|  | /* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved. | 
|  | * Copyright (C) 2015 Linaro Ltd. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 and | 
|  | * only version 2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | * 02110-1301, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/qcom_scm.h> | 
|  | #include <linux/dma-mapping.h> | 
|  |  | 
|  | #include "qcom_scm.h" | 
|  |  | 
|  | #define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00 | 
|  | #define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01 | 
|  | #define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08 | 
|  | #define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20 | 
|  |  | 
|  | #define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04 | 
|  | #define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02 | 
|  | #define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10 | 
|  | #define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40 | 
|  |  | 
|  | struct qcom_scm_entry { | 
|  | int flag; | 
|  | void *entry; | 
|  | }; | 
|  |  | 
|  | static struct qcom_scm_entry qcom_scm_wb[] = { | 
|  | { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 }, | 
|  | { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 }, | 
|  | { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 }, | 
|  | { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 }, | 
|  | }; | 
|  |  | 
|  | static DEFINE_MUTEX(qcom_scm_lock); | 
|  |  | 
|  | /** | 
|  | * struct qcom_scm_command - one SCM command buffer | 
|  | * @len: total available memory for command and response | 
|  | * @buf_offset: start of command buffer | 
|  | * @resp_hdr_offset: start of response buffer | 
|  | * @id: command to be executed | 
|  | * @buf: buffer returned from qcom_scm_get_command_buffer() | 
|  | * | 
|  | * An SCM command is laid out in memory as follows: | 
|  | * | 
|  | *	------------------- <--- struct qcom_scm_command | 
|  | *	| command header  | | 
|  | *	------------------- <--- qcom_scm_get_command_buffer() | 
|  | *	| command buffer  | | 
|  | *	------------------- <--- struct qcom_scm_response and | 
|  | *	| response header |      qcom_scm_command_to_response() | 
|  | *	------------------- <--- qcom_scm_get_response_buffer() | 
|  | *	| response buffer | | 
|  | *	------------------- | 
|  | * | 
|  | * There can be arbitrary padding between the headers and buffers so | 
|  | * you should always use the appropriate qcom_scm_get_*_buffer() routines | 
|  | * to access the buffers in a safe manner. | 
|  | */ | 
|  | struct qcom_scm_command { | 
|  | __le32 len; | 
|  | __le32 buf_offset; | 
|  | __le32 resp_hdr_offset; | 
|  | __le32 id; | 
|  | __le32 buf[0]; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct qcom_scm_response - one SCM response buffer | 
|  | * @len: total available memory for response | 
|  | * @buf_offset: start of response data relative to start of qcom_scm_response | 
|  | * @is_complete: indicates if the command has finished processing | 
|  | */ | 
|  | struct qcom_scm_response { | 
|  | __le32 len; | 
|  | __le32 buf_offset; | 
|  | __le32 is_complete; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response | 
|  | * @cmd: command | 
|  | * | 
|  | * Returns a pointer to a response for a command. | 
|  | */ | 
|  | static inline struct qcom_scm_response *qcom_scm_command_to_response( | 
|  | const struct qcom_scm_command *cmd) | 
|  | { | 
|  | return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qcom_scm_get_command_buffer() - Get a pointer to a command buffer | 
|  | * @cmd: command | 
|  | * | 
|  | * Returns a pointer to the command buffer of a command. | 
|  | */ | 
