| /* |
| * Driver for the Macintosh 68K onboard MACE controller with PSC |
| * driven DMA. The MACE driver code is derived from mace.c. The |
| * Mac68k theory of operation is courtesy of the MacBSD wizards. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Copyright (C) 1996 Paul Mackerras. |
| * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> |
| * |
| * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver |
| * |
| * Copyright (C) 2007 Finn Thain |
| * |
| * Converted to DMA API, converted to unified driver model, |
| * sync'd some routines with mace.c and fixed various bugs. |
| */ |
| |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/crc32.h> |
| #include <linux/bitrev.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/platform_device.h> |
| #include <linux/gfp.h> |
| #include <linux/interrupt.h> |
| #include <asm/io.h> |
| #include <asm/macints.h> |
| #include <asm/mac_psc.h> |
| #include <asm/page.h> |
| #include "mace.h" |
| |
| static char mac_mace_string[] = "macmace"; |
| |
| #define N_TX_BUFF_ORDER 0 |
| #define N_TX_RING (1 << N_TX_BUFF_ORDER) |
| #define N_RX_BUFF_ORDER 3 |
| #define N_RX_RING (1 << N_RX_BUFF_ORDER) |
| |
| #define TX_TIMEOUT HZ |
| |
| #define MACE_BUFF_SIZE 0x800 |
| |
| /* Chip rev needs workaround on HW & multicast addr change */ |
| #define BROKEN_ADDRCHG_REV 0x0941 |
| |
| /* The MACE is simply wired down on a Mac68K box */ |
| |
| #define MACE_BASE (void *)(0x50F1C000) |
| #define MACE_PROM (void *)(0x50F08001) |
| |
| struct mace_data { |
| volatile struct mace *mace; |
| unsigned char *tx_ring; |
| dma_addr_t tx_ring_phys; |
| unsigned char *rx_ring; |
| dma_addr_t rx_ring_phys; |
| int dma_intr; |
| int rx_slot, rx_tail; |
| int tx_slot, tx_sloti, tx_count; |
| int chipid; |
| struct device *device; |
| }; |
| |
| struct mace_frame { |
| u8 rcvcnt; |
| u8 pad1; |
| u8 rcvsts; |
| u8 pad2; |
| u8 rntpc; |
| u8 pad3; |
| u8 rcvcc; |
| u8 pad4; |
| u32 pad5; |
| u32 pad6; |
| u8 data[1]; |
| /* And frame continues.. */ |
| }; |
| |
| #define PRIV_BYTES sizeof(struct mace_data) |
| |
| static int mace_open(struct net_device *dev); |
| static int mace_close(struct net_device *dev); |
| static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev); |
| static void mace_set_multicast(struct net_device *dev); |
| static int mace_set_address(struct net_device *dev, void *addr); |
| static void mace_reset(struct net_device *dev); |
| static irqreturn_t mace_interrupt(int irq, void *dev_id); |
| static irqreturn_t mace_dma_intr(int irq, void *dev_id); |
| static void mace_tx_timeout(struct net_device *dev); |
| static void __mace_set_address(struct net_device *dev, void *addr); |
| |
| /* |
| * Load a receive DMA channel with a base address and ring length |
| */ |
| |
| static void mace_load_rxdma_base(struct net_device *dev, int set) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| |
| psc_write_word(PSC_ENETRD_CMD + set, 0x0100); |
| psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); |
| psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); |
| psc_write_word(PSC_ENETRD_CMD + set, 0x9800); |
| mp->rx_tail = 0; |
| } |
| |
| /* |
| * Reset the receive DMA subsystem |
| */ |
| |
| static void mace_rxdma_reset(struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mace = mp->mace; |
| u8 maccc = mace->maccc; |
| |
| mace->maccc = maccc & ~ENRCV; |
| |
| psc_write_word(PSC_ENETRD_CTL, 0x8800); |
| mace_load_rxdma_base(dev, 0x00); |
| psc_write_word(PSC_ENETRD_CTL, 0x0400); |
| |
| psc_write_word(PSC_ENETRD_CTL, 0x8800); |
| mace_load_rxdma_base(dev, 0x10); |
| psc_write_word(PSC_ENETRD_CTL, 0x0400); |
| |
| mace->maccc = maccc; |
| mp->rx_slot = 0; |
| |
| psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); |
| psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); |
| } |
| |
| /* |
| * Reset the transmit DMA subsystem |
| */ |
| |
| static void mace_txdma_reset(struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mace = mp->mace; |
| u8 maccc; |
| |
| psc_write_word(PSC_ENETWR_CTL, 0x8800); |
| |
| maccc = mace->maccc; |
| mace->maccc = maccc & ~ENXMT; |
| |
| mp->tx_slot = mp->tx_sloti = 0; |
| mp->tx_count = N_TX_RING; |
| |
| psc_write_word(PSC_ENETWR_CTL, 0x0400); |
| mace->maccc = maccc; |
| } |
| |
| /* |
| * Disable DMA |
| */ |
| |
| static void mace_dma_off(struct net_device *dev) |
| { |
| psc_write_word(PSC_ENETRD_CTL, 0x8800); |
| psc_write_word(PSC_ENETRD_CTL, 0x1000); |
| psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); |
| psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); |
| |
| psc_write_word(PSC_ENETWR_CTL, 0x8800); |
| psc_write_word(PSC_ENETWR_CTL, 0x1000); |
| psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); |
| psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); |
| } |
| |
| static const struct net_device_ops mace_netdev_ops = { |
| .ndo_open = mace_open, |
| .ndo_stop = mace_close, |
| .ndo_start_xmit = mace_xmit_start, |
| .ndo_tx_timeout = mace_tx_timeout, |
| .ndo_set_rx_mode = mace_set_multicast, |
| .ndo_set_mac_address = mace_set_address, |
| .ndo_validate_addr = eth_validate_addr, |
| }; |
| |
| /* |
| * Not really much of a probe. The hardware table tells us if this |
| * model of Macintrash has a MACE (AV macintoshes) |
| */ |
| |
| static int mace_probe(struct platform_device *pdev) |
| { |
| int j; |
| struct mace_data *mp; |
| unsigned char *addr; |
| struct net_device *dev; |
| unsigned char checksum = 0; |
| int err; |
| |
| dev = alloc_etherdev(PRIV_BYTES); |
| if (!dev) |
| return -ENOMEM; |
| |
| mp = netdev_priv(dev); |
| |
| mp->device = &pdev->dev; |
| platform_set_drvdata(pdev, dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| dev->base_addr = (u32)MACE_BASE; |
| mp->mace = MACE_BASE; |
| |
| dev->irq = IRQ_MAC_MACE; |
| mp->dma_intr = IRQ_MAC_MACE_DMA; |
| |
| mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo; |
| |
| /* |
| * The PROM contains 8 bytes which total 0xFF when XOR'd |
| * together. Due to the usual peculiar apple brain damage |
| * the bytes are spaced out in a strange boundary and the |
| * bits are reversed. |
| */ |
| |
| addr = MACE_PROM; |
| |
| for (j = 0; j < 6; ++j) { |
| u8 v = bitrev8(addr[j<<4]); |
| checksum ^= v; |
| dev->dev_addr[j] = v; |
| } |
| for (; j < 8; ++j) { |
| checksum ^= bitrev8(addr[j<<4]); |
| } |
| |
| if (checksum != 0xFF) { |
| free_netdev(dev); |
| return -ENODEV; |
| } |
| |
| dev->netdev_ops = &mace_netdev_ops; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| |
| pr_info("Onboard MACE, hardware address %pM, chip revision 0x%04X\n", |
| dev->dev_addr, mp->chipid); |
| |
| err = register_netdev(dev); |
| if (!err) |
| return 0; |
| |
| free_netdev(dev); |
| return err; |
| } |
| |
| /* |
| * Reset the chip. |
| */ |
| |
| static void mace_reset(struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| int i; |
| |
| /* soft-reset the chip */ |
| i = 200; |
| while (--i) { |
| mb->biucc = SWRST; |
| if (mb->biucc & SWRST) { |
| udelay(10); |
| continue; |
| } |
| break; |
| } |
| if (!i) { |
| printk(KERN_ERR "macmace: cannot reset chip!\n"); |
| return; |
| } |
| |
| mb->maccc = 0; /* turn off tx, rx */ |
| mb->imr = 0xFF; /* disable all intrs for now */ |
| i = mb->ir; |
| |
| mb->biucc = XMTSP_64; |
| mb->utr = RTRD; |
| mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU; |
| |
| mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */ |
| mb->rcvfc = 0; |
| |
| /* load up the hardware address */ |
| __mace_set_address(dev, dev->dev_addr); |
| |
| /* clear the multicast filter */ |
