  | * There are various incantations of crc32().  Some use a seed of 0 or ~0. | 
|  | * Some xor at the end with ~0.  The generic crc32() function takes | 
|  | * seed as an argument, and doesn't xor at the end.  Then individual | 
|  | * users can do whatever they need. | 
|  | *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | 
|  | *   fs/jffs2 uses seed 0, doesn't xor with ~0. | 
|  | *   fs/partitions/efi.c uses seed ~0, xor's with ~0. | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  |  | 
|  | /* see: Documentation/crc32.txt for a description of algorithms */ | 
|  |  | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/sched.h> | 
|  | #include "crc32defs.h" | 
|  |  | 
|  | #if CRC_LE_BITS > 8 | 
|  | # define tole(x) ((__force u32) cpu_to_le32(x)) | 
|  | #else | 
|  | # define tole(x) (x) | 
|  | #endif | 
|  |  | 
|  | #if CRC_BE_BITS > 8 | 
|  | # define tobe(x) ((__force u32) cpu_to_be32(x)) | 
|  | #else | 
|  | # define tobe(x) (x) | 
|  | #endif | 
|  |  | 
|  | #include "crc32table.h" | 
|  |  | 
|  | MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); | 
|  | MODULE_DESCRIPTION("Various CRC32 calculations"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8 | 
|  |  | 
|  | /* implements slicing-by-4 or slicing-by-8 algorithm */ | 
|  | static inline u32 __pure | 
|  | crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256]) | 
|  | { | 
|  | # ifdef __LITTLE_ENDIAN | 
|  | #  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8) | 
|  | #  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \ | 
|  | t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255]) | 
|  | #  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \ | 
|  | t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255]) | 
|  | # else | 
|  | #  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8) | 
|  | #  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \ | 
|  | t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255]) | 
|  | #  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \ | 
|  | t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255]) | 
|  | # endif | 
|  | const u32 *b; | 
|  | size_t    rem_len; | 
|  | # ifdef CONFIG_X86 | 
|  | size_t i; | 
|  | # endif | 
|  | const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3]; | 
|  | # if CRC_LE_BITS != 32 | 
|  | const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7]; | 
|  | # endif | 
|  | u32 q; | 
|  |  | 
|  | /* Align it */ | 
|  | if (unlikely((long)buf & 3 && len)) { | 
|  | do { | 
|  | DO_CRC(*buf++); | 
|  | } while ((--len) && ((long)buf)&3); | 
|  | } | 
|  |  | 
|  | # if CRC_LE_BITS == 32 | 
|  | rem_len = len & 3; | 
|  | len = len >> 2; | 
|  | # else | 
|  | rem_len = len & 7; | 
|  | len = len >> 3; | 
|  | # endif | 
|  |  | 
|  | b = (const u32 *)buf; | 
|  | # ifdef CONFIG_X86 | 
|  | --b; | 
|  | for (i = 0; i < len; i++) { | 
|  | # else | 
|  | for (--b; len; --len) { | 
|  | # endif | 
|  | q = crc ^ *++b; /* use pre increment for speed */ | 
|  | # if CRC_LE_BITS == 32 | 
|  | crc = DO_CRC4; | 
|  | # else | 
|  | crc = DO_CRC8; | 
|  | q = *++b; | 
|  | crc ^= DO_CRC4; | 
|  | # endif | 
|  | } | 
|  | len = rem_len; | 
|  | /* And the last few bytes */ | 
|  | if (len) { | 
|  | u8 *p = (u8 *)(b + 1) - 1; | 
|  | # ifdef CONFIG_X86 | 
|  | for (i = 0; i < len; i++) | 
|  | DO_CRC(*++p); /* use pre increment for speed */ | 
|  | # else | 
|  | do { | 
|  | DO_CRC(*++p); /* use pre increment for speed */ | 
|  | } while (--len); | 
|  | # endif | 
|  | } | 
|  | return crc; | 
|  | #undef DO_CRC | 
|  | #undef DO_CRC4 | 
|  | #undef DO_CRC8 | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /** | 
|  | * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II | 
|  | *			CRC32/CRC32C | 
|  | * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for other | 
|  | *	 uses, or the previous crc32/crc32c value if computing incrementally. | 
|  | * @p: pointer to buffer over which CRC32/CRC32C is run | 
|  | * @len: length of buffer @p | 
|  | * @tab: little-endian Ethernet table | 
|  | * @polynomial: CRC32/CRC32c LE polynomial | 
|  | */ | 
|  | static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p, | 
|  | size_t len, const u32 (*tab)[256], | 
|  | u32 polynomial) | 
|  | { | 
|  | #if CRC_LE_BITS == 1 | 
|  | int i; | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | for (i = 0; i < 8; i++) | 
|  | crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); | 
|  | } | 
|  | # elif CRC_LE_BITS == 2 | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | } | 
|  | # elif CRC_LE_BITS == 4 | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | crc = (crc >> 4) ^ tab[0][crc & 15]; | 
|  | crc = (crc >> 4) ^ tab[0][crc & 15]; | 
|  | } | 
|  | # elif CRC_LE_BITS == 8 | 
|  | /* aka Sarwate algorithm */ | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | crc = (crc >> 8) ^ tab[0][crc & 255]; | 
|  | } | 
|  | # else | 
|  | crc = (__force u32) __cpu_to_le32(crc); | 
|  | crc = crc32_body(crc, p, len, tab); | 