|  | static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd) | 
|  | { | 
|  | return (void *)cmd->buf; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qcom_scm_get_response_buffer() - Get a pointer to a response buffer | 
|  | * @rsp: response | 
|  | * | 
|  | * Returns a pointer to a response buffer of a response. | 
|  | */ | 
|  | static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp) | 
|  | { | 
|  | return (void *)rsp + le32_to_cpu(rsp->buf_offset); | 
|  | } | 
|  |  | 
|  | static u32 smc(u32 cmd_addr) | 
|  | { | 
|  | int context_id; | 
|  | register u32 r0 asm("r0") = 1; | 
|  | register u32 r1 asm("r1") = (u32)&context_id; | 
|  | register u32 r2 asm("r2") = cmd_addr; | 
|  | do { | 
|  | asm volatile( | 
|  | __asmeq("%0", "r0") | 
|  | __asmeq("%1", "r0") | 
|  | __asmeq("%2", "r1") | 
|  | __asmeq("%3", "r2") | 
|  | #ifdef REQUIRES_SEC | 
|  | ".arch_extension sec\n" | 
|  | #endif | 
|  | "smc	#0	@ switch to secure world\n" | 
|  | : "=r" (r0) | 
|  | : "r" (r0), "r" (r1), "r" (r2) | 
|  | : "r3"); | 
|  | } while (r0 == QCOM_SCM_INTERRUPTED); | 
|  |  | 
|  | return r0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qcom_scm_call() - Send an SCM command | 
|  | * @dev: struct device | 
|  | * @svc_id: service identifier | 
|  | * @cmd_id: command identifier | 
|  | * @cmd_buf: command buffer | 
|  | * @cmd_len: length of the command buffer | 
|  | * @resp_buf: response buffer | 
|  | * @resp_len: length of the response buffer | 
|  | * | 
|  | * Sends a command to the SCM and waits for the command to finish processing. | 
|  | * | 
|  | * A note on cache maintenance: | 
|  | * Note that any buffers that are expected to be accessed by the secure world | 
|  | * must be flushed before invoking qcom_scm_call and invalidated in the cache | 
|  | * immediately after qcom_scm_call returns. Cache maintenance on the command | 
|  | * and response buffers is taken care of by qcom_scm_call; however, callers are | 
|  | * responsible for any other cached buffers passed over to the secure world. | 
|  | */ | 
|  | static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, | 
|  | const void *cmd_buf, size_t cmd_len, void *resp_buf, | 
|  | size_t resp_len) | 
|  | { | 
|  | int ret; | 
|  | struct qcom_scm_command *cmd; | 
|  | struct qcom_scm_response *rsp; | 
|  | size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len; | 
|  | dma_addr_t cmd_phys; | 
|  |  | 
|  | cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL); | 
|  | if (!cmd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cmd->len = cpu_to_le32(alloc_len); | 
|  | cmd->buf_offset = cpu_to_le32(sizeof(*cmd)); | 
|  | cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len); | 
|  |  | 
|  | cmd->id = cpu_to_le32((svc_id << 10) | cmd_id); | 
|  | if (cmd_buf) | 
|  | memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len); | 
|  |  | 
|  | rsp = qcom_scm_command_to_response(cmd); | 
|  |  | 
|  | cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, cmd_phys)) { | 
|  | kfree(cmd); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | mutex_lock(&qcom_scm_lock); | 
|  | ret = smc(cmd_phys); | 
|  | if (ret < 0) | 
|  | ret = qcom_scm_remap_error(ret); | 
|  | mutex_unlock(&qcom_scm_lock); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len, | 
|  | sizeof(*rsp), DMA_FROM_DEVICE); | 
|  | } while (!rsp->is_complete); | 
|  |  | 
|  | if (resp_buf) { | 
|  | dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len + | 
|  | le32_to_cpu(rsp->buf_offset), | 
|  | resp_len, DMA_FROM_DEVICE); | 
|  | memcpy(resp_buf, qcom_scm_get_response_buffer(rsp), | 
|  | resp_len); | 
|  | } | 
|  | out: | 