| if (mp->chipid == BROKEN_ADDRCHG_REV) |
| mb->iac = LOGADDR; |
| else { |
| mb->iac = ADDRCHG | LOGADDR; |
| while ((mb->iac & ADDRCHG) != 0) |
| ; |
| } |
| for (i = 0; i < 8; ++i) |
| mb->ladrf = 0; |
| |
| /* done changing address */ |
| if (mp->chipid != BROKEN_ADDRCHG_REV) |
| mb->iac = 0; |
| |
| mb->plscc = PORTSEL_AUI; |
| } |
| |
| /* |
| * Load the address on a mace controller. |
| */ |
| |
| static void __mace_set_address(struct net_device *dev, void *addr) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| unsigned char *p = addr; |
| int i; |
| |
| /* load up the hardware address */ |
| if (mp->chipid == BROKEN_ADDRCHG_REV) |
| mb->iac = PHYADDR; |
| else { |
| mb->iac = ADDRCHG | PHYADDR; |
| while ((mb->iac & ADDRCHG) != 0) |
| ; |
| } |
| for (i = 0; i < 6; ++i) |
| mb->padr = dev->dev_addr[i] = p[i]; |
| if (mp->chipid != BROKEN_ADDRCHG_REV) |
| mb->iac = 0; |
| } |
| |
| static int mace_set_address(struct net_device *dev, void *addr) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| unsigned long flags; |
| u8 maccc; |
| |
| local_irq_save(flags); |
| |
| maccc = mb->maccc; |
| |
| __mace_set_address(dev, addr); |
| |
| mb->maccc = maccc; |
| |
| local_irq_restore(flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Open the Macintosh MACE. Most of this is playing with the DMA |
| * engine. The ethernet chip is quite friendly. |
| */ |
| |
| static int mace_open(struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| |
| /* reset the chip */ |
| mace_reset(dev); |
| |
| if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { |
| printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); |
| return -EAGAIN; |
| } |
| if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { |
| printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); |
| free_irq(dev->irq, dev); |
| return -EAGAIN; |
| } |
| |
| /* Allocate the DMA ring buffers */ |
| |
| mp->tx_ring = dma_alloc_coherent(mp->device, |
| N_TX_RING * MACE_BUFF_SIZE, |
| &mp->tx_ring_phys, GFP_KERNEL); |
| if (mp->tx_ring == NULL) |
| goto out1; |
| |
| mp->rx_ring = dma_alloc_coherent(mp->device, |
| N_RX_RING * MACE_BUFF_SIZE, |
| &mp->rx_ring_phys, GFP_KERNEL); |
| if (mp->rx_ring == NULL) |
| goto out2; |
| |
| mace_dma_off(dev); |
| |
| /* Not sure what these do */ |
| |
| psc_write_word(PSC_ENETWR_CTL, 0x9000); |
| psc_write_word(PSC_ENETRD_CTL, 0x9000); |
| psc_write_word(PSC_ENETWR_CTL, 0x0400); |
| psc_write_word(PSC_ENETRD_CTL, 0x0400); |
| |
| mace_rxdma_reset(dev); |
| mace_txdma_reset(dev); |
| |
| /* turn it on! */ |
| mb->maccc = ENXMT | ENRCV; |
| /* enable all interrupts except receive interrupts */ |
| mb->imr = RCVINT; |
| return 0; |
| |
| out2: |
| dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, |
| mp->tx_ring, mp->tx_ring_phys); |
| out1: |
| free_irq(dev->irq, dev); |
| free_irq(mp->dma_intr, dev); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Shut down the mace and its interrupt channel |
| */ |
| |
| static int mace_close(struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| |
| mb->maccc = 0; /* disable rx and tx */ |
| mb->imr = 0xFF; /* disable all irqs */ |
| mace_dma_off(dev); /* disable rx and tx dma */ |
| |
| return 0; |
| } |
| |
| /* |
| * Transmit a frame |
| */ |
| |
| static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| unsigned long flags; |
| |
| /* Stop the queue since there's only the one buffer */ |
| |
| local_irq_save(flags); |
| netif_stop_queue(dev); |
| if (!mp->tx_count) { |
| printk(KERN_ERR "macmace: tx queue running but no free buffers.\n"); |
| local_irq_restore(flags); |
| return NETDEV_TX_BUSY; |
| } |
| mp->tx_count--; |
| local_irq_restore(flags); |
| |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += skb->len; |
| |
