| /* |
| * File: mca.c |
| * Purpose: Generic MCA handling layer |
| * |
| * Updated for latest kernel |
| * Copyright (C) 2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * Copyright (C) 2002 Dell Inc. |
| * Copyright (C) Matt Domsch (Matt_Domsch@dell.com) |
| * |
| * Copyright (C) 2002 Intel |
| * Copyright (C) Jenna Hall (jenna.s.hall@intel.com) |
| * |
| * Copyright (C) 2001 Intel |
| * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com) |
| * |
| * Copyright (C) 2000 Intel |
| * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com) |
| * |
| * Copyright (C) 1999, 2004 Silicon Graphics, Inc. |
| * Copyright (C) Vijay Chander(vijay@engr.sgi.com) |
| * |
| * 03/04/15 D. Mosberger Added INIT backtrace support. |
| * 02/03/25 M. Domsch GUID cleanups |
| * |
| * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU |
| * error flag, set SAL default return values, changed |
| * error record structure to linked list, added init call |
| * to sal_get_state_info_size(). |
| * |
| * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected |
| * platform errors, completed code for logging of |
| * corrected & uncorrected machine check errors, and |
| * updated for conformance with Nov. 2000 revision of the |
| * SAL 3.0 spec. |
| * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, |
| * added min save state dump, added INIT handler. |
| * |
| * 2003-12-08 Keith Owens <kaos@sgi.com> |
| * smp_call_function() must not be called from interrupt context (can |
| * deadlock on tasklist_lock). Use keventd to call smp_call_function(). |
| * |
| * 2004-02-01 Keith Owens <kaos@sgi.com> |
| * Avoid deadlock when using printk() for MCA and INIT records. |
| * Delete all record printing code, moved to salinfo_decode in user space. |
| * Mark variables and functions static where possible. |
| * Delete dead variables and functions. |
| * Reorder to remove the need for forward declarations and to consolidate |
| * related code. |
| */ |
| #include <linux/config.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kallsyms.h> |
| #include <linux/smp_lock.h> |
| #include <linux/bootmem.h> |
| #include <linux/acpi.h> |
| #include <linux/timer.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/smp.h> |
| #include <linux/workqueue.h> |
| |
| #include <asm/delay.h> |
| #include <asm/machvec.h> |
| #include <asm/meminit.h> |
| #include <asm/page.h> |
| #include <asm/ptrace.h> |
| #include <asm/system.h> |
| #include <asm/sal.h> |
| #include <asm/mca.h> |
| |
| #include <asm/irq.h> |
| #include <asm/hw_irq.h> |
| |
| #if defined(IA64_MCA_DEBUG_INFO) |
| # define IA64_MCA_DEBUG(fmt...) printk(fmt) |
| #else |
| # define IA64_MCA_DEBUG(fmt...) |
| #endif |
| |
| /* Used by mca_asm.S */ |
| ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state; |
| ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state; |
| u64 ia64_mca_serialize; |
| DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ |
| DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ |
| DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ |
| DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ |
| |
| unsigned long __per_cpu_mca[NR_CPUS]; |
| |
| /* In mca_asm.S */ |
| extern void ia64_monarch_init_handler (void); |
| extern void ia64_slave_init_handler (void); |
| |
| static ia64_mc_info_t ia64_mc_info; |
| |
| #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ |
| #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ |
| #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ |
| #define CPE_HISTORY_LENGTH 5 |
| #define CMC_HISTORY_LENGTH 5 |
| |
| static struct timer_list cpe_poll_timer; |
| static struct timer_list cmc_poll_timer; |
| /* |
| * This variable tells whether we are currently in polling mode. |
| * Start with this in the wrong state so we won't play w/ timers |
| * before the system is ready. |
| */ |
| static int cmc_polling_enabled = 1; |
| |
| /* |
| * Clearing this variable prevents CPE polling from getting activated |
| * in mca_late_init. Use it if your system doesn't provide a CPEI, |
| * but encounters problems retrieving CPE logs. This should only be |
| * necessary for debugging. |
| */ |
| static int cpe_poll_enabled = 1; |
| |
| extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); |
| |
| static int mca_init; |
| |
| /* |
| * IA64_MCA log support |
| */ |
| #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ |
| #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ |
| |
| typedef struct ia64_state_log_s |
| { |
| spinlock_t isl_lock; |
| int isl_index; |
| unsigned long isl_count; |
| ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ |
| } ia64_state_log_t; |
| |
| static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; |
| |
| #define IA64_LOG_ALLOCATE(it, size) \ |
| {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \ |
| (ia64_err_rec_t *)alloc_bootmem(size); \ |
| ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \ |
| (ia64_err_rec_t *)alloc_bootmem(size);} |
| #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) |
| #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) |
| #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) |
| #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index |
| #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index |
| #define IA64_LOG_INDEX_INC(it) \ |
| {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ |
| ia64_state_log[it].isl_count++;} |
| #define IA64_LOG_INDEX_DEC(it) \ |
| ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index |
| #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) |
| #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) |
| #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count |
| |
| /* |
| * ia64_log_init |
| * Reset the OS ia64 log buffer |
| * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) |
| * Outputs : None |
| */ |
| static void |
| ia64_log_init(int sal_info_type) |
| { |
| u64 max_size = 0; |
| |
| IA64_LOG_NEXT_INDEX(sal_info_type) = 0; |
| IA64_LOG_LOCK_INIT(sal_info_type); |
| |
| // SAL will tell us the maximum size of any error record of this type |
| max_size = ia64_sal_get_state_info_size(sal_info_type); |
| if (!max_size) |
| /* alloc_bootmem() doesn't like zero-sized allocations! */ |
| return; |
| |
| // set up OS data structures to hold error info |
| IA64_LOG_ALLOCATE(sal_info_type, max_size); |
| memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size); |
| memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size); |
| } |
| |
| /* |
| * ia64_log_get |
| * |
| * Get the current MCA log from SAL and copy it into the OS log buffer. |
| * |
| * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) |
| * irq_safe whether you can use printk at this point |
| * Outputs : size (total record length) |
| * *buffer (ptr to error record) |
| * |
| */ |
| static u64 |
| ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) |
| { |
| sal_log_record_header_t *log_buffer; |
| u64 total_len = 0; |
| int s; |
| |
| IA64_LOG_LOCK(sal_info_type); |
| |
| /* Get the process state information */ |
| log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); |
| |
| total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); |
| |
| if (total_len) { |
| IA64_LOG_INDEX_INC(sal_info_type); |
| IA64_LOG_UNLOCK(sal_info_type); |
| if (irq_safe) { |
| IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. " |
| "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len); |
| } |
| *buffer = (u8 *) log_buffer; |
| return total_len; |
| } else { |
| IA64_LOG_UNLOCK(sal_info_type); |
| return 0; |
| } |
| } |
| |
| /* |
| * ia64_mca_log_sal_error_record |
| * |
| * This function retrieves a specified error record type from SAL |
| * and wakes up any processes waiting for error records. |
| * |
| * Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT) |
| */ |
| static void |
| ia64_mca_log_sal_error_record(int sal_info_type) |
| { |
| u8 *buffer; |
| sal_log_record_header_t *rh; |
| u64 size; |
| int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT; |
| #ifdef IA64_MCA_DEBUG_INFO |
| static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; |
| #endif |
| |
| size = ia64_log_get(sal_info_type, &buffer, irq_safe); |
| if (!size) |
| return; |
| |
| salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); |
| |
| if (irq_safe) |
| IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", |
| smp_processor_id(), |
| sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); |
| |
| /* Clear logs from corrected errors in case there's no user-level logger */ |
| rh = (sal_log_record_header_t *)buffer; |
| if (rh->severity == sal_log_severity_corrected) |
| ia64_sal_clear_state_info(sal_info_type); |
| } |
| |
| /* |
| * platform dependent error handling |
| */ |
| #ifndef PLATFORM_MCA_HANDLERS |
| |
| #ifdef CONFIG_ACPI |
| |
| int cpe_vector = -1; |
| |
| static irqreturn_t |
| ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs) |
| { |
| static unsigned long cpe_history[CPE_HISTORY_LENGTH]; |
| static int index; |
| static DEFINE_SPINLOCK(cpe_history_lock); |
| |
| IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", |
| __FUNCTION__, cpe_irq, smp_processor_id()); |
| |
| /* SAL spec states this should run w/ interrupts enabled */ |
| local_irq_enable(); |
| |
| /* Get the CPE error record and log it */ |
| ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); |
| |
| spin_lock(&cpe_history_lock); |
| if (!cpe_poll_enabled && cpe_vector >= 0) { |
| |
| int i, count = 1; /* we know 1 happened now */ |
| unsigned long now = jiffies; |
| |
| for (i = 0; i < CPE_HISTORY_LENGTH; i++) { |
| if (now - cpe_history[i] <= HZ) |
| count++; |
| } |
| |
| IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); |
| if (count >= CPE_HISTORY_LENGTH) { |
| |
| cpe_poll_enabled = 1; |
| spin_unlock(&cpe_history_lock); |
| disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); |
| |
| /* |
| * Corrected errors will still be corrected, but |
| * make sure there's a log somewhere that indicates |
| * something is generating more than we can handle. |
| */ |
| printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); |
| |
| mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); |
| |
| /* lock already released, get out now */ |
| return IRQ_HANDLED; |
| } else { |
| cpe_history[index++] = now; |
| if (index == CPE_HISTORY_LENGTH) |
| index = 0; |
| } |
| } |
| spin_unlock(&cpe_history_lock); |
| return IRQ_HANDLED; |
| } |
| |
| #endif /* CONFIG_ACPI */ |
| |
| static void |
| show_min_state (pal_min_state_area_t *minstate) |
| { |
| u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri; |
| u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri; |
| |
| printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits); |
| printk("pr\t\t%016lx\n", minstate->pmsa_pr); |
| printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0); |
| printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc); |
| printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip); |
| printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr); |
| printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs); |
| printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip); |
| printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr); |
| printk("xfs\t\t%016lx\n", minstate->pmsa_xfs); |
| printk("b1\t\t%016lx ", minstate->pmsa_br1); |
| print_symbol("%s\n", minstate->pmsa_br1); |
| |
| printk("\nstatic registers r0-r15:\n"); |
| printk(" r0- 3 %016lx %016lx %016lx %016lx\n", |
| 0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]); |
| printk(" r4- 7 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_gr[3], minstate->pmsa_gr[4], |
| minstate->pmsa_gr[5], minstate->pmsa_gr[6]); |
| printk(" r8-11 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_gr[7], minstate->pmsa_gr[8], |
| minstate->pmsa_gr[9], minstate->pmsa_gr[10]); |
| printk("r12-15 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_gr[11], minstate->pmsa_gr[12], |
| minstate->pmsa_gr[13], minstate->pmsa_gr[14]); |
| |
| printk("\nbank 0:\n"); |
| printk("r16-19 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1], |
| minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]); |
| printk("r20-23 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5], |
| minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]); |
| printk("r24-27 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9], |
| minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]); |
| printk("r28-31 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13], |
| minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]); |
| |
| printk("\nbank 1:\n"); |
| printk("r16-19 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1], |
| minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]); |
| printk("r20-23 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5], |
| minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]); |
| printk("r24-27 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9], |
| minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]); |
| printk("r28-31 %016lx %016lx %016lx %016lx\n", |
| minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13], |
| minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]); |
| } |
| |
| static void |
| fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw) |
| { |
| u64 *dst_banked, *src_banked, bit, shift, nat_bits; |
| int i; |
| |
| /* |
| * First, update the pt-regs and switch-stack structures with the contents stored |
| * in the min-state area: |
| */ |
| if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) { |
| pt->cr_ipsr = ms->pmsa_xpsr; |
| pt->cr_iip = ms->pmsa_xip; |
| pt->cr_ifs = ms->pmsa_xfs; |
| } else { |
| pt->cr_ipsr = ms->pmsa_ipsr; |
| pt->cr_iip = ms->pmsa_iip; |
| pt->cr_ifs = ms->pmsa_ifs; |
| } |
| pt->ar_rsc = ms->pmsa_rsc; |
| pt->pr = ms->pmsa_pr; |
| pt->r1 = ms->pmsa_gr[0]; |
| pt->r2 = ms->pmsa_gr[1]; |
| pt->r3 = ms->pmsa_gr[2]; |
| sw->r4 = ms->pmsa_gr[3]; |
| sw->r5 = ms->pmsa_gr[4]; |
| sw->r6 = ms->pmsa_gr[5]; |
| sw->r7 = ms->pmsa_gr[6]; |
| pt->r8 = ms->pmsa_gr[7]; |
| pt->r9 = ms->pmsa_gr[8]; |
| pt->r10 = ms->pmsa_gr[9]; |
| pt->r11 = ms->pmsa_gr[10]; |
| pt->r12 = ms->pmsa_gr[11]; |
| pt->r13 = ms->pmsa_gr[12]; |
| pt->r14 = ms->pmsa_gr[13]; |
| pt->r15 = ms->pmsa_gr[14]; |
| dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */ |
| src_banked = ms->pmsa_bank1_gr; |
| for (i = 0; i < 16; ++i) |
| dst_banked[i] = src_banked[i]; |
| pt->b0 = ms->pmsa_br0; |
| sw->b1 = ms->pmsa_br1; |
| |
| /* construct the NaT bits for the pt-regs structure: */ |
| # define PUT_NAT_BIT(dst, addr) \ |
| do { \ |
| bit = nat_bits & 1; nat_bits >>= 1; \ |
| shift = ((unsigned long) addr >> 3) & 0x3f; \ |
| dst = ((dst) & ~(1UL << shift)) | (bit << shift); \ |
| } while (0) |
| |
| /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */ |
| shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f; |
| nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift)); |
| |
| PUT_NAT_BIT(sw->caller_unat, &pt->r1); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r2); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r3); |
| PUT_NAT_BIT(sw->ar_unat, &sw->r4); |
| PUT_NAT_BIT(sw->ar_unat, &sw->r5); |
| PUT_NAT_BIT(sw->ar_unat, &sw->r6); |
| PUT_NAT_BIT(sw->ar_unat, &sw->r7); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15); |
| nat_bits >>= 16; /* skip over bank0 NaT bits */ |
| PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29); |
| PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31); |
| } |
| |
| static void |
| init_handler_platform (pal_min_state_area_t *ms, |
| struct pt_regs *pt, struct switch_stack *sw) |
| { |
| struct unw_frame_info info; |
| |
| /* if a kernel debugger is available call it here else just dump the registers */ |
| |
| /* |
| * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be |
| * generated via the BMC's command-line interface, but since the console is on the |
| * same serial line, the user will need some time to switch out of the BMC before |