|  | dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE); | 
|  | kfree(cmd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define SCM_CLASS_REGISTER	(0x2 << 8) | 
|  | #define SCM_MASK_IRQS		BIT(5) | 
|  | #define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \ | 
|  | SCM_CLASS_REGISTER | \ | 
|  | SCM_MASK_IRQS | \ | 
|  | (n & 0xf)) | 
|  |  | 
|  | /** | 
|  | * qcom_scm_call_atomic1() - Send an atomic SCM command with one argument | 
|  | * @svc_id: service identifier | 
|  | * @cmd_id: command identifier | 
|  | * @arg1: first argument | 
|  | * | 
|  | * This shall only be used with commands that are guaranteed to be | 
|  | * uninterruptable, atomic and SMP safe. | 
|  | */ | 
|  | static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1) | 
|  | { | 
|  | int context_id; | 
|  |  | 
|  | register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1); | 
|  | register u32 r1 asm("r1") = (u32)&context_id; | 
|  | register u32 r2 asm("r2") = arg1; | 
|  |  | 
|  | asm volatile( | 
|  | __asmeq("%0", "r0") | 
|  | __asmeq("%1", "r0") | 
|  | __asmeq("%2", "r1") | 
|  | __asmeq("%3", "r2") | 
|  | #ifdef REQUIRES_SEC | 
|  | ".arch_extension sec\n" | 
|  | #endif | 
|  | "smc    #0      @ switch to secure world\n" | 
|  | : "=r" (r0) | 
|  | : "r" (r0), "r" (r1), "r" (r2) | 
|  | : "r3"); | 
|  | return r0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments | 
|  | * @svc_id:	service identifier | 
|  | * @cmd_id:	command identifier | 
|  | * @arg1:	first argument | 
|  | * @arg2:	second argument | 
|  | * | 
|  | * This shall only be used with commands that are guaranteed to be | 
|  | * uninterruptable, atomic and SMP safe. | 
|  | */ | 
|  | static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2) | 
|  | { | 
|  | int context_id; | 
|  |  | 
|  | register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2); | 
|  | register u32 r1 asm("r1") = (u32)&context_id; | 
|  | register u32 r2 asm("r2") = arg1; | 
|  | register u32 r3 asm("r3") = arg2; | 
|  |  | 
|  | asm volatile( | 
|  | __asmeq("%0", "r0") | 
|  | __asmeq("%1", "r0") | 
|  | __asmeq("%2", "r1") | 
|  | __asmeq("%3", "r2") | 
|  | __asmeq("%4", "r3") | 
|  | #ifdef REQUIRES_SEC | 
|  | ".arch_extension sec\n" | 
|  | #endif | 
|  | "smc    #0      @ switch to secure world\n" | 
|  | : "=r" (r0) | 
|  | : "r" (r0), "r" (r1), "r" (r2), "r" (r3) | 
|  | ); | 
|  | return r0; | 
|  | } | 
|  |  | 
|  | u32 qcom_scm_get_version(void) | 
|  | { | 
|  | int context_id; | 
|  | static u32 version = -1; | 
|  | register u32 r0 asm("r0"); | 
|  | register u32 r1 asm("r1"); | 
|  |  | 
|  | if (version != -1) | 
|  | return version; | 
|  |  | 
|  | mutex_lock(&qcom_scm_lock); | 
|  |  | 
|  | r0 = 0x1 << 8; | 
|  | r1 = (u32)&context_id; | 
|  | do { | 
|  | asm volatile( | 
|  | __asmeq("%0", "r0") | 
|  | __asmeq("%1", "r1") | 
|  | __asmeq("%2", "r0") | 
|  | __asmeq("%3", "r1") | 
|  | #ifdef REQUIRES_SEC | 
|  | ".arch_extension sec\n" | 
|  | #endif | 
|  | "smc	#0	@ switch to secure world\n" | 
|  | : "=r" (r0), "=r" (r1) | 
|  | : "r" (r0), "r" (r1) | 
|  | : "r2", "r3"); | 
|  | } while (r0 == QCOM_SCM_INTERRUPTED); | 
|  |  | 
|  | version = r1; | 
|  | mutex_unlock(&qcom_scm_lock); | 
|  |  | 
|  | return version; | 
|  | } | 
|  | EXPORT_SYMBOL(qcom_scm_get_version); | 
|  |  | 
|  | /** | 
|  | * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus | 
|  | * @entry: Entry point function for the cpus | 
|  | * @cpus: The cpumask of cpus that will use the entry point | 
|  | * | 
|  | * Set the cold boot address of the cpus. Any cpu outside the supported | 
|  | * range would be removed from the cpu present mask. | 