| /* We need to copy into our xmit buffer to take care of alignment and caching issues */ |
| skb_copy_from_linear_data(skb, mp->tx_ring, skb->len); |
| |
| /* load the Tx DMA and fire it off */ |
| |
| psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys); |
| psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); |
| psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); |
| |
| mp->tx_slot ^= 0x10; |
| |
| dev_kfree_skb(skb); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void mace_set_multicast(struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| int i; |
| u32 crc; |
| u8 maccc; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| maccc = mb->maccc; |
| mb->maccc &= ~PROM; |
| |
| if (dev->flags & IFF_PROMISC) { |
| mb->maccc |= PROM; |
| } else { |
| unsigned char multicast_filter[8]; |
| struct netdev_hw_addr *ha; |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| for (i = 0; i < 8; i++) { |
| multicast_filter[i] = 0xFF; |
| } |
| } else { |
| for (i = 0; i < 8; i++) |
| multicast_filter[i] = 0; |
| netdev_for_each_mc_addr(ha, dev) { |
| crc = ether_crc_le(6, ha->addr); |
| /* bit number in multicast_filter */ |
| i = crc >> 26; |
| multicast_filter[i >> 3] |= 1 << (i & 7); |
| } |
| } |
| |
| if (mp->chipid == BROKEN_ADDRCHG_REV) |
| mb->iac = LOGADDR; |
| else { |
| mb->iac = ADDRCHG | LOGADDR; |
| while ((mb->iac & ADDRCHG) != 0) |
| ; |
| } |
| for (i = 0; i < 8; ++i) |
| mb->ladrf = multicast_filter[i]; |
| if (mp->chipid != BROKEN_ADDRCHG_REV) |
| mb->iac = 0; |
| } |
| |
| mb->maccc = maccc; |
| local_irq_restore(flags); |
| } |
| |
| static void mace_handle_misc_intrs(struct net_device *dev, int intr) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| static int mace_babbles, mace_jabbers; |
| |
| if (intr & MPCO) |
| dev->stats.rx_missed_errors += 256; |
| dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */ |
| if (intr & RNTPCO) |
| dev->stats.rx_length_errors += 256; |
| dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */ |
| if (intr & CERR) |
| ++dev->stats.tx_heartbeat_errors; |
| if (intr & BABBLE) |
| if (mace_babbles++ < 4) |
| printk(KERN_DEBUG "macmace: babbling transmitter\n"); |
| if (intr & JABBER) |
| if (mace_jabbers++ < 4) |
| printk(KERN_DEBUG "macmace: jabbering transceiver\n"); |
| } |
| |
| static irqreturn_t mace_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| int intr, fs; |
| unsigned long flags; |
| |
| /* don't want the dma interrupt handler to fire */ |
| local_irq_save(flags); |
| |
| intr = mb->ir; /* read interrupt register */ |
| mace_handle_misc_intrs(dev, intr); |
| |
| if (intr & XMTINT) { |
| fs = mb->xmtfs; |
| if ((fs & XMTSV) == 0) { |
| printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs); |
| mace_reset(dev); |
| /* |
| * XXX mace likes to hang the machine after a xmtfs error. |
| * This is hard to reproduce, resetting *may* help |
| */ |
| } |
| /* dma should have finished */ |
| if (!mp->tx_count) { |
| printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs); |
| } |
| /* Update stats */ |
| if (fs & (UFLO|LCOL|LCAR|RTRY)) { |
| ++dev->stats.tx_errors; |
| if (fs & LCAR) |
| ++dev->stats.tx_carrier_errors; |
| else if (fs & (UFLO|LCOL|RTRY)) { |
| ++dev->stats.tx_aborted_errors; |
| if (mb->xmtfs & UFLO) { |
| dev->stats.tx_fifo_errors++; |
| mace_txdma_reset(dev); |
| } |
| } |
| } |
| } |
| |
| if (mp->tx_count) |
| netif_wake_queue(dev); |
| |
| local_irq_restore(flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void mace_tx_timeout(struct net_device *dev) |
| { |
| struct mace_data *mp = netdev_priv(dev); |
| volatile struct mace *mb = mp->mace; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| /* turn off both tx and rx and reset the chip */ |
| mb->maccc = 0; |
| printk(KERN_ERR "macmace: transmit timeout - resetting\n"); |