| * the dump begins. |
| */ |
| printk("Delaying for 5 seconds...\n"); |
| udelay(5*1000000); |
| show_min_state(ms); |
| |
| printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm); |
| fetch_min_state(ms, pt, sw); |
| unw_init_from_interruption(&info, current, pt, sw); |
| ia64_do_show_stack(&info, NULL); |
| |
| if (read_trylock(&tasklist_lock)) { |
| struct task_struct *g, *t; |
| do_each_thread (g, t) { |
| if (t == current) |
| continue; |
| |
| printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); |
| show_stack(t, NULL); |
| } while_each_thread (g, t); |
| } |
| |
| printk("\nINIT dump complete. Please reboot now.\n"); |
| while (1); /* hang city if no debugger */ |
| } |
| |
| #ifdef CONFIG_ACPI |
| /* |
| * ia64_mca_register_cpev |
| * |
| * Register the corrected platform error vector with SAL. |
| * |
| * Inputs |
| * cpev Corrected Platform Error Vector number |
| * |
| * Outputs |
| * None |
| */ |
| static void |
| ia64_mca_register_cpev (int cpev) |
| { |
| /* Register the CPE interrupt vector with SAL */ |
| struct ia64_sal_retval isrv; |
| |
| isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); |
| if (isrv.status) { |
| printk(KERN_ERR "Failed to register Corrected Platform " |
| "Error interrupt vector with SAL (status %ld)\n", isrv.status); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: corrected platform error " |
| "vector %#x registered\n", __FUNCTION__, cpev); |
| } |
| #endif /* CONFIG_ACPI */ |
| |
| #endif /* PLATFORM_MCA_HANDLERS */ |
| |
| /* |
| * ia64_mca_cmc_vector_setup |
| * |
| * Setup the corrected machine check vector register in the processor. |
| * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) |
| * This function is invoked on a per-processor basis. |
| * |
| * Inputs |
| * None |
| * |
| * Outputs |
| * None |
| */ |
| void |
| ia64_mca_cmc_vector_setup (void) |
| { |
| cmcv_reg_t cmcv; |
| |
| cmcv.cmcv_regval = 0; |
| cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ |
| cmcv.cmcv_vector = IA64_CMC_VECTOR; |
| ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); |
| |
| IA64_MCA_DEBUG("%s: CPU %d corrected " |
| "machine check vector %#x registered.\n", |
| __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR); |
| |
| IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", |
| __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_disable |
| * |
| * Mask the corrected machine check vector register in the processor. |
| * This function is invoked on a per-processor basis. |
| * |
| * Inputs |
| * dummy(unused) |
| * |
| * Outputs |
| * None |
| */ |
| static void |
| ia64_mca_cmc_vector_disable (void *dummy) |
| { |
| cmcv_reg_t cmcv; |
| |
| cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); |
| |
| cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ |
| ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); |
| |
| IA64_MCA_DEBUG("%s: CPU %d corrected " |
| "machine check vector %#x disabled.\n", |
| __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_enable |
| * |
| * Unmask the corrected machine check vector register in the processor. |
| * This function is invoked on a per-processor basis. |
| * |
| * Inputs |
| * dummy(unused) |
| * |
| * Outputs |
| * None |
| */ |
| static void |
| ia64_mca_cmc_vector_enable (void *dummy) |
| { |
| cmcv_reg_t cmcv; |
| |
| cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); |
| |
| cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ |
| ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); |
| |
| IA64_MCA_DEBUG("%s: CPU %d corrected " |
| "machine check vector %#x enabled.\n", |
| __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_disable_keventd |
| * |
| * Called via keventd (smp_call_function() is not safe in interrupt context) to |
| * disable the cmc interrupt vector. |
| */ |
| static void |
| ia64_mca_cmc_vector_disable_keventd(void *unused) |
| { |
| on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_enable_keventd |
| * |
| * Called via keventd (smp_call_function() is not safe in interrupt context) to |
| * enable the cmc interrupt vector. |
| */ |
| static void |
| ia64_mca_cmc_vector_enable_keventd(void *unused) |
| { |
| on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0); |
| } |
| |
| /* |
| * ia64_mca_wakeup_ipi_wait |
| * |
| * Wait for the inter-cpu interrupt to be sent by the |
| * monarch processor once it is done with handling the |
| * MCA. |
| * |
| * Inputs : None |
| * Outputs : None |
| */ |
| static void |
| ia64_mca_wakeup_ipi_wait(void) |
| { |
| int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6); |
| int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f); |
| u64 irr = 0; |
| |
| do { |
| switch(irr_num) { |
| case 0: |
| irr = ia64_getreg(_IA64_REG_CR_IRR0); |
| break; |
| case 1: |
| irr = ia64_getreg(_IA64_REG_CR_IRR1); |
| break; |
| case 2: |
| irr = ia64_getreg(_IA64_REG_CR_IRR2); |
| break; |
| case 3: |
| irr = ia64_getreg(_IA64_REG_CR_IRR3); |
| break; |
| } |
| cpu_relax(); |
| } while (!(irr & (1UL << irr_bit))) ; |
| } |
| |
| /* |
| * ia64_mca_wakeup |
| * |
| * Send an inter-cpu interrupt to wake-up a particular cpu |
| * and mark that cpu to be out of rendez. |
| * |
| * Inputs : cpuid |
| * Outputs : None |
| */ |
| static void |
| ia64_mca_wakeup(int cpu) |
| { |
| platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; |
| |
| } |