|  | */ | 
|  | int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) | 
|  | { | 
|  | int flags = 0; | 
|  | int cpu; | 
|  | int scm_cb_flags[] = { | 
|  | QCOM_SCM_FLAG_COLDBOOT_CPU0, | 
|  | QCOM_SCM_FLAG_COLDBOOT_CPU1, | 
|  | QCOM_SCM_FLAG_COLDBOOT_CPU2, | 
|  | QCOM_SCM_FLAG_COLDBOOT_CPU3, | 
|  | }; | 
|  |  | 
|  | if (!cpus || (cpus && cpumask_empty(cpus))) | 
|  | return -EINVAL; | 
|  |  | 
|  | for_each_cpu(cpu, cpus) { | 
|  | if (cpu < ARRAY_SIZE(scm_cb_flags)) | 
|  | flags |= scm_cb_flags[cpu]; | 
|  | else | 
|  | set_cpu_present(cpu, false); | 
|  | } | 
|  |  | 
|  | return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR, | 
|  | flags, virt_to_phys(entry)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus | 
|  | * @entry: Entry point function for the cpus | 
|  | * @cpus: The cpumask of cpus that will use the entry point | 
|  | * | 
|  | * Set the Linux entry point for the SCM to transfer control to when coming | 
|  | * out of a power down. CPU power down may be executed on cpuidle or hotplug. | 
|  | */ | 
|  | int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry, | 
|  | const cpumask_t *cpus) | 
|  | { | 
|  | int ret; | 
|  | int flags = 0; | 
|  | int cpu; | 
|  | struct { | 
|  | __le32 flags; | 
|  | __le32 addr; | 
|  | } cmd; | 
|  |  | 
|  | /* | 
|  | * Reassign only if we are switching from hotplug entry point | 
|  | * to cpuidle entry point or vice versa. | 
|  | */ | 
|  | for_each_cpu(cpu, cpus) { | 
|  | if (entry == qcom_scm_wb[cpu].entry) | 
|  | continue; | 
|  | flags |= qcom_scm_wb[cpu].flag; | 
|  | } | 
|  |  | 
|  | /* No change in entry function */ | 
|  | if (!flags) | 
|  | return 0; | 
|  |  | 
|  | cmd.addr = cpu_to_le32(virt_to_phys(entry)); | 
|  | cmd.flags = cpu_to_le32(flags); | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR, | 
|  | &cmd, sizeof(cmd), NULL, 0); | 
|  | if (!ret) { | 
|  | for_each_cpu(cpu, cpus) | 
|  | qcom_scm_wb[cpu].entry = entry; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qcom_scm_cpu_power_down() - Power down the cpu | 
|  | * @flags - Flags to flush cache | 
|  | * | 
|  | * This is an end point to power down cpu. If there was a pending interrupt, | 
|  | * the control would return from this function, otherwise, the cpu jumps to the | 
|  | * warm boot entry point set for this cpu upon reset. | 
|  | */ | 
|  | void __qcom_scm_cpu_power_down(u32 flags) | 
|  | { | 
|  | qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC, | 
|  | flags & QCOM_SCM_FLUSH_FLAG_MASK); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id) | 
|  | { | 
|  | int ret; | 
|  | __le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id); | 
|  | __le32 ret_val = 0; | 
|  |  | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, | 
|  | &svc_cmd, sizeof(svc_cmd), &ret_val, | 
|  | sizeof(ret_val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return le32_to_cpu(ret_val); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req, | 
|  | u32 req_cnt, u32 *resp) | 
|  | { | 
|  | if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) | 
|  | return -ERANGE; | 
|  |  | 
|  | return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP, | 
|  | req, req_cnt * sizeof(*req), resp, sizeof(*resp)); | 
|  | } | 
|  |  | 
|  | void __qcom_scm_init(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral) | 
|  | { | 
|  | __le32 out; | 
|  | __le32 in; | 
|  | int ret; | 
|  |  | 
|  | in = cpu_to_le32(peripheral); | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, | 
|  | QCOM_SCM_PAS_IS_SUPPORTED_CMD, | 
|  | &in, sizeof(in), | 
|  | &out, sizeof(out)); | 
|  |  | 
|  | return ret ? false : !!out; | 
|  | } | 
|  |  | 