| mace_txdma_reset(dev); |
| mace_reset(dev); |
| |
| /* restart rx dma */ |
| mace_rxdma_reset(dev); |
| |
| mp->tx_count = N_TX_RING; |
| netif_wake_queue(dev); |
| |
| /* turn it on! */ |
| mb->maccc = ENXMT | ENRCV; |
| /* enable all interrupts except receive interrupts */ |
| mb->imr = RCVINT; |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Handle a newly arrived frame |
| */ |
| |
| static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) |
| { |
| struct sk_buff *skb; |
| unsigned int frame_status = mf->rcvsts; |
| |
| if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) { |
| dev->stats.rx_errors++; |
| if (frame_status & RS_OFLO) |
| dev->stats.rx_fifo_errors++; |
| if (frame_status & RS_CLSN) |
| dev->stats.collisions++; |
| if (frame_status & RS_FRAMERR) |
| dev->stats.rx_frame_errors++; |
| if (frame_status & RS_FCSERR) |
| dev->stats.rx_crc_errors++; |
| } else { |
| unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 ); |
| |
| skb = netdev_alloc_skb(dev, frame_length + 2); |
| if (!skb) { |
| dev->stats.rx_dropped++; |
| return; |
| } |
| skb_reserve(skb, 2); |
| skb_put_data(skb, mf->data, frame_length); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| netif_rx(skb); |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += frame_length; |
| } |
| } |
| |
| /* |
| * The PSC has passed us a DMA interrupt event. |
| */ |
| |
| static irqreturn_t mace_dma_intr(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| struct mace_data *mp = netdev_priv(dev); |
| int left, head; |
| u16 status; |
| u32 baka; |
| |
| /* Not sure what this does */ |
| |
| while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); |
| if (!(baka & 0x60000000)) return IRQ_NONE; |
| |
| /* |
| * Process the read queue |
| */ |
| |
| status = psc_read_word(PSC_ENETRD_CTL); |
| |
| if (status & 0x2000) { |
| mace_rxdma_reset(dev); |
| } else if (status & 0x0100) { |
| psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); |
| |
| left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); |
| head = N_RX_RING - left; |
| |
| /* Loop through the ring buffer and process new packages */ |
| |
| while (mp->rx_tail < head) { |
| mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring |
| + (mp->rx_tail * MACE_BUFF_SIZE))); |
| mp->rx_tail++; |
| } |
| |
| /* If we're out of buffers in this ring then switch to */ |
| /* the other set, otherwise just reactivate this one. */ |
| |
| if (!left) { |
| mace_load_rxdma_base(dev, mp->rx_slot); |
| mp->rx_slot ^= 0x10; |
| } else { |
| psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); |
| } |
| } |
| |
| /* |
| * Process the write queue |
| */ |
| |
| status = psc_read_word(PSC_ENETWR_CTL); |
| |
| if (status & 0x2000) { |
| mace_txdma_reset(dev); |
| } else if (status & 0x0100) { |
| psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); |
| mp->tx_sloti ^= 0x10; |
| mp->tx_count++; |
| } |
| return IRQ_HANDLED; |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Macintosh MACE ethernet driver"); |
| MODULE_ALIAS("platform:macmace"); |
| |
| static int mac_mace_device_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct mace_data *mp = netdev_priv(dev); |
| |
| unregister_netdev(dev); |
| |
| free_irq(dev->irq, dev); |
| free_irq(IRQ_MAC_MACE_DMA, dev); |
| |
| dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE, |
| mp->rx_ring, mp->rx_ring_phys); |
| dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, |
| mp->tx_ring, mp->tx_ring_phys); |
| |
| free_netdev(dev); |
| |
| return 0; |
| } |
| |
| static struct platform_driver mac_mace_driver = { |
| .probe = mace_probe, |
| .remove = mac_mace_device_remove, |
| .driver = { |
| .name = mac_mace_string, |
| }, |
| }; |
| |
| module_platform_driver(mac_mace_driver); |