|  | crc = __le32_to_cpu((__force __le32)crc); | 
|  | #endif | 
|  | return crc; | 
|  | } | 
|  |  | 
|  | #if CRC_LE_BITS == 1 | 
|  | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_le_generic(crc, p, len, NULL, CRCPOLY_LE); | 
|  | } | 
|  | u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE); | 
|  | } | 
|  | #else | 
|  | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_le_generic(crc, p, len, | 
|  | (const u32 (*)[256])crc32table_le, CRCPOLY_LE); | 
|  | } | 
|  | u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_le_generic(crc, p, len, | 
|  | (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE); | 
|  | } | 
|  | #endif | 
|  | EXPORT_SYMBOL(crc32_le); | 
|  | EXPORT_SYMBOL(__crc32c_le); | 
|  |  | 
|  | /* | 
|  | * This multiplies the polynomials x and y modulo the given modulus. | 
|  | * This follows the "little-endian" CRC convention that the lsbit | 
|  | * represents the highest power of x, and the msbit represents x^0. | 
|  | */ | 
|  | static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus) | 
|  | { | 
|  | u32 product = x & 1 ? y : 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 31; i++) { | 
|  | product = (product >> 1) ^ (product & 1 ? modulus : 0); | 
|  | x >>= 1; | 
|  | product ^= x & 1 ? y : 0; | 
|  | } | 
|  |  | 
|  | return product; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time | 
|  | * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient) | 
|  | * @len: The number of bytes. @crc is multiplied by x^(8*@len) | 
|  | * @polynomial: The modulus used to reduce the result to 32 bits. | 
|  | * | 
|  | * It's possible to parallelize CRC computations by computing a CRC | 
|  | * over separate ranges of a buffer, then summing them. | 
|  | * This shifts the given CRC by 8*len bits (i.e. produces the same effect | 
|  | * as appending len bytes of zero to the data), in time proportional | 
|  | * to log(len). | 
|  | */ | 
|  | static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len, | 
|  | u32 polynomial) | 
|  | { | 
|  | u32 power = polynomial;	/* CRC of x^32 */ | 
|  | int i; | 
|  |  | 
|  | /* Shift up to 32 bits in the simple linear way */ | 
|  | for (i = 0; i < 8 * (int)(len & 3); i++) | 
|  | crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0); | 
|  |  | 
|  | len >>= 2; | 
|  | if (!len) | 
|  | return crc; | 
|  |  | 
|  | for (;;) { | 
|  | /* "power" is x^(2^i), modulo the polynomial */ | 
|  | if (len & 1) | 
|  | crc = gf2_multiply(crc, power, polynomial); | 
|  |  | 
|  | len >>= 1; | 
|  | if (!len) | 
|  | break; | 
|  |  | 
|  | /* Square power, advancing to x^(2^(i+1)) */ | 
|  | power = gf2_multiply(power, power, polynomial); | 
|  | } | 
|  |  | 
|  | return crc; | 
|  | } | 
|  |  | 
|  | u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len) | 
|  | { | 
|  | return crc32_generic_shift(crc, len, CRCPOLY_LE); | 
|  | } | 
|  |  | 
|  | u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len) | 
|  | { | 
|  | return crc32_generic_shift(crc, len, CRC32C_POLY_LE); | 
|  | } | 
|  | EXPORT_SYMBOL(crc32_le_shift); | 
|  | EXPORT_SYMBOL(__crc32c_le_shift); | 
|  |  | 
|  | /** | 
|  | * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | 
|  | * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
|  | *	other uses, or the previous crc32 value if computing incrementally. | 
|  | * @p: pointer to buffer over which CRC32 is run | 
|  | * @len: length of buffer @p | 
|  | * @tab: big-endian Ethernet table | 
|  | * @polynomial: CRC32 BE polynomial | 
|  | */ | 
|  | static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p, | 
|  | size_t len, const u32 (*tab)[256], | 
|  | u32 polynomial) | 
|  | { | 
|  | #if CRC_BE_BITS == 1 | 
|  | int i; | 
|  | while (len--) { | 
|  | crc ^= *p++ << 24; | 
|  | for (i = 0; i < 8; i++) | 
|  | crc = | 
|  | (crc << 1) ^ ((crc & 0x80000000) ? polynomial : | 
|  | 0); | 
|  | } | 
|  | # elif CRC_BE_BITS == 2 | 
|  | while (len--) { | 
|  | crc ^= *p++ << 24; | 
|  | crc = (crc << 2) ^ tab[0][crc >> 30]; | 
|  | crc = (crc << 2) ^ tab[0][crc >> 30]; | 
|  | crc = (crc << 2) ^ tab[0][crc >> 30]; | 
|  | crc = (crc << 2) ^ tab[0][crc >> 30]; | 
|  | } | 
|  | # elif CRC_BE_BITS == 4 | 
|  | while (len--) { | 
|  | crc ^= *p++ << 24; | 
|  | crc = (crc << 4) ^ tab[0][crc >> 28]; | 
|  | crc = (crc << 4) ^ tab[0][crc >> 28]; | 
|  | } | 
|  | # elif CRC_BE_BITS == 8 | 
|  | while (len--) { | 
|  | crc ^= *p++ << 24; | 
|  | crc = (crc << 8) ^ tab[0][crc >> 24]; | 
|  | } | 
|  | # else | 
|  | crc = (__force u32) __cpu_to_be32(crc); | 
|  | crc = crc32_body(crc, p, len, tab); | 
|  | crc = __be32_to_cpu((__force __be32)crc); | 
|  | # endif | 
|  | return crc; | 
|  | } | 
|  |  | 
|  | #if CRC_LE_BITS == 1 | 
|  | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_be_generic(crc, p, len, NULL, CRCPOLY_BE); | 
|  | } | 
|  | #else | 
|  | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_be_generic(crc, p, len, | 
|  | (const u32 (*)[256])crc32table_be, CRCPOLY_BE); | 
|  | } | 
|  | #endif | 
|  | EXPORT_SYMBOL(crc32_be); |