| |
| /* |
| * ia64_mca_wakeup_all |
| * |
| * Wakeup all the cpus which have rendez'ed previously. |
| * |
| * Inputs : None |
| * Outputs : None |
| */ |
| static void |
| ia64_mca_wakeup_all(void) |
| { |
| int cpu; |
| |
| /* Clear the Rendez checkin flag for all cpus */ |
| for(cpu = 0; cpu < NR_CPUS; cpu++) { |
| if (!cpu_online(cpu)) |
| continue; |
| if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) |
| ia64_mca_wakeup(cpu); |
| } |
| |
| } |
| |
| /* |
| * ia64_mca_rendez_interrupt_handler |
| * |
| * This is handler used to put slave processors into spinloop |
| * while the monarch processor does the mca handling and later |
| * wake each slave up once the monarch is done. |
| * |
| * Inputs : None |
| * Outputs : None |
| */ |
| static irqreturn_t |
| ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs) |
| { |
| unsigned long flags; |
| int cpu = smp_processor_id(); |
| |
| /* Mask all interrupts */ |
| local_irq_save(flags); |
| |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; |
| /* Register with the SAL monarch that the slave has |
| * reached SAL |
| */ |
| ia64_sal_mc_rendez(); |
| |
| /* Wait for the wakeup IPI from the monarch |
| * This waiting is done by polling on the wakeup-interrupt |
| * vector bit in the processor's IRRs |
| */ |
| ia64_mca_wakeup_ipi_wait(); |
| |
| /* Enable all interrupts */ |
| local_irq_restore(flags); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_wakeup_int_handler |
| * |
| * The interrupt handler for processing the inter-cpu interrupt to the |
| * slave cpu which was spinning in the rendez loop. |
| * Since this spinning is done by turning off the interrupts and |
| * polling on the wakeup-interrupt bit in the IRR, there is |
| * nothing useful to be done in the handler. |
| * |
| * Inputs : wakeup_irq (Wakeup-interrupt bit) |
| * arg (Interrupt handler specific argument) |
| * ptregs (Exception frame at the time of the interrupt) |
| * Outputs : None |
| * |
| */ |
| static irqreturn_t |
| ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs) |
| { |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_return_to_sal_check |
| * |
| * This is function called before going back from the OS_MCA handler |
| * to the OS_MCA dispatch code which finally takes the control back |
| * to the SAL. |
| * The main purpose of this routine is to setup the OS_MCA to SAL |
| * return state which can be used by the OS_MCA dispatch code |
| * just before going back to SAL. |
| * |
| * Inputs : None |
| * Outputs : None |
| */ |
| |
| static void |
| ia64_return_to_sal_check(int recover) |
| { |
| |
| /* Copy over some relevant stuff from the sal_to_os_mca_handoff |
| * so that it can be used at the time of os_mca_to_sal_handoff |
| */ |
| ia64_os_to_sal_handoff_state.imots_sal_gp = |
| ia64_sal_to_os_handoff_state.imsto_sal_gp; |
| |
| ia64_os_to_sal_handoff_state.imots_sal_check_ra = |
| ia64_sal_to_os_handoff_state.imsto_sal_check_ra; |
| |
| if (recover) |
| ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED; |
| else |
| ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT; |
| |
| /* Default = tell SAL to return to same context */ |
| ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT; |
| |
| ia64_os_to_sal_handoff_state.imots_new_min_state = |
| (u64 *)ia64_sal_to_os_handoff_state.pal_min_state; |
| |
| } |
| |
| /* Function pointer for extra MCA recovery */ |
| int (*ia64_mca_ucmc_extension) |
| (void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*) |
| = NULL; |
| |
| int |
| ia64_reg_MCA_extension(void *fn) |
| { |
| if (ia64_mca_ucmc_extension) |
| return 1; |
| |
| ia64_mca_ucmc_extension = fn; |
| return 0; |
| } |
| |
| void |
| ia64_unreg_MCA_extension(void) |
| { |
| if (ia64_mca_ucmc_extension) |
| ia64_mca_ucmc_extension = NULL; |
| } |
| |
| EXPORT_SYMBOL(ia64_reg_MCA_extension); |
| EXPORT_SYMBOL(ia64_unreg_MCA_extension); |
| |
| /* |
| * ia64_mca_ucmc_handler |
| * |
| * This is uncorrectable machine check handler called from OS_MCA |
| * dispatch code which is in turn called from SAL_CHECK(). |
| * This is the place where the core of OS MCA handling is done. |
| * Right now the logs are extracted and displayed in a well-defined |
| * format. This handler code is supposed to be run only on the |
| * monarch processor. Once the monarch is done with MCA handling |
| * further MCA logging is enabled by clearing logs. |
| * Monarch also has the duty of sending wakeup-IPIs to pull the |
| * slave processors out of rendezvous spinloop. |
| * |
| * Inputs : None |
| * Outputs : None |
| */ |
| void |
| ia64_mca_ucmc_handler(void) |
| { |
| pal_processor_state_info_t *psp = (pal_processor_state_info_t *) |
| &ia64_sal_to_os_handoff_state.proc_state_param; |
| int recover; |
| |
| /* Get the MCA error record and log it */ |
| ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); |
| |
| /* TLB error is only exist in this SAL error record */ |
| recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc)) |
| /* other error recovery */ |
| || (ia64_mca_ucmc_extension |
| && ia64_mca_ucmc_extension( |
| IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), |
| &ia64_sal_to_os_handoff_state, |
| &ia64_os_to_sal_handoff_state)); |
| |
| if (recover) { |
| sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); |
| rh->severity = sal_log_severity_corrected; |
| ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); |
| } |
| /* |
| * Wakeup all the processors which are spinning in the rendezvous |
| * loop. |
| */ |
| ia64_mca_wakeup_all(); |
| |
| /* Return to SAL */ |
| ia64_return_to_sal_check(recover); |
| } |
| |
| static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL); |
| static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL); |
| |
| /* |
| * ia64_mca_cmc_int_handler |
| * |
| * This is corrected machine check interrupt handler. |
| * Right now the logs are extracted and displayed in a well-defined |
| * format. |
| * |
| * Inputs |
| * interrupt number |
| * client data arg ptr |
| * saved registers ptr |
| * |
| * Outputs |
| * None |
| */ |
| static irqreturn_t |
| ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs) |
| { |
| static unsigned long cmc_history[CMC_HISTORY_LENGTH]; |
| static int index; |
| static DEFINE_SPINLOCK(cmc_history_lock); |
| |
| IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", |
| __FUNCTION__, cmc_irq, smp_processor_id()); |
| |
| /* SAL spec states this should run w/ interrupts enabled */ |
| local_irq_enable(); |
| |
| /* Get the CMC error record and log it */ |
| ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); |
| |
| spin_lock(&cmc_history_lock); |
| if (!cmc_polling_enabled) { |
| int i, count = 1; /* we know 1 happened now */ |
| unsigned long now = jiffies; |
| |
| for (i = 0; i < CMC_HISTORY_LENGTH; i++) { |
| if (now - cmc_history[i] <= HZ) |
| count++; |
| } |
| |
| IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); |
| if (count >= CMC_HISTORY_LENGTH) { |
| |
| cmc_polling_enabled = 1; |
| spin_unlock(&cmc_history_lock); |
| schedule_work(&cmc_disable_work); |
| |
| /* |
| * Corrected errors will still be corrected, but |
| * make sure there's a log somewhere that indicates |
| * something is generating more than we can handle. |
| */ |
| printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); |
| |
| mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); |
| |
| /* lock already released, get out now */ |
| return IRQ_HANDLED; |
| } else { |
| cmc_history[index++] = now; |
| if (index == CMC_HISTORY_LENGTH) |
| index = 0; |
| } |
| } |
| spin_unlock(&cmc_history_lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_cmc_int_caller |
| * |
| * Triggered by sw interrupt from CMC polling routine. Calls |
| * real interrupt handler and either triggers a sw interrupt |
| * on the next cpu or does cleanup at the end. |
| * |
| * Inputs |
| * interrupt number |
| * client data arg ptr |
| * saved registers ptr |
| * Outputs |
| * handled |
| */ |
| static irqreturn_t |
| ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs) |
| { |
| static int start_count = -1; |
| unsigned int cpuid; |
| |
| cpuid = smp_processor_id(); |
| |
| /* If first cpu, update count */ |
| if (start_count == -1) |
| start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); |
| |
| ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs); |
| |
| for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); |
| |
| if (cpuid < NR_CPUS) { |
| platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); |
| } else { |
| /* If no log record, switch out of polling mode */ |
| if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { |
| |
| printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); |
| schedule_work(&cmc_enable_work); |
| cmc_polling_enabled = 0; |
| |
| } else { |
| |
| mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); |
| } |
| |
| start_count = -1; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_cmc_poll |
| * |
| * Poll for Corrected Machine Checks (CMCs) |
| * |
| * Inputs : dummy(unused) |
| * Outputs : None |
| * |
| */ |
| static void |
| ia64_mca_cmc_poll (unsigned long dummy) |
| { |
| /* Trigger a CMC interrupt cascade */ |
| platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); |
| } |
| |
| /* |
| * ia64_mca_cpe_int_caller |
| * |
| * Triggered by sw interrupt from CPE polling routine. Calls |
| * real interrupt handler and either triggers a sw interrupt |
| * on the next cpu or does cleanup at the end. |
| * |
| * Inputs |
| * interrupt number |
| * client data arg ptr |
| * saved registers ptr |
| * Outputs |
| * handled |
| */ |
| #ifdef CONFIG_ACPI |
| |
| static irqreturn_t |
| ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs) |
| { |
| static int start_count = -1; |
| static int poll_time = MIN_CPE_POLL_INTERVAL; |
| unsigned int cpuid; |
| |
| cpuid = smp_processor_id(); |
| |
| /* If first cpu, update count */ |
| if (start_count == -1) |
| start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); |
| |
| ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs); |
| |
| for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); |
| |
| if (cpuid < NR_CPUS) { |
| platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); |
| } else { |
| /* |
| * If a log was recorded, increase our polling frequency, |
| * otherwise, backoff or return to interrupt mode. |
| */ |
| if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { |
| poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); |
| } else if (cpe_vector < 0) { |
| poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); |
| } else { |
| poll_time = MIN_CPE_POLL_INTERVAL; |
| |
| printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); |
| enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); |
| cpe_poll_enabled = 0; |
| } |
| |
| if (cpe_poll_enabled) |
| mod_timer(&cpe_poll_timer, jiffies + poll_time); |
| start_count = -1; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_cpe_poll |
| * |
| * Poll for Corrected Platform Errors (CPEs), trigger interrupt |
| * on first cpu, from there it will trickle through all the cpus. |
| * |
| * Inputs : dummy(unused) |
| * Outputs : None |
| * |
| */ |
| static void |
| ia64_mca_cpe_poll (unsigned long dummy) |
| { |
| /* Trigger a CPE interrupt cascade */ |
| platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); |
| } |
| |
| #endif /* CONFIG_ACPI */ |
| |
| /* |
| * C portion of the OS INIT handler |
| * |
| * Called from ia64_monarch_init_handler |
| * |
| * Inputs: pointer to pt_regs where processor info was saved. |
| * |
| * Returns: |
| * 0 if SAL must warm boot the System |
| * 1 if SAL must return to interrupted context using PAL_MC_RESUME |
| * |
| */ |
| void |
| ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw) |
| { |
| pal_min_state_area_t *ms; |
| |
| oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */ |
| console_loglevel = 15; /* make sure printks make it to console */ |
| |
| printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n", |
| ia64_sal_to_os_handoff_state.proc_state_param); |
| |
| /* |
| * Address of minstate area provided by PAL is physical, |
| * uncacheable (bit 63 set). Convert to Linux virtual |
| * address in region 6. |
| */ |
| ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61)); |
| |
| init_handler_platform(ms, pt, sw); /* call platform specific routines */ |
| } |
| |
| static int __init |
| ia64_mca_disable_cpe_polling(char *str) |
| { |
| cpe_poll_enabled = 0; |
| return 1; |
| } |
| |
| __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); |
| |
| static struct irqaction cmci_irqaction = { |
| .handler = ia64_mca_cmc_int_handler, |
| .flags = SA_INTERRUPT, |
| .name = "cmc_hndlr" |
| }; |
| |
| static struct irqaction cmcp_irqaction = { |
| .handler = ia64_mca_cmc_int_caller, |
| .flags = SA_INTERRUPT, |
| .name = "cmc_poll" |
| }; |
| |
| static struct irqaction mca_rdzv_irqaction = { |
| .handler = ia64_mca_rendez_int_handler, |
| .flags = SA_INTERRUPT, |
| .name = "mca_rdzv" |
| }; |
| |
| static struct irqaction mca_wkup_irqaction = { |
| .handler = ia64_mca_wakeup_int_handler, |
| .flags = SA_INTERRUPT, |
| .name = "mca_wkup" |
| }; |
| |
| #ifdef CONFIG_ACPI |
| static struct irqaction mca_cpe_irqaction = { |
| .handler = ia64_mca_cpe_int_handler, |
| .flags = SA_INTERRUPT, |
| .name = "cpe_hndlr" |
| }; |
| |
| static struct irqaction mca_cpep_irqaction = { |
| .handler = ia64_mca_cpe_int_caller, |
| .flags = SA_INTERRUPT, |
| .name = "cpe_poll" |
| }; |
| #endif /* CONFIG_ACPI */ |
| |
| /* Do per-CPU MCA-related initialization. */ |
| |
| void __devinit |
| ia64_mca_cpu_init(void *cpu_data) |
| { |
| void *pal_vaddr; |
| |
| if (smp_processor_id() == 0) { |
| void *mca_data; |
| int cpu; |
| |
| mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu) |
| * NR_CPUS); |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| __per_cpu_mca[cpu] = __pa(mca_data); |
| mca_data += sizeof(struct ia64_mca_cpu); |
| } |
| } |
| |
| /* |
| * The MCA info structure was allocated earlier and its |
| * physical address saved in __per_cpu_mca[cpu]. Copy that |
| * address * to ia64_mca_data so we can access it as a per-CPU |
| * variable. |
| */ |
| __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()]; |
| |
| /* |
| * Stash away a copy of the PTE needed to map the per-CPU page. |
| * We may need it during MCA recovery. |
| */ |
| __get_cpu_var(ia64_mca_per_cpu_pte) = |
| pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)); |
| |
| /* |
| * Also, stash away a copy of the PAL address and the PTE |
| * needed to map it. |
| */ |
| pal_vaddr = efi_get_pal_addr(); |
| if (!pal_vaddr) |
| return; |
| __get_cpu_var(ia64_mca_pal_base) = |
| GRANULEROUNDDOWN((unsigned long) pal_vaddr); |
| __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr), |
| PAGE_KERNEL)); |
| } |
| |
| /* |
| * ia64_mca_init |
| * |
| * Do all the system level mca specific initialization. |
| * |
| * 1. Register spinloop and wakeup request interrupt vectors |
| * |
| * 2. Register OS_MCA handler entry point |
| * |
| * 3. Register OS_INIT handler entry point |
| * |
| * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. |
| * |
| * Note that this initialization is done very early before some kernel |
| * services are available. |
| * |
| * Inputs : None |
| * |
| * Outputs : None |
| */ |
| void __init |
| ia64_mca_init(void) |
| { |
| ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler; |
| ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler; |
| ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; |
| int i; |
| s64 rc; |
| struct ia64_sal_retval isrv; |
| u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ |
| |
| IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__); |
| |
| /* Clear the Rendez checkin flag for all cpus */ |
| for(i = 0 ; i < NR_CPUS; i++) |
| ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; |
| |
| /* |
| * Register the rendezvous spinloop and wakeup mechanism with SAL |
| */ |
| |
| /* Register the rendezvous interrupt vector with SAL */ |
| while (1) { |
| isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, |
| SAL_MC_PARAM_MECHANISM_INT, |
| IA64_MCA_RENDEZ_VECTOR, |
| timeout, |
| SAL_MC_PARAM_RZ_ALWAYS); |
| rc = isrv.status; |
| if (rc == 0) |
| break; |
| if (rc == -2) { |
| printk(KERN_INFO "Increasing MCA rendezvous timeout from " |
| "%ld to %ld milliseconds\n", timeout, isrv.v0); |
| timeout = isrv.v0; |
| continue; |
| } |
| printk(KERN_ERR "Failed to register rendezvous interrupt " |
| "with SAL (status %ld)\n", rc); |
| return; |
| } |
| |
| /* Register the wakeup interrupt vector with SAL */ |
| isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, |
| SAL_MC_PARAM_MECHANISM_INT, |
| IA64_MCA_WAKEUP_VECTOR, |
| 0, 0); |
| rc = isrv.status; |
| if (rc) { |
| printk(KERN_ERR "Failed to register wakeup interrupt with SAL " |
| "(status %ld)\n", rc); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__); |
| |
| ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); |
| /* |
| * XXX - disable SAL checksum by setting size to 0; should be |
| * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); |
| */ |
| ia64_mc_info.imi_mca_handler_size = 0; |
| |
| /* Register the os mca handler with SAL */ |
| if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, |
| ia64_mc_info.imi_mca_handler, |
| ia64_tpa(mca_hldlr_ptr->gp), |
| ia64_mc_info.imi_mca_handler_size, |
| 0, 0, 0))) |
| { |
| printk(KERN_ERR "Failed to register OS MCA handler with SAL " |
| "(status %ld)\n", rc); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__, |
| ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); |
| |
| /* |
| * XXX - disable SAL checksum by setting size to 0, should be |
| * size of the actual init handler in mca_asm.S. |
| */ |
| ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp); |
| ia64_mc_info.imi_monarch_init_handler_size = 0; |
| ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp); |
| ia64_mc_info.imi_slave_init_handler_size = 0; |
| |
| IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__, |
| ia64_mc_info.imi_monarch_init_handler); |
| |
| /* Register the os init handler with SAL */ |
| if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, |
| ia64_mc_info.imi_monarch_init_handler, |
| ia64_tpa(ia64_getreg(_IA64_REG_GP)), |
| ia64_mc_info.imi_monarch_init_handler_size, |
| ia64_mc_info.imi_slave_init_handler, |
| ia64_tpa(ia64_getreg(_IA64_REG_GP)), |
| ia64_mc_info.imi_slave_init_handler_size))) |
| { |
| printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " |
| "(status %ld)\n", rc); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__); |
| |
| /* |
| * Configure the CMCI/P vector and handler. Interrupts for CMC are |
| * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). |
| */ |
| register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); |
| register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); |
| ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ |
| |
| /* Setup the MCA rendezvous interrupt vector */ |
| register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); |
| |
| /* Setup the MCA wakeup interrupt vector */ |
| register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); |
| |
| #ifdef CONFIG_ACPI |
| /* Setup the CPEI/P handler */ |
| register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); |
| #endif |
| |
| /* Initialize the areas set aside by the OS to buffer the |
| * platform/processor error states for MCA/INIT/CMC |
| * handling. |
| */ |
| ia64_log_init(SAL_INFO_TYPE_MCA); |
| ia64_log_init(SAL_INFO_TYPE_INIT); |
| ia64_log_init(SAL_INFO_TYPE_CMC); |
| ia64_log_init(SAL_INFO_TYPE_CPE); |
| |
| mca_init = 1; |
| printk(KERN_INFO "MCA related initialization done\n"); |
| } |
| |
| /* |
| * ia64_mca_late_init |
| * |
| * Opportunity to setup things that require initialization later |
| * than ia64_mca_init. Setup a timer to poll for CPEs if the |
| * platform doesn't support an interrupt driven mechanism. |
| * |
| * Inputs : None |
| * Outputs : Status |
| */ |
| static int __init |
| ia64_mca_late_init(void) |
| { |
| if (!mca_init) |
| return 0; |
| |
| /* Setup the CMCI/P vector and handler */ |
| init_timer(&cmc_poll_timer); |
| cmc_poll_timer.function = ia64_mca_cmc_poll; |
| |
| /* Unmask/enable the vector */ |
| cmc_polling_enabled = 0; |
| schedule_work(&cmc_enable_work); |
| |
| IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__); |
| |
| #ifdef CONFIG_ACPI |
| /* Setup the CPEI/P vector and handler */ |
| cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); |
| init_timer(&cpe_poll_timer); |
| cpe_poll_timer.function = ia64_mca_cpe_poll; |
| |
| { |
| irq_desc_t *desc; |
| unsigned int irq; |
| |
| if (cpe_vector >= 0) { |
| /* If platform supports CPEI, enable the irq. */ |
| cpe_poll_enabled = 0; |
| for (irq = 0; irq < NR_IRQS; ++irq) |
| if (irq_to_vector(irq) == cpe_vector) { |
| desc = irq_descp(irq); |
| desc->status |= IRQ_PER_CPU; |
| setup_irq(irq, &mca_cpe_irqaction); |
| } |
| ia64_mca_register_cpev(cpe_vector); |
| IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__); |
| } else { |
| /* If platform doesn't support CPEI, get the timer going. */ |
| if (cpe_poll_enabled) { |
| ia64_mca_cpe_poll(0UL); |
| IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__); |
| } |
| } |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| device_initcall(ia64_mca_late_init); |