|  | int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral, | 
|  | dma_addr_t metadata_phys) | 
|  | { | 
|  | __le32 scm_ret; | 
|  | int ret; | 
|  | struct { | 
|  | __le32 proc; | 
|  | __le32 image_addr; | 
|  | } request; | 
|  |  | 
|  | request.proc = cpu_to_le32(peripheral); | 
|  | request.image_addr = cpu_to_le32(metadata_phys); | 
|  |  | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, | 
|  | QCOM_SCM_PAS_INIT_IMAGE_CMD, | 
|  | &request, sizeof(request), | 
|  | &scm_ret, sizeof(scm_ret)); | 
|  |  | 
|  | return ret ? : le32_to_cpu(scm_ret); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral, | 
|  | phys_addr_t addr, phys_addr_t size) | 
|  | { | 
|  | __le32 scm_ret; | 
|  | int ret; | 
|  | struct { | 
|  | __le32 proc; | 
|  | __le32 addr; | 
|  | __le32 len; | 
|  | } request; | 
|  |  | 
|  | request.proc = cpu_to_le32(peripheral); | 
|  | request.addr = cpu_to_le32(addr); | 
|  | request.len = cpu_to_le32(size); | 
|  |  | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, | 
|  | QCOM_SCM_PAS_MEM_SETUP_CMD, | 
|  | &request, sizeof(request), | 
|  | &scm_ret, sizeof(scm_ret)); | 
|  |  | 
|  | return ret ? : le32_to_cpu(scm_ret); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral) | 
|  | { | 
|  | __le32 out; | 
|  | __le32 in; | 
|  | int ret; | 
|  |  | 
|  | in = cpu_to_le32(peripheral); | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, | 
|  | QCOM_SCM_PAS_AUTH_AND_RESET_CMD, | 
|  | &in, sizeof(in), | 
|  | &out, sizeof(out)); | 
|  |  | 
|  | return ret ? : le32_to_cpu(out); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral) | 
|  | { | 
|  | __le32 out; | 
|  | __le32 in; | 
|  | int ret; | 
|  |  | 
|  | in = cpu_to_le32(peripheral); | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, | 
|  | QCOM_SCM_PAS_SHUTDOWN_CMD, | 
|  | &in, sizeof(in), | 
|  | &out, sizeof(out)); | 
|  |  | 
|  | return ret ? : le32_to_cpu(out); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) | 
|  | { | 
|  | __le32 out; | 
|  | __le32 in = cpu_to_le32(reset); | 
|  | int ret; | 
|  |  | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET, | 
|  | &in, sizeof(in), | 
|  | &out, sizeof(out)); | 
|  |  | 
|  | return ret ? : le32_to_cpu(out); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_set_dload_mode(struct device *dev, bool enable) | 
|  | { | 
|  | return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE, | 
|  | enable ? QCOM_SCM_SET_DLOAD_MODE : 0, 0); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id) | 
|  | { | 
|  | struct { | 
|  | __le32 state; | 
|  | __le32 id; | 
|  | } req; | 
|  | __le32 scm_ret = 0; | 
|  | int ret; | 
|  |  | 
|  | req.state = cpu_to_le32(state); | 
|  | req.id = cpu_to_le32(id); | 
|  |  | 
|  | ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE, | 
|  | &req, sizeof(req), &scm_ret, sizeof(scm_ret)); | 
|  |  | 
|  | return ret ? : le32_to_cpu(scm_ret); | 
|  | } | 
|  |  | 
|  | int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, | 
|  | size_t mem_sz, phys_addr_t src, size_t src_sz, | 
|  | phys_addr_t dest, size_t dest_sz) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id, | 
|  | u32 spare) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare, | 
|  | size_t *size) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size, | 
|  | u32 spare) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr, | 
|  | unsigned int *val) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr); | 
|  | if (ret >= 0) | 
|  | *val = ret; | 
|  |  | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val) | 
|  | { | 
|  | return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, | 
|  | addr, val); | 
|  | } |